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Alternative approach to thermodynamic phase transitions
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Abstract: One of the major open problems in theoretical physics is the lack of a consistent quantum gravity theory.

Recent developments in our knowledge on thermodynamic phase transitions of black holes and their van der Waals-

like behavior may provide an interesting quantum interpretation of classical gravity. Studying different methods of in-

vestigating phase transitions can extend our understanding of the nature of quantum gravity. In this paper, we present

an alternative theoretical approach for finding thermodynamic phase transitions in the extended phase space. Unlike

the standard methods based on the usual equation of state involving temperature, our approach uses a new quasi-

equation constructed from the slope of temperature versus entropy. This approach addresses some of the shortcom-

ings of the other methods and provides a simple and powerful way of studying the critical behavior of a thermody-

namical system. Among the applications of this approach, we emphasize the analytical demonstration of possible

phase transition points and the identification of the non-physical range of horizon radii for black holes.
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1 Introduction

Phase transitions are an interesting and challenging
experimental and theoretical topic, appearing in both bio-
logical [1] and physical systems [2]. In terms of physical
systems, phase transitions play an important role in ele-
mentary particle physics [3], condensed matter [4-6],
standard thermodynamics [7], cosmology [8], black holes
[9] and other branches of physics. In general, there are at
least three well-known approaches to discussing phase
transitions inside a black hole. Two of these approaches
are based on a macroscopic point of view (methods by
Davies and Landau-Lifshitz discuss the behavior of heat
capacity and thermodynamic fluctuations, respectively),
and one of them is based on a microscopic viewpoint
(thermodynamic geometry or Ruppeiner geometry). In
this regard, we focus on the thermodynamic phase trans-
ition of black holes. There are several well-known ap-
proaches to studying the critical behavior of black holes.
One of them uses heat capacity in the context of a canon-
ical ensemble. The discontinuity of heat capacity is where
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the phase transition takes place. Another method is based
on studying the van der Waals-like behavior of black
holes in the extended phase space by considering the pro-
portionality between the cosmological constant and dy-
namical pressure. This method is based on an equation of
state, which originates from temperature. For more de-
tails, please refer to earlier reviews on phase transitions
of black holes, black rings, black Saturns, and black
membranes [10-13], where classical instability and hori-
zon topology-changing transitions are also discussed.

In this paper, we consider a method for extracting the
critical values and van der Waals phase transition based
on the divergence of heat capacity (Davies' method). We
should note that our method is applicable in the extended
phase space thermodynamics of a black hole, in which
the cosmological constant is considered as dynamic pres-
sure. Because our approach uses the behavior of heat ca-
pacity, it is not a novel approach but an alternative way to
obtain the properties of heat capacity based on the canon-
ical ensemble. In other words, this method is the same as
Davies' method but with a different point of view. We in-
troduce an alternative approach for obtaining the critical
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values of the van der Waals-like behavior by using the
slope of T versus S, and give two relevant examples. In
other words, in the usual extended phase space, one cal-

oM . .
culates 7 = (E) to obtain an equation of state. Other

calculations and interpretations are based on such an

equation of state. In our approach, we use

oT\_ (M) _ 0 to obtain a new relation for pressure
as ) \asz)~ ’ .

This relation is free of temperature and is therefore not
the usual equation of state. One can find that this relation
and other related quantities and phase diagrams are dif-
ferent from those obtained in the usual extended phase
space. Our method provides the possibility of mapping all
phase transition points in a system. In addition, it can pin
point the non-physical range of horizon radii, where the
black hole solutions do not exist. Furthermore, the rate of
increase of non-physical range of horizon radii for differ-
ent critical values can be obtained. As a final point, we
should note that our approach is quite different from
Poincare's turning point method [14-17], which is a
powerful tool for investigating turning point and stability.
Unlike this method, our approach is based on the exten-
ded phase space thermodynamics and the slope of T
versus S as a primitive equation for obtaining the dynam-
ical pressure, where its maximum is related to a critical
point and possible phase transition.

The remainder of this paper is organized as follows:
In Sec. 2, we give a brief review of the canonical en-
semble and van der Waals approaches to black hole phase
transitions. In Sec. 3, we introduce an alternative method
for calculating the phase transition parameters, and we
apply this method to the usual van der Waals system. In
Sec. 4, we perform a case study on the Reissner-
Nordstrom AdS black hole to demonstrate the proposed
method in more detail. Finally, we provide several con-
cluding remarks.

2 Brief review of various methods

2.1 The usual method: heat capacity and extended

phase space

In the canonical ensemble, discontinuities of the heat
capacity indicate the phase transition points. The heat ca-
pacity in the context of the canonical ensemble is given

by
T as
Co= (32_7) = T(a—T)Q. (1)
as2 ),

The main application of heat capacity is for studying
thermal stability. Positivity of Cp can guarantee the
thermal stability of a system, while its negativity is re-

garded as an instability.

On the other hand, to study the critical behavior of a
thermodynamical system, one is required to obtain an
equation of state, P = P(T,V). In the context of black hole
thermodynamics, one may find the temperature of a typ-
ical black hole in the presence of the cosmological con-
stant T =T(m,r,,A, Q,other hairs). We can consider the
cosmological constant as a dynamical pressure and take
into account the relation between the event horizon radi-
us (r;) and the volume to find an equation of state,
P = P(T,V). Applying the properties of a critical point in
an isothermal P-V diagram (inflection point), one may

2
obtain op = i = 0. This relation helps us to find
ov), \ov?);

the critical points and possible phase transitions. This
method very much depends on the temperature value. It is
worth noting that this method is not practical for black
holes with non-spherical horizons in most gravitational
theories. To avoid such a restriction, we should use an al-
ternative method for obtaining the critical values in the
extended phase space.

2.2 Van der Waals liquid-gas system

The van der Waals system is one of the important
models for describing a real liquid—gas system and its
critical behavior. The equation of state of this model is a
modification of the ideal gas equation and considers the
non-zero sizes of molecules and the attraction between
molecules. The van der Waals equation of state is given
by [18]

(P + 2 ) (v—b) = kT(P,v). 2
1%

where P and T are the pressure and temperature, respect-

ively. Also, v is the specific volume v= —, b is a free

parameter related to the non-zero size of the molecules of
a fluid, and a represents the strength of attraction between
the molecules. Here, £ is a constant that can be set to
unity without loss of generality. Note that setting
a=b=0 yields the familiar ideal gas law. Due to the van
der Waals-black hole correspondence, one can use the
analogy between the temperature (and hence equation of
state) of the fluid and the temperature of the black hole.
The existence of critical behavior can be determined by
examining the properties of the inflection point, which

satisty
oP P
—_— =| — = O, 3
( ov )T ( o2 )T )

Using the inflection point of the equation of state of
the van der Waals system in Eq. (2), it is straightforward
to find the following critical values:

a 8a
Pz 1= i

ve = 3b, 4
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Inserting 7 =T, into the equation of state, we find
two inseparable liquid-gas phases with a possible phase
transition between them. For the case of T < T., we have
a phase transition between two phases of liquid and gas.
However, there exists a region of specific volume in
which no physical system exists and the phase transition
takes place over it. In other words, for this case, two spe-
cific volumes with the same pressure exist, and the phase
transition takes place between them. In order to obtain all
of these critical behaviors and their specific critical val-
ues, all temperatures smaller than 7, must be considered,
which is practically impossible. The method proposed in-
troduced in this paper provides the possibility of obtain-
ing all of these critical points analytically. We will
demonstrate this possibility in the remainder of this pa-
per.

The Gibbs free energy of this system can be ex-
pressed in the following form:

G:—kT(1+ln

— 3
QTE])—C—l+Pv, (5)
(O] v

where @ is a constant characterizing the gas. The entropy
of the system can be obtained from the differential equa-
tion dG = —SdT +vdP, which leads to

%T%]). 6)

Using the equation of state and inserting the temperat-
ure into Eq. (6), one can obtain the following S (v, P)

S =k(§+ln

(v—b)g(P+ %)%

Sw,P)=k g+ln (7)

3
k2@

To use the proposed method, one must determine the
enthalpy of the system. This quantity can be calculated
using different methods, and the following relation is one
of them:

H=G+TS=%kT—%+Pv, (8)

The above is known as the enthalpy of the van der Waals
system. Using the equation of state, it is easy to find the
following relation for H(v, P):

H(v,P):(Sv;3b)P+

where, in principle, one may remove v from Egs. (7) and
(9) to obtain H = H(S, P).

a(v—13b)
P

©)

3 Alternative approach to phase transitions

Taking into account the postulates of the usual ther-
modynamics, it appears that all complete differentiations
can be written as functions of three thermodynamic vari-

ables. It is known that these three variables are not inde-
pendent, for instance, an equation of state can reduce the
number of degrees of freedom to two. On the other hand,
the equations for the thermodynamical properties of the
system are combinations of different variables. For ex-
ample, in most cases, pressure and temperature, Gibbs
free energy and internal energy, etc., of a thermodynam-
ical system are not independent of each other. Pressure
and temperature are related by the equation of state, and
the Gibbs free energy may be derived by the Legendre
transform of the internal energy. Hence, internal and
Gibbs free energies are also dependent on each other.

In practice, obtaining all possible critical points of a
system as well as the ranges in which phase transitions
take place is not possible with the usual methods. The
main reason for this is that one must take the value of a
particular thermodynamical quantity as smaller than its
critical value to obtain the critical points and their corres-
ponding range of phase transitions. Mathematically, it is
not possible to solve such a problem analytically using
the usual methods. Here, we introduce an alternative
method that provides such a possibility and uncovers new
relations between thermodynamical quantities. These re-
lations provide information about the phase transitions of
a system and their corresponding ranges.

Since divergence points of the heat capacity

— oo | hint at possible phase transition

aS

(see Eq. (1)), the equation of vanishing slope of T versus
S helps us to obtain a new relation for pressure, which
can be maximized to look for phase transitions. We
should note that in order to find the critical behavior of a
system, the vanishing slope of T versus S is necessary but
not sufficient in our approach.

The proposed method is as follows: instead of consid-
ering the usual equation of state, we use the equation of

(%)p B (a;)P

o T
vanishing slope of 7 versus S, (2—5)

solved with respect to pressure in the extended phase
space. This leads to a new relation for pressure that is
completely volume dependent. This relation differs from
other relations obtained using the usual equation of state.
The existence of a maximum of pressure from this rela-
tion must be examined. The maximum (maxima) of this
relation is (are) the critical point(s) where the phase trans-
ition takes place. In other words, the maximum of this re-
lation is where the system undergoes a phase transition.

It is evident that by finding a maximum, one is able to
extract the critical pressure and the horizon radius
(volume) at the same time. It is worth mentioning that to

= 0. This equation is

. : &PH\ .
obtain the relation for pressure one can use a52) 1
P

113106-3



Chinese Physics C Vol. 43, No. 11 (2019) 113106

oT
as
The maximum is where the system acquires a phase
transition (the maximum indicates the critical values for a
system). On the other hand, thermodynamical concepts
indicate that for pressures smaller than the critical one,
two critical volumes exist between which a phase trans-
ition takes place. For pressures larger than the critical
pressure, no phase transition exists. We see that due to
the existence of critical pressure at the maximum of this
relation, such a property is preserved in our method, and
all possible critical points and their corresponding ranges
are obtained. Furthermore, using the new relation for
pressure, and replacing it in the usual equation of state,
one can obtain a new relation for temperature that is free
of pressure. The same can be done for enthalpy, internal
energy, or Gibbs free energy, which leads to new rela-
tions that are completely volume dependent. To demon-
strate the efficiency of the presented method in more de-
tail, we will give two typical but general examples in the
contexts of both the usual thermodynamics and black
hole thermodynamics.

stead of ( ) , where H is the enthalpy of the system.
P

3.1 Van der Waals liquid/gas system

We are now in a position to use our method for the
case of a van der Waals system. Because both the en-
tropy S(v) and enthalpy H(v) are volume dependent at
constant pressure (see Egs. (7) and (9)), we can use the
following relation:

)] 2 )] o
382 )p \v)p ov|\ov)p\ov/p |,

which leads to the following relation for a van der Waals
liquid/gas system

PH\  20-b)(P+24)(Pv —av+2ab)
(W)P B k% (5Pv3 —av +6ab)

From the above relation, one can find that enthalpy
changes during a phase transition. In other words, the in-
creasing/decreasing behavior of enthalpy is different be-

fore and after a phase transition as well as and after a crit-
2

. . . 0°H .
ical point. By solving (W) =0 with respect to P, one

(11)

. . P . .
can obtain the following new relation for pressure, which
differs from the usual equation of state:

-2b
d =, (allowed)
P new — ‘C}Z
—— (unallowed, due to the equation of state)
v

(12)

Using the concept of the extremum of this (allowed)

relation, i.e., the critical point, one can obtain the follow-
ing critical volume and pressure:

a
—, 13
27b? (13)

which are identical to those obtained previously in Eq.

(4). By replacing the new pressure in the equation of

state, Gibbs free energy, and enthalpy, one can obtain

new relations for these thermodynamical quantities (as

well as for other), which are pressure independent:
2a(b—v)?

TneW =
k3

ve=3b, & P.=

Gpew =— kT(l +2In

v—b ;D 2ab
T |- =,
() v
3 2ab
ew =2k =35
These new relations enable us to extract all possible
critical temperatures, Gibbs free energies and enthalpies
that a system can have. To highlight this aspect of our
method, we refer you to the plot in Fig. 1.
It is evident that the maxima of the new relations for
the temperature Tyey and pressure Ppey are where the sys-
tem undergoes a phase transition. Note that in the P—v

0.09T
0.08 |
007 |
0.064 |-
0.05
0.041
0.03
0.024

0.014

0+

0.357

0.30

0.254

0.20 T T T T
1 2 3 4 5

Fig. 1. (color online) Application of the proposed method to
the case of a van der Waals system. Top panel: Py (dash-
dotted line) and P versus v for T =0.97, (continuous line),
T =T, (dotted line) and T = 1.17, (dashed line). Bottom pan-
el: Thew (dash-dotted line) and 7 versus v for P =0.9P, (con-
tinuous line), P=P, (dotted line) and P=1.1P. (dashed
line). In both diagrams, we chose b=1,a=4 and k= 1.

113106-4



Chinese Physics C Vol. 43, No. 11 (2019) 113106

picture, the temperature is kept constant, while in the
T —v picture, the pressure is kept constant. In addition,
for pressures (temperatures) smaller than the critical one,
the new relation gives a single pressure (temperature)
with two related volumes. The phase transition takes
place between these two volumes at a specific pressure.
As one can see, all possible critical points and the corres-
ponding ranges of phase transitions are included in this
method. This is one of the important features of our meth-
od that was not possible with previous methods. It is in-
teresting to note that the minima of 7' (P) coincide with
the maxima of Ty (Prew). We continue with another ex-
ample in the context of black holes.

4 Phase transition in higher dimensional Re-
issner-Nordstrom AdS black hole

The main motivation to study asymptotically AdS
black holes stems from the hypothesis of AdS/CFT cor-
respondence. Using the thermal field theoretic ap-
proaches, it has been deduced that AdS black holes un-
dergo certain phase transitions. The first sign of such
phase transitions was observed by Page and Hawking for
the Schwarzschild AdS black hole [19]. With the addi-
tion of parameters, such as electric charge and spin, the
phase transition process is more elaborate and enhanced.
It is quite interesting to note that the pressure-volume pic-
ture of the ideal gas for constant temperature is also mim-
icked by AdS black holes (see top panel of Fig. 1). This
analogy between a gravitational system (AdS black hole)
and a non-gravitational thermal system (such as an ideal
gas or a van der Waals fluid) is established by identify-
ing a correspondence between their parameters, i.e., mass
with enthalpy, temperature with surface gravity, entropy
with area, and cosmological constant with pressure. Thus,
in the first law of thermodynamics, the cosmological con-
stant appears as pressure, which is conjugate to the
volume of a black hole [20]. Besides, using the reverse
isoperimetric inequality, it has been deduced that entropy
inside the horizon of a given volume is maximized for the
Schwarzschild AdS black hole [21].

In black hole systems, it has been shown that one can
take the negative cosmological constant as thermodynam-
ical pressure [22] with the following relation:

A
P= . (14)

On a complimentary note, we should mention that for
specific black holes in modified general relativity, such as
dilatonic gravity and gravity rainbow, one has to use a
modified proportionality relation instead of Eq. (14) [23,
24]. Although in this paper we consider a well-known
Reissner-Nordstrom AdS black hole, our technique is
consistent with the other black holes in modified theories

of gravity. Replacing the cosmological constant with
thermodynamical pressure (working in the extended
phase space thermodynamics) leads to the following im-
portant results:

I) The resulting temperature for the black hole is the
equation of state.

II) The total mass of the black hole is no longer the
internal energy. In fact, it is replaced by the enthalpy in
such a scenario, which results in the following relation
for the Gibbs free energy:

G=M-TS. (15)

We now demonstrate the validity of our approach and
its consistency with previous methods in the context of
black hole systems. For this purpose, we study the critic-
al behavior of the d-dimensional Reissner-Nordstrom
AdS black hole. Previously, the results for this specific
black hole were derived using the usual method in Ref.
[18]. The metric of this black hole in spherically symmet-
ric spacetime is given as

dr?

Y(r)
where we use the notation d; =d —i. In Eq. (16), in de-
notes the metric of ad, —dimensional unit sphere, and

m 2N , 2diq?

=l-——-— . 17
R (17)

The temperature, entropy, and total finite mass of this
black hole are calculated using the surface gravity, area
law, and ADM approach, respectively, which lead to

d3 Ar+ d:%qz

ds® = —y(Ndr* + — +r°dQ; , (16)

= - - R 18
47rr+ 27Td2 27Td2 ridS/z ( )

d,

/
S ==, 19
: (19)

dy
M=—m, 20
167rm (20)

where r, is the outer horizon of the black hole. By evalu-

ating the metric function on the outer horizon
(¥ (r=ry)=0), we obtain
d 20 2dig?
M= 2| p 2B 1)
167 did d2r+l
with the following relation for Gibbs free energy:
d, 2 d,
2d —
_ Iy B@d=Sg 1, 22)

- lorn 8mdyr® did,

Another interesting method for calculating the ther-
modynamic potentials (such as Gibbs free energy) in a
gravitational system is based on the Euclidean on-shell
action. Because bulk action of the theory diverges, we use
the counter-term action to remove the divergency. In ad-
dition, we should add the Gibbons-Hawking and electro-
magnetic boundary terms to the bulk action to obtain a

113106-5



Chinese Physics C Vol. 43, No. 11 (2019) 113106

well-defined action. The well-behaved finite action can
be written as (see [25])

1
1=1b+10,—§rf d"x Vy K
oM

d"x \fyn, F*"A,, (23)

ar oM

where I, and I, are the bulk and counter-term actions of

the Einstein-Maxwell gravity, respectively. Also, y;; and

K are the induced metric and extrinsic curvature of the

boundary, respectively. Using Eq. (23), it is straightfor-

ward to calculate the total on-shell action with respect to
the volume of the unit d,sphere

I B (rflj .\ 2AF 2d3(2d—5)q2J’

167 did, dzril

24

where B is the inverse of the Hawking temperature. Us-
ing the fact that G = I/B along with Eq. (14), we get

1 (4 16xPry 2d32d-5)q*
G=—|r{-
167 did dzrf_‘

which is the same as Eq. (22), as expected.

We are now in a position to calculate the critical val-
ues with the usual method. First, we calculate the volume
conjugate to the pressure as

J, (25)

d,
V= (a_H) - (G_M) s (26)
P s, \oP )5, @

Because the volume depends on the horizon radius,
one can use the horizon radius to investigate the thermo-
dynamic behavior of the black hole proportionally (lin-
early) to its specific volume [18]. Using Egs. (14) and
(18), one can obtain the equation of state as

(TR -dsr}) 2P

16nr4 16774

@7

We now employ the proprieties of the inflection

. oP d*P . . .
point, (—) = (—2) =0, to obtain the critical horizon
(9}”+ T 31’+ T
radius (volume) r. , which leads to
12 —4dsdspgPr % =0 (28)

with the following solution [18]:

1
Fe = (4q2d3d5/2) 2d, . (29)

The critical temperature and pressure can then be ob-
tained as
dS/Z

d 4q2d3d5/2 d_3d2q2
T, = 3 —( )" & . (30)

L by
27T(4q2d3 d5/2) 2d;

d d2 2
P, = drds B 52059 ' 31)

T d
167(4q%d3ds)2)

47T(4C]2d3d5/2)d_3

Let us now determine the critical values using our ap-
proach. Using Egs. (19) and (21) and replacing the cos-
mological constant with the pressure in Eq. (14), one can
obtain (because at constant pressure both S =S(r,) and
M = M(r,) are independent of temperature, the equation
of state for removing 7T, which was used is not required as
it was before in the van der Waals liquid/gas system)

(82M) 6P  dy  4dspdig’
as2 ), p 2

= - (32)
: d%ndj ndyry!
2

. oM . .
Solving (W) =0 with respect to P, we obtain a

. P
new relation for the’pressure:
drds d5/2d32,q2

167r 3 47rrid2 '

Replacing the pressure in the relations for temperat-
ure in Eq. (18), mass in Eq. (21), and Gibbs free energy
in Eq. (22) with the new pressure relation in Eq. (33), one
can obtain new relations for these thermodynamical

quantities in the following form:
dy g

Prew =

(33)

Thow = 5 === ——. (34)
Ty Vg
dzrdi d 2
My = 20 _ dsdad” (35)
8nd, 4ndry
d. 2
3 dsnd
Gew = 2 + 21251 (36)

8nd, 2ndy r i’l .
It is evident that the relation for pressure in Eq. (33) is
different from the usual equation of state in Eq. (27). To
obtain the maximum of this relation, we use the mathem-
atical nature of the extremum,

dPrew _ dodids g’ s
dr,

B ) 2dy,

r+=I'ne T, NC
with the following solution for the new critical (NC) hori-
zon radius, rnc :

=0 (37

3
87rrNC

1
NC = (4013615/26]2)2‘13 , (38)

which is exactly the same as that obtained in Eq. (29).
Replacing this horizon radius in Egs. (34) and (33), we
can derive the following:

ds
d 4q2d3d5/2 d d%qz
Tne = S | ﬂ) .69
27T(4q2d3d5/2)2_‘13
drd dspd3q*
Pxc = = . (0
16m(4q2d3dsp) 4 An(dqidzds)n) @
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which are exactly the same as the previously calculated
critical temperature in Eq. (30) and pressure in Eq. (31),
respectively. These results show that the critical values
calculated in our approach are consistent with those cal-
culated with the usual method in extended phase space.
Using the critical radius in Eq. (38) with the new rela-
tions for mass (Eq. (35)) and Gibbs free energy (Eq.
(36)), we can also obtain the critical mass (enthalpy) and
critical Gibbs free energy:
dods (d>-5d+7)q
Mnc = ,
47Td1 1/d3d5/2
Vdzds)q

27Td1

To illustrate the results of our approach in more de-
tail, Fig. 2 shows plots of the obtained relations for tem-
perature and pressure. It is clear that for pressures (tem-
peratures) larger than the critical one, no phase transition
is observed for the van der Waals-like diagram (dashed
lines in top and middle panels of Fig. 2). If no phase
transition occurs in a black hole, this implies that the
black hole remains physically intact, i.e., its mass and
other physical parameters remain the same. The black
hole remains stable and does not radiate thermally. This
may correspond to a state of thermal equilibrium. If the
equilibrium becomes unstable, the heat capacity of the
black hole become negative, causing the black hole to ra-
diate. In this case, a phase transition does take place. Sim-
ilarly, under the same conditions, no critical pressure is
observed in our approach. On the contrary, for pressures
(temperatures) smaller than the critical value, two critical
horizons are observed for any pressure (temperature),
which is in agreement with the results of our approach
(continuous lines in top and middle panels of Fig. 2). Fi-
nally, we observe that the critical pressure (critical tem-
perature) and the critical horizon radius calculated by the
usual method, coincide with the maximum of the new re-
lation for pressure and its related horizon radius. This
also indicates that the results of our method are com-
pletely in agreement with those of the previous method.

Finally, we plot the heat capacity (bottom panel in
Fig. 2) to demonstrate the consistency of the new pres-
sure. It is evident that for P < P, two points of discon-
tinuity exist for the heat capacity, which are coincident
with the phase transition points observed in the other
methods. If the pressure is equal to the critical pressure,
only one discontinuity is observed in the heat capacity, as
in the other methods. For P > P., no discontinuity is ob-
served for the heat capacity. This behavior indicates that
all methods give consistent results.

In the top panel of Fig. 2, one can see the so-called
saturation curve (dash-dotted line). Taking into account
the P-V isothermal diagram with 7 <7, (continuous
line), we can decrease the horizon radius to find two

Gne =

0.006

0.005+

0.004+

P 0.0031

0.002+

0.0014

0.06

0.05

0.04+

T 0.039

0.02

0.014

0.10

0.05

-0.05% ! T T T
1 2 3 4

Fig. 2.
P versus r,, for sub-critical case T = 0.97, (continuous line),

(color online) Top panel: Py, (dash-dotted line) and

critical case T =7, (dotted line) and super-critical case
T =117, (dashed line). Middle panel: Ty, (dash-dotted
line) and T versus r,, for sub-critical P =0.9P. (continuous
line), critical P = P, (dotted line) and super-critical P = 1.1P,
(dashed line). Bottom panel: Py, (dash-dotted line) and Cgo
versus r., for sub-critical P = 0.9P, (continuous line), critic-
al P=P. (dotted line) and super-critical P=1.1P. (dashed
line). In all three panels, ¢ =1 and d = 4.

points of intersection with the saturation curve (r;; and
ryo With ry; <ry;). The black hole system is unstable for
ry1 <ry <ryp. In other words, there is a phase transition
between a small and a large black hole (between r,; and
r+2). This phase transition may occur with a sudden burst
of thermal Hawking radiation, i.e., the size of the black
hole suddenly shrinks from r,, to r,; without changing
the black hole temperature. Black hole solutions are not
physical between these two points. This can be explained
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by the fact that the heat capacity is negative (see bottom
panel of Fig. 2) and also by the fact that the speed of
sound is higher than the speed of light [26]. Note that
similar discontinuities in specific heat capacity occur in
Born-Infeld black holes [11]. It is worth noting that for
T =T,, the intersection points meet and are equal to the
critical horizon radius r,; = r4» = r.. The same statement
could be made for the temperature in the middle panel of
Fig. 2.

Before finishing the paper, it is worth pointing out the
significance of our approach.

First, our method provides the possibility of obtain-
ing different thermodynamical quantities that are inde-
pendent of each other. In other words, as one can see
from Eqgs. (34)-(36), they only depend properties such as
dimension, electric charge, and horizon radius. If we gen-
eralize the action to other gravitational theories or in-
clude other matter fields, the resultant new temperature,
pressure, mass, and Gibbs free energy obtained using our
method will have the same properties (they are only a
function of black hole properties).

Secondly, the new relations include only critical
points that a black hole could acquire in different condi-
tions. In the usual methods, to obtain all points between
which phase transitions take place, one must consider all
pressures equal to or smaller than the critical pressure.
Technically, such a task is impossible. Using our method,
one can find all possible phase transitions, horizon radii,
and corresponding pressures that a system could acquire.
The same could be said for the new relations for temper-
ature, mass, and Gibbs free energy. In other words, by us-
ing our approach, one can obtain all phase transition
points and the corresponding critical temperature, pres-
sure, mass, and Gibbs free energy that system can ac-
quire in analytical form.

Thirdly, using our method, one can determine the
range of horizon radii that depend on the critical values in
which the black hole solutions do not exist. For clarifica-
tion, refer to the diagram of new pressure in the top panel
of Fig. 2 (dashed-dotted line). Clearly, the phase trans-
ition takes place between two points with the same pres-
sures. The prohibited range of horizon radii for the black
hole is between these points. Taking a closer look, one
can see that by using our approach, the maximum range
of horizon radii in which the black hole solutions do not
exist can be found. Such a maximum could not be ob-
tained easily with the usual methods. In addition, by us-
ing our approach, one can determine the rate of increase
of the prohibited range of horizon radii by studying the
behavior of its diagram. Such a procedure may encounter
significant problems for the usual method. Finally, we
should point out that these three features are also valid for

usual thermodynamical systems.
5 Closing remarks

Motivated by interest in van der Waals-like behavior
and recent progress in the thermodynamic phase trans-
itions of black holes, we introduced an alternative ap-
proach for studying the phase transition points in both
usual thermodynamical systems and black holes.

Although the usual method of studying a phase trans-
ition originates from temperature in the equation of state,
our method is based on the slope of temperature versus
entropy and is a powerful method for addressing the crit-
ical behavior of a thermodynamical system.

The results of our method are in agreement with those
of other methods. However, it also provides further in-
formation regarding the critical behavior of thermody-
namical systems, which could not be derived with the
other methods. The main highlights of our method are as
follow: I) obtaining new relations for different thermody-
namical quantities that are independent of each other and
IT) mapping all possible critical points and regions in
which phase transitions take place.

Because it is known that the four-dimensional Reiss-
ner-Nordstrom black hole has the reentrant phase trans-
ition, it would be interesting to examine whether our
method confirms (or not) the existence of the reentrant
phase transition. The method introduced here is applic-
able to both usual thermodynamical systems and black
holes. This shows that one can also employ the general
structure of this method in the context of other physical
systems, such as superconductors, condensed matter sys-
tems, gauge/gravity duality, and even quantum systems.
It is also interesting to build a geometrical theory based
on the Legendre invariance, such as the known theory of
geometro-thermodynamics, or on other types of symmet-
ries. As a future task, it would be interesting to extend the
present study of phase transitions and critical phenomen-
on to AdS/CFT [27]. Furthermore, how phase transitions
alter the geometry and topology of black holes is a separ-
ate investigation. We also plan to investigate the relation-
ship between the cosmic censorship hypothesis and the
various phase transitions of black holes and to work on
the phase transitions and critical behavior of black rings,
black Saturns, and black membranes.
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per, and Shiraz University Research Council. This work
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