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Thermodynamics and weak cosmic censorship conjecture of BTZ black holes
in extended phase space”

1,2:1)

Xiao-Xiong Zeng (% H/fE)

Yi-Wen Han(# 75 30)°

De-You Chen(BFfEi 4 )’

lDepartment of Mechanics, Chongqing Jiaotong University, Chongqing 400074, China
*State Key Laboratory of Mountain Bridge and Tunnel Engineering, Chongqing Jiaotong University, Chongqing 400074, China
*School of Computer Science and Information Engineering, Chongqing Technology and Business University, Chongqing 400070, China
*School of Science, Xihua University, Chengdu 610039, Sichuan, China

Abstract: As a charged fermion drops into a BTZ black hole, the laws of thermodynamics and the weak cosmic cen-

sorship conjecture are investigated in both the normal and extended phase space, where the cosmological parameter

and renormalization length are regarded as extensive quantities. In the normal phase space, the first and second law of

thermodynamics, and the weak cosmic censorship are found to be valid. In the extended phase space, although the

first law and weak cosmic censorship conjecture remain valid, the second law is dependent on the variation of the

renormalization energy dK. Moreover, in the extended phase space, the configurations of extremal and near-extremal

black holes are not changed, as they are stable, while in the normal phase space, the extremal and near-extremal black

holes evolve into non-extremal black holes.
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1 Introduction

The pioneering work of Hawking [1, 2] showed that a
black hole can be regarded as a thermodynamic system.
Similarly to typical thermodynamic systems, there are
four laws of thermodynamics that govern the behavior of
black holes. The event horizons of the black holes play a
key role in the thermodynamic systems, as both the tem-
perature and entropy are related to it. In addition, the
event horizon will hide the singularity of the spacetime,
in the contrary the weak cosmic censorship conjecture
proposed by Penrose [3] is violated. The Kretschmann
scalar can be used to investigate the weak cosmic censor-
ship conjecture, since it is independent of the choice of
coordinates [4—6]. The location where the Kretschmann
scalar is infinite denotes the singularity.

The laws of thermodynamics and weak cosmic cen-
sorship conjecture can be investigated considering a test
particle [7—18] or a test field [19—26]. In Ref. [27], the
first law, second law, and the weak cosmic censorship
conjecture of a BTZ black hole have been investigated.
The first and second laws were valid and the weak cos-
mic censorship conjecture was held for the extremal
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black hole. Subsequently, the work in Ref. [27] was ex-
tended to a D-dimensional charged AdS black hole in the
extended phase space, where the negative cosmological
constant and its conjugate were regarded as the pressure
and volume, respectively [28]. Interestingly, the study
presented in Ref. [28] indicated that the second law is vi-
olated for the extremal and near-extremal black holes as
the contributions of the pressure and volume are con-
sidered. Moreover, extremal black holes are found to be
stable for the absorbed particles, as they will not change
the configurations of the black holes. Recently, Refs. [29]
and [30] investigated thermodynamics and weak cosmic
censorship conjecture in the Born-Infeld AdS black holes
and phantom Reissner-Nordstrém AdS black holes. Dif-
ferently from the result in Ref. [28], they found that ex-
tremal black holes change into non-extremal black holes.
The reason is that they did not employ any approxima-
tion employed by Ref. [28].

The works mentioned above only considered the case
where the black holes absorb scalar particles. In this
study, we will study the case of fermions with the Dirac
equation. We intend to explore whether we can obtain the
same result, taking BTZ black holes as an example.
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There are two viewpoints on the thermodynamics of
BTZ black holes in the extended phase space. Identifying
the cosmological constant and its conjugate as the ther-
modynamic pressure and thermodynamic volume, the
first law was derived directly in Ref. [31]. However, in
their treatment, the reverse isoperimetric inequality is vi-
olated, and the black holes are always superentropic.
Moreover, the thermodynamic volume defined by the
first law is related to the charge. Soon after, Ref. [32] in-
troduced a new extensive quantity, namely the renormal-
ization length, in the first law. In this framework, the re-
verse isoperimetric inequality is satisfied, and the stand-
ard definition of the thermodynamic volume is retained.
In this study, we investigate whether the first law pro-
posed by Ref. [32] can be reproduced under a charged
fermion absorption. Apart from the first law, we investig-
ate the second law and the weak cosmic censorship con-
jecture. Resultantly, the first law and the weak cosmic
censorship conjecture are found to be valid, while the
second law is found to be related to the variation of the
renormalization energy dK.

This paper is outlined as follows. In Section 2, the
motion of a charged fermion in the BTZ black holes is in-
vestigated. In Section 3 and Section 4, the first law,
second law, and the weak cosmic censorship conjecture
are investigated in the normal phase space and extended
phase space. Section 5 is devoted to our conclusions.
Throughout this study, we set G = ¢ = 1.

2 Motion of a charged fermion in the BTZ
black holes

The three dimensional theory of gravity with Max-
well tensor is [33]

i
f ECxy=g(R-2A8—47GFWF”), (1)

"~ 16aG
where G is the gravitational constant, R is the Ricci scal-
ar, g is the determinant of the metric tensor g,,, A is the
cosmological constant that relates to the AdS radius with
the relation A =-1/, and F,, =A,,—A,,, where A, is
the electrical potential. The charged BTZ black hole solu-
tions can be derived from Eq. (1), that is

=—f(d + () dr? +rAdg?, )

where

70y =-m+ o -2 (1), &)

in which m and ¢ are the parameters that relate to the
mass and charge of the black hole. The non-vanishing
component of the vector potential of this black hole is [33]

Atquog(;). 4

Applying Gauss law, the electric charge of the black hole
can be obtained by calculating the flux of the electric
field at infinity [34], which yields

_4
0-1 )

Moreover, the total mass can be obtained using the
Hamiltonian approach or the counterterm method [34],
which leads to

m
M=, 6)

We turn to investigate the dynamics of a charged fer-
mion as it is absorbed by the BTZ black hole. We em-
ploy the Dirac equation for electromagnetic field

iy'“(au+Qﬂ—EeAﬂ)¢/—%w=0, )
where u is the rest mass, e is the charge of the fermions,
= —Faﬁ Z Z s 5 7’”
af af
{y",y"} =2¢""1. To obtain the solution of the Dirac equa-
tion, we first should choose y* matrices. In this study, we
set

matrices  satisfy

1 1 1
Y = (—if‘z(rz,fza'l, ;03), ®)

where ¢ are the Pauli sigma matrices

S Kl N K TR

For a fermion with spin 1/2, the wave function has a spin
up state and spin down state. In this study, we only in-
vestigate the spin up case for the case of a similar spin
down. We use the ansatz for the two-component spinor ¢
as

Ar .
w:( Bg’;g )exp(%l(r,r,@). (10)

Inserting Eq. (10) into Eq. (7), we have the following two
simplified equations
a0 an

A(ﬂ+%a¢1)+3[\/?a,1[ Ol — —
+B(u——6¢l) 0. (12)

7

[\/_(’)I+[\/_6,I—‘/_ )

These two equations have a non-trivial solution for 4 and
B if and only if the determinant of coefficient matrix van-
ishes, which implies

Lot} s+ (NFa1) ([ [

There are two Killing vectors in the charged BTZ space-
time, so we can make the separation of variables for
I(t,r,¢) as

2
) =0. (13)
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I=-wt+Lp+1(r)+K, (14)

where w and L are fermion’s energy and angular mo-
mentum, respectively, and K is a complex constant. In-
serting Eq. (14) into Eq. (13), we obtain

1 \/ , ( L2)
O (r)=+— 1 [(w+eA) + flu?— =) (15)
7 ’

We are interested in the radial momentum of the particle
p'=g"pr=¢g"0.1(). In addition, we want to investigate
the thermodynamics, so we will focus on the near hori-
zon region. In this case, we obtain

w =|pil—eAr.), (16)
which is obviously the same as that of the scalar particles
[27]. A positive sign should be endowed in front of the
|p%| term. This choice is to assure that the signs in front of
w and p’, are the same and positive in the positive flow of
time.

3 Thermodynamics and weak cosmic censor-
ship conjecture in the normal phase space

The electrostatic potential difference between the
black hole horizon and the infinity is

<D=—2Qlog(r7+), (17)

in which r, is the event horizon of the black hole, which
is determined by f(r;) = 0. Based on the definition of sur-
face gravity, the Hawking temperature can be expressed as
re  20?
= - ) 18

2nl2  ;ry (18)
For the three dimensional BTZ black hole, the black hole
entropy can be expressed as

1
S = §7TI'+. (19)

In addition, with Eqs. (3) and (6), the mass of the BTZ
black hole can be expressed as

812> 1og(r7+)+r3
812 '
As a charged fermion is absorbed by the black hole,

the variation of the internal energy and charge of the
black hole satisfy

w=dM, e=dQ, 1)
where the energy conservation and charge conservation

have been imposed. In this case, Eq. (16) can be rewrit-
ten as

M =

(20)

dM = ®dQ+ p,. (22)

The absorbed fermions will change the configurations of
the black holes. There is a shift for the horizon of the
black hole, labeled as dr,. In the new horizon, there is

also a relation, f(r, +dr;)=0. Hence, the change of the
horizon should satisfy
dfy =f(ry +dry)— f(ry)
of.  Ofe . fs
== dM + 220+ “2dr, =0, 2
c’)Md + 6QdQ+6r+dr+ 0 (23)
Here, ¢ and m in Eq. (3) have been substituted by Q and
M in Egs. (5) and (6). Inserting Eq. (22) into Eq. (23), we
can delete dM. Interestingly, dQ is meanwhile eliminated.
Solving this equation, we can obtain dr, directly, which is
4Pphr.
4202 -r?’
Based on Eq. (24), we can obtain the variation of entropy
by making use of Eq. (19), that is

dr, = (24)

n APpLr,
S = -3 m (25)
With Eqgs. (18) and (25), we find there is a relation
TdS = p’. (26)
Inthis case, the internal energy in Eq. (22) can be rewritten as
dM = TdS +®dO, 27)

which is the first law of black hole thermodynamics.
Thus, as a fermion drops into the black hole, the first law
is valid in the normal phase space.

Next, we consider the second law of thermodynamics,
which states that the entropy of the black holes never de-
creases in the clockwise direction. As a fermion is ab-
sorbed by the black hole, the entropy of the black hole in-
creases according to the second law of the thermodynam-
ics. We employ Eq. (25) to verify whether this is true.

For extremal black holes, the temperature vanishes at
the horizon for the inner horizons, while the outer hori-
zons are coincident. With Eq. (18), we can obtain the
mass of the extremal black hole and substitute it into Eq.
(25), we find

dS extreme = ©0. (28)

The divergence of dS implies the second law for the ex-
tremal black hole is meaningless, since the thermodynam-
ic system is a zero temperature system.

The temperatures of non-extremal black holes are lar-
ger then zero, which implies

ri>4rQ*, (29)
where we have used Eq. (18). In this case, dS in Eq. (25)
is positive. The second law of thermodynamics is there-
fore valid.

In the normal phase space, we can also verify the
validity of the weak cosmic censorship conjecture, which
states that the singularity of spacetime cannot be ob-
served for an observer located at future null infinity.
Hence, singularities need to be hidden by the event hori-
zon for a black hole. Thus, an event horizon should exist
to assure the validity of the weak cosmic censorship con-
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jecture. As a fermion is absorbed by a black hole, we in-
tend to investigate whether there is an event horizon, i.e.,
whether the equation f(r) = 0 has solutions.

For BTZ black holes, there is a minimum value for
f(r) with the radial coordinate r,,, When f(r,,) > 0, no ho-
rizon exists, while when f(r,,) <0, there are always hori-
zons. At r,, the following relations [35-37]

[0, =fu=€<0, 8,f0|_ =£,=0, (30

should be satisfied. For extremal black holes, € = 0, r, and
r, are coincident. For the near extreme black holes, € is a
small quantity, and r,, is distributed between the inner and
outer horizon. As a fermion drops into the black hole, the
mass and charge of the black hole change into
M +dM, Q +dQ, respectively. Correspondingly, the loca-
tions of the minimum value and event horizon change in-
to r, +dry,, ry +dry. There is also a shift for f(r), which
can be written as

Ofm Ofm

dfy = f(rm+dry) — f = (WdM+ 30

where we have used f;, =0 in Eq. (30). We first discuss

the extremal black holes, for which the horizons are loc-

ated at r,,. In this case, Eq. (22) can be used. Inserting Eq.

(22) into Eq. (31), we find that dQ disappears. In this

case, Eq. (31) can be simplified to

df, = —8p]. (32)

This result shows that f(r,, +dr,,) is smaller than f(r,,) as
a charged fermion is absorbed by the black hole.

For near-extremal black holes, Eq. (22) is not valid at
ms @s it holds true only at the horizon. With the condition
ry = ry+ 6, we expand Eq. (22) at r,,, which leads to

dM = p. —2dQQ10g(1) _ 2040
R r
Substituting Eq. (33) into Eq. (23), we obtain
32dQ
l

dQ), 31

5+006)%.  (33)

df,, = -8p" + 5+ 0(5)>. (34)

Because ¢ is a small quantity, while / is relatively large,
the last two terms can be neglected as an approximation.
In this case, Eq. (34) takes the same form as Eq. (32), in-
dicating that the weak cosmic censorship conjecture is
also valid for near-extremal black holes.

The second term in Eq. (34) is small compared with
8p’. In fact, the higher order corrections are important to
discuss the weak cosmic censorship conjecture. However,
in our method, we find they can be neglected after calcu-
lation strictly if the dominant term is too large.

4 Thermodynamics and weak cosmic censor-
ship conjecture in extended phase space

To make the charged BTZ black holes satisfy the re-

verse isoperimetric inequality, a new thermodynamic
parameter R was introduced in the first law [32], that is

dM =TdS + VdP+®dQ + KdR, 35)

where

r
ri—Slezlog(%)

M= 82 ’ G0
V= (%)S,Q,R =7 %
o-(lh) ol o
K= (%)S,Q,P - QYR 0

where R is the renormalization length scale, and K, which
is the conjugate of R, is the renormalized energy. Here,
the value of K is different from that in Ref. [32]. The
reason stems from the definition of the electric charge Q.
In fact, with the Gauss law, we noted that the charge
parameter ¢ is not the electric charge of the black hole,
which has been shown in Eq. (5).

From Eq. (38), we know that in this framework, the
volume recovers to the standard definition of the thermo-
dynamic volume [32], which is more reasonable. We set
out to explore whether the first law in Eq. (35) can be ob-
tained by considering a charged fermion absorption.

In the extended, the pressure P and the renormaliza-
tion length scale R are likewise state parameters of the
thermodynamic system, as a fermion is absorbed by the
black hole, the pressure and the renormalization length
scale will also change besides the mass, charge, and en-
tropy. In this thermodynamic system, the mass M is not
the internal energy but the enthalpy, which relates to the
internal energy as [32]

M =U+PV+KR. (41)

As a charged fermion drops into the black hole, the en-
ergy and charge could be conserved. Namely, the energy
and charge of the fermion equal to the varied energy and
charge of the black hole, which implies
w=dU=d(M-PV-KR), e=dQ, (42)
The energy in Eq. (16) changes correspondingly into
dU = ®dQ + . (43)
Considering the backreaction, the absorbed fermions will
change the location of the event horizon of the black hole.
However, the horizon is consistently determined by the
equation f(r) =0, as stressed in Section 3. In the exten-
ded phase space, for the AdS radius / and renormaliza-
tion length R are variables, the shift of function f(r) can
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be expressed as

ofs Of« afe . Ofs af.

=2ram+ SAS 4R =
dfy = c’)Md anQ dl+a+d +6Rd 0.
(44)
In addition, with Eq. (41), Eq. (43) can be expressed as

dM —d(PV + KR) = ®dQ + p,. (45)
From Eq. (44), we can obtain d/. Substituting d/ into Eq.
(45), we can delete it directly. Interestingly, dQ, dR, and
dM are also eliminated at the same time. In this case,
there is only a relation between p/, and dr,, which is
ri+(p, +dKR)
02 '
Based on Eq. (46), the variations of entropy and volume
of the black hole can be expressed as

dr, =— (46)

ds = _7rr+(pfr + dKR)’ @
202
v 27rr3(pé 2+ dKR). 48)
With Eq. (47) and Eq. (48), we find
TdS — PdV - RdK = p’,. (49)
The internal energy in Eq. (43) thus would change into
dU = ®dQ + TdS — PdV — RdK. (50)
Moreover, from Eq. (41), we can get
dM =dU + PdV + VdP + KdR + RdK. (51)
Substituting Eq. (51) into Eq. (50), we find
dM = TdS +®dQ + VAP + KdR, (52)

which is consistent with that in Eq. (35). That is, as a
charged fermion is absorbed by the black hole, the first
law of thermodynamics holds in the extended phase
space.

With Eq. (47), we also can verify the second law of
thermodynamics in the extended phase space. There is a
term dK in Eq. (47), which depicts the variation of the
renormalized energy. According to Eq. (40), dK is the
function of dR, dQ. However, the existence of dQ and dR
would affect the definition of ® and K, respectively, and
further violate the first law of thermodynamics. The satis-
faction of the first law of thermodynamics is a necessary
condition to discuss the second law of thermodynamics
under particle absorption. Thus, dK can not be expressed
as a linear relation of dR and dQ though we do not know
the mechanism for we know little about the renormalized
energy in the extended phase space. In this study, we treat
the variation of the renormalized energy as an independ-
ent quantity and do not consider its form.

From Eq. (47), we know the variation of the entropy
depends on the variation of the renormalized energy. For
the case dK > —p’, /R, dS is negative, and for the case
dK < -p', /R, dS is positive. Hence, the second law is viol-

ated for the case dK > —p’ /R, and valid for the case
dK < -p'. /R. Moreover, for dK = —p’, /R, dS = 0, indicat-
ing that the horizons of the black holes will not change as
a charged fermion is absorbed.

We discuss the weak cosmic censorship conjecture in
the extended phase space with the condition in Eq. (30).
Because of the backreaction, the mass M, charge Q,
renormalization length R, and AdS radius / of the black
hole will change into (M +dM,Q+dQ,R+dR,[+dl) as a
charged fermion drops into the black hole. Correspond-
ingly, the locations of the minimum value, event horizon,
AdS radius, and renormalization length will change into
Fm+dry, ro+dry, [+dl, and R+dR. In this case, the shift
of f(r) can be written as

fm Ofm Bfm Ofm
df ) = | 537 dM + = o dQ+ —rdl+ —2dR|, (53)
where we have used f;, = 0 in Eq. (30). Next, we focus on
finding the last result of Eq. (53). For extremal black
holes, the horizons are located at r,,. The energy relation
in Eq. (45) is valid. Substituting Eq. (45) into Eq. (53),
we find

2r,dry,
df(r) = —8p, —8dKR - = > I, (54)

Substituting Eq. (49) into Eq. (54), we find
df(r) =0. (55)

That is, as fermions drop into extremal BTZ black holes,
the black holes remain at their initial states so their con-
figurations remain unchanged. This result is quite differ-
ent from that in the normal phase space, where the ex-
tremal black holes will evolve into the non-extremal
black holes with the absorption.

For the near-extremal black hole, Eq. (45) is not val-
id. However, we can expand the expression near the low-
est point with r, = r,, +6. p’, should also be expanded, as
it is also a function of the horizon r,. To the first order,
we obtain

r2 T rndr  Q*dr  Q*dR
dM——@dl—ZQlog(E)dQ+ TR
2
. rmdl 2dQQ+ dr Q dr 5+ 00,
286, a2 2
(56)
Substituting Eq. (56) into Eq. (59), we can obtain
> _ 2rm
df () =( 2~ 2 ar,
T 2
4r,dl 1 2 2
L[4l 6QdQ_ﬂ_8Q dry, . OGP
B T 2 2
(57)

In addition, at r,, +dr,,, there is also a relation
O f(O)_y . = S+ dfp =0, (58)

which implies
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, 0w Of'm o O 'm | _
df= 5 0+ =g tdl+ S dry =0 (59)

Solving this equation, we obtain
1(-8PQr,,dQ + 42 Qdr,y, + rdry)

di= 60
2r (60)
Based on the condition f;, =0 in Eq. (30), we can get
'm
=—. 1
=35 (61)
Substituting Eq. (61) and Eq. (60) into Eq. (57), we find
df(rm) = 06, (62)

which shows that near-extremal black holes are also
stable. This result is consistent with the extremal black
holes in Eq. (55). Thus, we can conclude that the weak
cosmic censorship conjecture holds for both the extremal
and near-extremal black holes in the extended phase
space, as configurations of the black holes are not
changed as fermions are adsorbed.

5 Conclusions

In the normal and extended phase spaces, the laws of
thermodynamics and weak cosmic censorship conjecture
in BTZ black holes were investigated by a charged fermi-
on absorption. We first investigated the motion of a fer-
mion via the Dirac equation and obtained a relation
between the energy and momentum near the horizon.
With this relation, the first law was reproduced in the nor-
mal phase space. By studying the variation of the entropy,
we also investigated the second law of thermodynamics
and found that for both the extremal black holes and near-

extremal black holes, the second law was valid in the nor-
mal phase space, as the variation of entropy was positive.
The weak cosmic censorship for extremal black holes and
near-extremal black holes was likewise studied. We
found that the metric function, which determines the loca-
tions of the horizons, moved with the same scale, —8p’,,
implying that there are always horizons to hide the singu-
larity, such that the weak cosmic censorship is valid for
both cases.

Employing a similar strategy, the thermodynamic
laws and weak cosmic censorship conjecture were fur-
ther investigated in the extended phase space. We found
that the first law of thermodynamics was still valid,
however the validity of the second law depended on the
variation of the renormalization energy dK. For the case
dK > —p', /R, the second law is violated, whereas for the
case dK < —p’, /R, the second law is valid. Though the
weak cosmic censorship conjecture is valid in both the
normal and extended phase space for extremal and near-
extremal black holes, their final states are different after
absorption. Extremal and near-extremal black holes will
evolve into non-extremal black holes in the normal phase
space, while they are stable in the extended phase space.

The study of Ref. [27] investigated the laws of ther-
modynamics and the weak cosmic censorship conjecture
of the BTZ black holes. In contrast, in the present work,
the absorbed particles considered are fermions.
Moreover, laws of thermodynamics and the weak cosmic
censorship conjecture were discussed not only in the nor-
mal phase space, but also in the extended phase space in
this study, while Ref. [27] only investigated the case of
the normal phase space.
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