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Abstract: The associated production of Higgs boson with a muon pair, e+e− → µ+µ−H , is one of the golden

channels to pin down the properties of the Higgs boson in the prospective Higgs factories exemplified by CEPC.

The projected accuracy of the corresponding cross section measurement is about per cent level at CEPC. In this

work, we investigate both O(α) weak correction and the O(ααs) mixed electroweak-QCD corrections for this channel,

appropriately taking into account the effect of finite Z0 width. The µ+µ− invariant mass spectrum is also predicted.

The mixed electroweak-QCD correction turns out to reach 1.5% of the Born-order result, and thereby must be

included in future confrontation with the data. We also observe that, after including higher-order corrections, the

simplified prediction for the integrated cross section employing the narrow-width-approximation may deviate from

our full result by a few per cents.
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1 Introduction

Ever since the ground-breaking discovery of the Higgs
boson at Large Hadron Collider (LHC) in 2012 [1, 2], one
of the highest priorities of particle physics is to nail down
the properties of the Higgs boson as precise as possible.
Unlike the hadron colliders, which suffer from severe con-
tamination due to the copious background events, the
electron-positron colliders provide an ideal platform to
precisely measure various Higgs couplings [3]. In recent
years, three next-generation e+e− colliders have been
proposed for dedicated study of Higgs boson: Interna-
tional Linear Collider (ILC) [4], Future Circular Col-
lider (FCC-ee) [5], and Circular Electron-Positron Col-
lider (CEPC) [6], all of which plan to operate at the
center-of-mass energy around 240∼250 GeV.

There emerge several Higgs production mechanisms
at e+e− colliders: Higgsstrahlung, WW fusion and ZZ
fusion, etc.. Around

√
s≈ 240 GeV, which is the pro-

jected energy range of CEPC, the Higgs production is

dominated by the Higgsstrahlung channel e+e− →ZH ,
Higgs production associated with a Z0 boson. It is an-
ticipated that, with the aid of very high luminosity and
the recoil mass technique, CEPC can measure the Higgs
production cross section with an exquisite sub-per-cent
accuracy. Needless to say, it is indispensable for theoreti-
cal predictions for the Higgsstrahlung channel to be com-
mensurate with the projected experimental precision.

The leading order (LO) prediction for e+e− → ZH
was first considered in 70s [7–10]. In the early 90s, the
next-to-leading order (NLO) electroweak correction for
this process has also been addressed by three groups in-
dependently [11–13], which turns out to be significant.
Very recently, the mixed electroweak-QCD next-to-next-
to-leading (NNLO) corrections were also be indepen-
dently calculated by two groups [14, 15]. The O(ααs)
correction may reach 1% of the LO prediction, thereby
must be included when confronting the future measure-
ment. Recently, the ISR effect of this process has also
been carefully analyzed [16].
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From the experimental angle, it is the decay prod-
ucts of the Z0 boson, rather than the Z0 itself that
are tagged by detectors in the Higgsstrahlung channel,
since the Z0 is an unstable particle. Therefore, in or-
der to get closer contact with experiment, it is advanta-
geous to make precise predictions directly for the pro-
cess e+e− → (Z∗ →)f f̄ +H , where f represents lep-
tons or quarks. Among a flurry of Higgs production
channels associated with various Z decay products, the
e+e−→µ+µ−H process occupies a unique place for prob-
ing Higgs properties, because it is a very clean channel
and possesses large cross section. The production cross
section for this individual channel can be measured with
0.9% precision at CEPC [6, 17]. Combining several other
channels, CEPC is anticipated to measure the Higgs pro-
duction rate with the accuracy of 0.51%.

The LO contribution to the e+e− → f f̄ +H pro-
cess was first considered in 70s [18]. The initial-state-
radiation (ISR) correction to these types of processes
was addressed in 80s [19]. There exist a flurry of
higher-order studies for the process e+e−→νν̄H , where
both Higgsstrahlung and WW fusion mechanisms con-
tribute [20–27]. To our knowledge, there appears no ded-
icated work to investigate the NLO weak correction to
e+e−→µ+µ−H . Nevertheless, the NLO weak correction
to a similar process e+e− → e+e−H were calculated by
the GRACE group more than a decade ago [28, 29]. One
can extract the corresponding NLO weak correction to
e+e−→µ+µ−H by singling out a subset of diagrams in
[28, 29].

The purpose of this work is to conduct a systematic
investigation on the higher-order radiative corrections
to the process e+e− →µ+µ−H , to match the projected
experimental precision at CEPC. We first compute the
NLO weak correction to e+e− →µ+µ−H , then proceed
to include the O(ααs) mixed electroweak-QCD correc-
tion. Besides the integrated cross section, we also study
the impact of radiative corrections to various kinematic
distributions such as the µ+µ− invariant mass distribu-
tion. For this purpose, the finite Z0 width effect must
be consistently taken into account. It is also instructive
to examine how our results deviate from those obtained
by invoking the narrow width approximation (NWA).

The rest of the paper is structured as follows. In
Section 2, adopting the Breit-Wigner ansatz for the res-
onant Z0 propagator, we recapitulate the LO prediction
for e+e− → µ+µ−H and also show the corresponding
NWA result. In Section 3, we specify our strategy of
implementing the finite Z0-width effect in higher-order
calculation. In Section 4, we present the calculation for
the NLO weak correction to this channel. In Section 5,
we describe the calculation for the mixed electroweak-
QCD corrections. In Section 6, we present the numer-
ical results and phenomenological analysis. Finally we

summarize in Section 7.

2 Leading order results and narrow

width approximation

We are considering the process

e+(k1)+e−(k2)→µ+(p1)+µ−(p2)+H(pH), (1)

where the momenta of the incoming and outgoing parti-
cles are specified in the parentheses. For future usage, we
define s≡(k1+k2)

2, and s12≡(p1+p2)
2. For convenience,

we also define the invariant mass of the muon pair by
Mµµ≡

√
s12, which lies in the range 0≤Mµµ≤

√
s−MH .

At Higgs factory, lepton masses can be safely ne-
glected owing to their exceedingly small Yukawa cou-
plings. Consequently at the lowest order, there is only a
single s-channel diagram as depicted in Fig. 1. The LO
amplitude reads

M̃0 = − e3MZ

sW cW
v̄(k1)Γ

µ
Zu(k2)

gµν
(s−M 2

Z)(s12−M 2
Z)

×ū(p1)Γ
ν
Zv(p2), (2)

where cW ≡ cosθW , sW ≡ sinθW , with θW the Wein-
berg angle, MZ represents the mass of the Z0 boson.
Γµ

V = g+
V γ

µ 1+γ5

2
+g−

V γ
µ 1−γ5

2
is the coupling of the gauge

boson and the charged lepton. Specifically speaking,
g+
Z = sW

cW
, g−

Z = sW
cW

− 1
2sW cW

. The chirality structure of

the neutral current demands that, e+ and e− (also µ+

and µ−) must carry opposite helicity in order to render
a non-vanishing amplitude.

Z

H

Z

e−

e+

µ+

µ−

Fig. 1. (color online) LO diagram for e+e−→µ+µ−H .

As can be readily seen from Fig. 1, it is possible for
the µ+µ− pair to be resonantly produced from the on-
shell Z0 boson, consequently the amplitude in (2) blows
up at s12=M 2

Z, which reflects that fixed-order calculation
breaks down near the Z pole. To tame the singularity
in the limit s12→M 2

Z , it is customary to replace the sec-
ond Z boson propagator in (2) with the Breit-Wigner
form, which amounts to include the Dyson summation
for the Z boson self-energy diagrams. Retaining finite
Z width would effectively cutoff the IR singularity. One
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may define a new amplitude:

M0=FM̃0, F=
s12−M 2

Z

s12−M 2
Z+iMZΓZ

, (3)

where F is a rescaling factor, and ΓZ signifies the width
of the Z0 boson.

The LO cross section is then given by

σ0=
1

2s

∫
dΠ3

1

4

∑

Pol

|M0|2 , (4)

where the three-body phase space in the center-of-mass
(CM) frame can be conveniently parameterized as

∫
dΠ3 =

∫
d3p1

(2π)32p0
1

d3p2

(2π)32p0
2

d3pH

(2π)32p0
H

×(2π)4δ(4)(k1+k2−p1−p2−pH)

=
1

(2π)4
1

16
√
s

∫
ds12√
s12

dΩ∗
1dcosθH |p∗

1||pH |, (5)

where (|p∗
1|,Ω∗

1) signifies the 3-momentum of the µ− in
the rest frame of the dimuon system, |pH |, θH repre-
sent the magnitude of the momentum and the polar an-
gle of the Higgs boson in the laboratory frame, respec-
tively. Upon neglecting masses of the electron and muon,
one obtains |p∗

1|=Mµµ/2, and |pH |= 1
2
√

s
λ1/2(s,s12,M

2
H),

where λ(a,b,c)≡a2+b2+c2−2ab−2ac−2bc is the Källén func-
tion. In deriving (5), we have utilized the axial symme-
try to eliminate the trivial dependence on the azimuthal
angle of the outgoing Higgs boson.

Squaring (2), summing over µ+µ− helicities, and
averaging upon the e+e− polarizations, one observes
that the squared amplitude bears a factorized structure,
thanks to the simple s-channel topology. Substituting
it into (4), integrating over the solid angle Ω∗

1, one then
arrives at the following double differential cross section:

d2σ0

ds12dcosθH
=
α3

(
g+2
Z +g−2

Z

)2

24c2W s2W

|pH |M 2
Z√

s(s−M 2
Z)

2

× s12
(s12−M 2

Z)
2+M 2

ZΓ
2
Z

(
2+sin2θ

p2
H

s12

)
,

(6)

with α≡ e2

4π
the electromagnetic fine structure constant.

Integrating (6) over the polar angle, one obtains the
Born-order spectrum of the invariant mass of µ+µ−:

dσ0

dMµµ

=
α3

(
g+2
Z +g−2

Z

)2

9c2W s2W

|pH |M 2
Z√

s(s−m2
Z)

2

× s3/212

(s12−M 2
Z)

2+M 2
ZΓ

2
Z

(
3+

p2
H

s12

)
. (7)

Since ΓZ≪MZ , one naturally expects that the NWA
should be fairly reliable for the process under considera-
tion. Inserting the limiting formula

lim
ΓZ→0

1

(s12−M 2
Z)

2+M 2
ZΓ

2
Z

=
π

MZΓZ

δ(s12−M 2
Z) (8)

into (6), and integrating over s12, we obtain the angular
distribution:

dσ0

dcosθH

∣∣∣
NWA

=
dσ0(ZH)

dcosθ
Br0(Z→µ+µ−), (9)

where

dσ0(ZH)

dcosθ
=
πα2

(
g+2
Z +g−2

Z

)

4c2W s2W

|pH |M 2
Z√

s(s−M 2
Z)

2

(
2+sin2θ

p2
Z

M 2
Z

)
,

(10)
is the angular distribution of the Z(H) in the pro-
cess e+e− → ZH at Born order, with |pH | ≡
1

2
√

s
λ1/2(s,M 2

Z,M
2
H). In (9), the Born-order partial width

and branching fraction of Z→µ+µ− are given by

Γ0(Z→µ+µ−)=
α

6
(g+2

Z +g−2
Z )MZ , (11a)

Br0(Z→µ+µ−)≡Γ0(Z→µ+µ−)

ΓZ

. (11b)

From (9), one readily obtains the LO integrated cross
section in the NWA ansatz:

σ0(µ
+µ−H)

∣∣∣
NWA

=σ0(ZH)Br0(Z→µ+µ−), (12)

where

σ0(ZH)=
πα2

(
g+2
Z +g−2

Z

)

3c2W s2W

|pH |M 2
Z√

s(s−M 2
Z)

2

(
3+

p2
Z

M 2
Z

)
. (13)

Note that the unpolarized LO cross section σ0(ZH) in
(13) decreases rather mildly (∝ 1/s) in the high en-
ergy limit, reflecting the dominance of producing the
longitudinally polarized Z in large

√
s. However, at

moderate energy such as
√
s= 250 GeV at CEPC, the

longitudinally-polarized cross section only comprises of
42% of the total unpolarized cross section.

3 The treatment of finite Z
0 width in

higher-order corrections

As mentioned before, in this work we are interested in
addressing the NLO weak and mixed electroweak-QCD
corrections for e+e−→µ+µ−H :

M=M0+M(α)+M(ααs)+··· . (14)

For simplicity, in this work we have neglected the pure
QED corrections (such as ISR and FSR effect), which
can instead be simulated by the package Whizard [30].
As a consequence, a simplifying feature arises that the
dominant higher-order diagrams resemble the s-channel
topology as depicted in Fig. 1, which contains only one
resonant Z propagator.

Once going beyond LO, it becomes a quite delicate
issue to incorporate the finite Z width effect yet without
spoiling gauge invariance and bringing double counting.
Over the past decades, numerous practical schemes have
been proposed to tackle the unstable particle, such as
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the pole scheme [31–33], factorization scheme [34, 35],
fermion-loop scheme [36, 37], boson-loop scheme [38],
complex mass scheme [39, 40], etc.. It is worth mention-
ing that a systematic and model-independent approach,
the unstable particle effective theory, has also emerged
finally [41, 42]. However, this approach is valid only near
the resonance peak, and cannot be applied in the entire
kinematic range.

Owing to the particularly simple s-channel topology
of our process, it is most convenient to employ the fac-
torization scheme [34, 35], which is particularly suitable
for such resonance-dominated process. In this scheme,
one rescales a gauge-invariant higher-order amplitude by
a Breit-Wigner factor F , and subtracting the iMZΓZ

terms which potentially generates double counting. The
merit of this scheme is that gauge invariance is preserved,
and can be readily implemented in automated calcula-
tion. Recently this scheme has also been used by Den-
ner et al. to analyze the NLO electroweak correction to
e+e−→νν̄H [25].

For our purpose, we specify the recipe of the factor-
ization scheme closely following [25]:

M(ααn
s )=FM̃(ααn

s )+i
Im

{
Σ̂

ZZ (ααn
s )

T (M 2
Z)
}

s12−M 2
Z

M0, (15)

where n= 0,1, M̃ represents the fixed-order amplitude
where the Z0 is treated as a rigorously stable particle,
F and M0 have been defined in (3), Σ̂T

ZZ(s) represents
the transverse part of the renormalized one-particle irre-
ducible self-energy diagrams for Z boson. MZ is the pole
mass of the Z0 boson, and throughout the work we take
ΓZ as the experimentally determined Z0 boson width1).

The second term in the right-hand side of (15) is
included to subtract the double-counting term. Fortu-
nately, due to its orthogonal phase, the interference of
this term with M̃ generates a purely imaginary contri-
bution to the cross section, thus can be safely neglected.

Once the rescaled O(α) and O(ααs) amplitudes are
obtained, we then deduce the corresponding higher-order
corrections to the differential cross section through

σ(ααn
s )=

1

2s

∫
dΠ3

1

4

∑

Pol

2Re
[
M∗

0M(ααn
s )
]
, (16)

with n=0,1. Note even for the mixed electroweak-QCD
correction, we only need consider its interference with
the Born-order amplitude.

We conclude this section by stressing that, since the
non-resonant diagrams are regular at s12 = M 2

Z , the

rescaling procedure in (15) enforces their contributions
to the amplitude to vanish on the Z0 pole. In the vicinity
of the resonance, it is intuitively appealing that the non-
resonant diagrams are much more suppressed relative to
the resonant diagrams. As will be seen in Section 6, our
numerical predictions indeed confirm this anticipation.

4 Calculation of the NLO weak correc-

tion

We now outline the calculation of the NLO weak cor-
rection to e+e−→µ+µ−H , with some representative di-
agrams depicted in Fig. 2 and 3. As stressed before, we
will not consider the ISR and FSR types of diagrams. It
is obvious that the NLO diagrams can be separated into
two gauge-invariant subgroups, with either “resonant”
or “non-resonant” structures. For the former subset, the
diagrams are very similar to those encountered in the
previous NLO weak correction for e+e−→ZH , so are the
corresponding calculations; for the latter, there emerges
no singularity as s12→M 2

Z, so there is no need to include
width effect for any particle routing around the loop.

The NLO amplitude is computed in Feynman gauge.
Masses of all light fermions are neglected except the
top quark. Dimensional regularization (DR) is em-
ployed to regularize UV divergence. The Feynman di-
agrams and the corresponding amplitude are generated
by the package FeynArts [44]. Tensor contraction and
Dirac/color matrices trace are conducted by using Feyn-
Calc and FeynCalcFormLink [45–47]. Tensor integrals
are further reduced to the Passarino-Veltman scalar func-
tions, which are numerically evaluated by Collier [48] and
LoopTools [49].

We also choose to use the standard on-shell renor-
malization scheme to sweep UV divergences, where var-
ious electroweak counterterms are tabulated in [50]. De-
pending on the specific recipe for the charge renormal-
ization constant Ze, there are three popular sub-schemes
of the on-shell renormalization: α(0), α(MZ) and Gµ

schemes [13]. In the first scheme, the fine structure con-
stant α is assuming its Thomson-limit value, whereas
α(0) is replaced with

α(MZ) =
α(0)

1−∆α(MZ)
, (17a)

αGµ
=

√
2

π
GµM

2
W s2W , (17b)

in the α(MZ) and Gµ schemes, respectively. Differing
from the α(0) scheme, these two schemes effectively re-
sum either some universal large logarithms from the light

1) By default, the pole mass of the Z0 is determined by the condition Re
{

Σ̂ZZ (M2
Z )

}

≡0, whereas its width is inferred from the

optical theorem, MZΓZ=Im
{

Σ̂ZZ(M2
Z )

}

. It was argued [32, 33, 43] that the pole mass and the corresponding width defined this way

are gauge dependent. Nevertheless, the gauge-dependent terms arise at order-α3 in the ’t Hooft-Feynman gauge, which is beyond the
accuracy targeted in this work. Thus we will pretend MZ and ΓZ to be gauge-invariant quantities.
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Z
+

Hee vertex Box

Zll̄ vertex self−energy
H

Z

W

W

νe

W

γ/ZZ γ/Z
+

+
W

W

e−

e+

HV V vertex

γ/
Z

Z
Z

νe
+

Z

e Z
W

νe Z

W

Z
Z

γ/
Z

Z

µ−

µ+

νe

e γ/Z

Z

Z

e
+

γ/Z γ/Z

e e

γ/Z

nonresonant µ+µ− production

γ/Z

Z

Z

γ/ZZγ/Z

W

W

W

νµ
+ + + +νµ

W

W
νµ

W

W

νµ

ν
µ

W
W

νµ

Fig. 2. (color online) Some representative higher-order diagrams for e+e−→µ+µ−H , through the order-ααs. The
three solid heavy dots are explained in Fig. 3. Diagrams in the first two rows correspond to the “resonant” channel
e+e−→(Z∗/γ∗→)µ+µ−+H , while those in the last row exhibit a completely different “non-resonant” topology.

=

=

=

γ/Z Z

W l/q q δmq

tW t δmt

νl W

ν
l

ν l

Z

γ/Z

Z

H

γ/
Z

l−

l+

+ + +

+ + + +

+ + + +

W

W

Fig. 3. (color online) Representative diagrams for the radiative corrections to the renormalized Zee vertex, γ/Z
self-energy, and HV V vertex, through order-ααs. The cross represents the quark mass counterterm in QCD, cap
denotes the electroweak counterterm in on-shell scheme.

fermion loop or some m2
t -enhanced terms from the top

quark loop.
Once the M̃(α) is rendered finite after the renormal-

ization procedure, we then employ (15) to obtain the
rescaled amplitude M(α), which encapsulates the finite
Z-width effect. It is then straightforward to utilize (16)
to infer the NLO weak correction to the differential cross
section.

5 Calculation of mixed electroweak-

QCD corrections

Finally we turn to the O(ααs) mixed electroweak-
QCD correction to e+e−→µ+µ−H . Since it is the quarks
instead of leptons that can experience the strong color
force, we only need retain those diagrams involving quark
loop. Moreover, since the top quark couples the Higgs
boson with the strongest strength, for simplicity we have
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neglected the masses of all lighter quarks, so we only re-
tain those two-loop diagrams where only the top quark
loop dressed by gluon. Some typical two-loop diagrams
are shown in Fig. 2 and 3, bearing only the s-channel
“resonant” structure. As indicated in Fig. 3, at this or-
der, QCD renormalization is realized by merely inserting
the one-loop top quark mass counterterm, δmt, into the
internal top-quark propagator, as well as into the Htt̄
vertex [15]. The calculation very much resembles our
preceding work on O(ααs) correction to e+e−→ZH [15],
and we referred the interested readers to that paper for
more details.

For the actual two-loop computation, we utilize the
packages Apart [51] and FIRE [52] to perform partial
fraction and integration-by-parts (IBP) reduction. We
then combine FIESTA [53]/CubPack [54] to perform sec-
tor decomposition and subsequent numerical integrations
for master integrals with quadruple precision.

Besides the finite renormalization of Zee vertex [15],
the O(ααs) amplitude can be expressed in terms of the
Born-order amplitude supplemented with an effective
HV V vertex:

M̃(ααs) =
∑

V1,V2=Z,γ

−e2

s2−M 2
V1

v̄(k1)ΓV1,µu(k2)ū(p1)

×ΓV2,νv(p2)
1

s12−M 2
V2

(−ie)T µν
V1V2H

(K,P ),

(18)

where the sum is extended over V1,V2 = Z0,γ, and
−ieT µν

HV1V2
is the HV1V2 effective vertex, which depends

on K = k1+k2 and P = p1+p2. The gauge boson V1 is
coupled with the incoming e+e− pair, whereas the gauge
boson V2 is affiliated with the outgoing µ+µ− pair. Γµ

V

represents the coupling between the gauge boson and
charged leptons, whose form has already been specified
in the paragraph after (2). The electromagnetic coupling
of lepton is chiral symmetric, g±

γ =1.
By Lorentz covariance, the renormalized vertex ten-

sor T µν
HV1V2

can be decomposed as

T µν
HV1V2

= T1

KµKν

s
+T2P

µP ν+T3

KµP ν

s
+T4

P µKν

s

+T5g
µν+T6ǫ

µναβ K
αP β

s
, (19)

where Ti(i=1,···,6) are Lorentz scalar solely depending
on s, s12 and M 2

V1,2
. Furry theorem enforces that T6=0,

technically because C-invariance forbids a single γ5 to
emerge in the trace over the fermionic loop. Owing to
the current conservation associated with massless lep-
tons, it turns out that only the scalar form factors T4,5

survive in the differential cross sections.
Substituting (19) into (18), utilizing the factorization

scheme (15) to implement the finite Z0 width effect, we
then obtain the rescaled amplitude M(ααs). From (16),

we find the O(ααs) mixed electroweak-QCD correction
to the differential cross section to be

dσ(ααs)

ds12
=

α3MZ

9cW sW
√
s
|F|2

×
∑

V1,V2=Z,γ

(
g−
V1
g−
Z+g+

V1
g+
Z

)(
g−
V2
g−
Z+g+

V2
g+
Z

)

(s−M 2
Z)

(
s−M 2

V1

)

× s12|pH |
(s12−M 2

Z)
(
s12−M 2

V2

)TV1V2
, (20)

where

TV1V2
=
p2

H

2

(
1

s12
−M 2

H

s12s
+
1

s

)
T4+

(
p2

H

s12
+3

)
T5. (21)

6 Numerical results

Following [15], we take
√
s = 240, 250 GeV as two

benchmark CM energies at CEPC. We adopt the fol-
lowing values for the input parameters [22]: MH =
125.09 GeV, MZ = 91.1876(21) GeV, ΓZ = 2.4952(23)
GeV, MW = 80.385(15) GeV, mt = 174.2± 1.4 GeV,
Gµ = 1.1663787(6)×10−5 GeV−2, α(0) = 1/137.035999,

∆α(5)
had = 0.02764(13), and α(MZ) = 1/128.943 in the

α(MZ) scheme. To analyze the mixed electroweak-QCD
correction, we take αs(MZ)=0.1185, and use the pack-
age RunDec [55] to evaluate the QCD running coupling
constant at other scales.

LO

OHΑL

OHΑΑsL

Total

-1.0 -0.5 0.0 0.5 1.0
cos ΘH

1

2

3

4

dΣ

dcos ΘH
HfbL

Fig. 4. (color online) Angular distribution of the
Higgs boson at

√
s=240 GeV, shown at various

levels of perturbative accuracy.

The angular distribution of Higgs boson at
√
s=240

GeV is depicted in Fig. 4, including both NLO weak and
mixed electroweak-QCD corrections. We stay with the
α(0) scheme, and fix µ=

√
s/2 for the QCD coupling,

and take αs(
√
s/2) = 0.1135. The impact of the O(α)

and O(ααs) corrections to the Higgs angular distribu-
tion is quite analogous to what is found in our preced-
ing work on e+e− →ZH [15]. In Fig. 5, we also show
the µ+µ− invariant mass spectrum at

√
s = 240 GeV,

including both NLO weak and mixed electroweak-QCD
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corrections. As expected, the spectrum develops a sharp
Breit-Wigner peak around the Z resonance. The O(α)
and O(ααs) corrections play a very minor role except in
the proximity of the Z pole. It is interesting for the fu-
ture measurement of the di-muon spectrum at CEPC to
examine our predictions.

LO

OHΑL

OHΑΑsL

Total

80 85 90 95 100
MΜΜ HGeVL0.0

0.5

1.0

1.5

2.0

dΣ

dMΜΜ
@

fb

GeV
D

Fig. 5. (color online) µ+µ− invariant mass spec-
trum at

√
s=240 GeV, at various levels of pertur-

bative accuracy.

In Table 1, we supplement more details for the
dimuon invariant mass spectrum. We divide the NLO
weak correction into the contribution from the resonant
diagrams and the one from non-resonant diagrams. As
can be seen from the Table 1, the O(α) correction is
saturated by the resonant diagrams almost in the entire
energy range, especially near the Z peak.

Our goal is to present to date the most comprehen-
sive predictions for the e+e− →µ+µ−H process, taking
into various sorts of theoretical uncertainties account.
In Table 2, we present our LO, NLO, NNLO predictions
for the integrated cross section at

√
s=240(250) GeV.

The results are provided with three renormalization sub-
schemes. We also include the uncertainty inherent in the
input parameters (first error) and the uncertainty due to
the QCD renormalization scale (second error). To as-
sess the parametric uncertainty, we vary the values of
MW and mt, and ∆α(5)

had around the central PDG values
within the 1σ bands. For the QCD scale uncertainty, we
slide the µ in αs from MZ to

√
s.

From Table 2, we observe a very similar pattern of
scheme and parametric dependence of higher-order cor-

rections as [15]. While the parametric and scale uncer-
tainties of the NNLO predictions in the α(0) and α(MZ)
schemes are both about 0.5% of the NNLO results, the
relative errors are somewhat reduced in the Gµ scheme
(≈0.2%). We also find that in the Gµ scheme, the mixed
electroweak-QCD corrections only amount to 0.4% of LO
cross section, which might be attributed to the fact that
in addition to the running of α, universal corrections to
the ρ parameter are also absorbed into the LO cross sec-
tion. As can also be seen in Table 2, though the predicted
LO cross sections from three renormalization schemes
differ significantly, including the NLO weak correction
significantly help them converge to each other. Including
mixed electroweak-QCD correction appears not to fur-
ther reduce the scheme dependence. To yield a scheme-
insensitive prediction, it appears to be imperative to
continue to compute the NNLO electroweak correction,
which is certainly an extremely daunting task.

Since ΓZ≪MZ , and the production rate is predomi-
nantly saturated by the Z0 resonance. It may seem natu-
ral to anticipate that the NWA remains valid even after
including higher order corrections. Under the assump-
tion of NWA, one may approximate the LO cross section
and the higher-order radiative corrections by

σ0

∣∣
NWA

= σ0(ZH)Br0(Z→µ+µ−), (22a)

σ(α)
∣∣
NWA

= σ(α)(ZH)Br0(Z→µ+µ−)

+σ0(ZH)Br(α)(Z→µ+µ−), (22b)

σ(ααs)
∣∣
NWA

= σ(ααs)(ZH)Br0(Z→µ+µ−)

+σ0(ZH)Br(ααs)(Z→µ+µ−), (22c)

where σ(ZH) represents the Higgsstrahlung cross sec-
tion, with σ0(ZH) given in (13). Br0 is defined in (11),
and the radiative corrections Br(ααn

s ) (n = 0,1) can be
read off from

Br(Z→µ+µ−)=Br0(Z→µ+µ−)+Br(α)(Z→µ+µ−)

+Br(ααs)(Z→µ+µ−)+··· . (23)

Since the width of the Z0 is held fixed, the perturba-
tive expansion for the branching fraction of Z0→µ+µ−

amounts to the expansion for the corresponding partial
width.

Table 1. Differential cross section with respect to the µ+µ− invariant mass at
√
s=240 GeV. Note the upper bound

for Mµµ equals
√
s−MH .

h
h
h

h
h
h
h
h
h
h
hh

sdσ/ds12/fb
Mµµ/GeV

50 70 80 85 90 91 92 95 100 110 σ

LO/fb 0.66 2.39 8.03 24.45 309.02 570.98 407.45 53.27 9.66 1.31 6.9828

O(α)
resonant/fb 0.04 0.14 0.47 1.42 17.78 32.82 23.39 3.05 0.55 0.07 0.4015

nonresonant (10−4/fb) 65 39 22 12 1 0 -0 -7 -16 -24 8.5

O(ααs)/fb 0.01 0.04 0.13 0.35 4.54 8.37 5.97 0.79 0.15 0.02 0.103
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Table 2. The total cross section for e+e−→µ+µ−H at
√
s=240(250) GeV. The LO, NLO, and NNLO predecitions

are presented with three renormalization sub-schemes. To estimate the parametric uncertainty, we take MW =
80.385±0.015 GeV, mt=174.2±1.4 GeV, and ∆α

(5)
had=0.02764±0.00013. We also vary the QCD coupling constant

from αs(MZ) to αs(
√
s), with the central value taken as αs(

√
s/2).

√
s/GeV schemes σLO/fb σNLO/fb σNNLO/fb

α(0) 6.983+0.023
−0.023 7.385+0.037

−0.037 7.488+0.036+0.004
−0.036−0.009

240 α(MZ ) 8.382+0.028
−0.027 7.317+0.037

−0.036 7.448+0.036+0.005
−0.035−0.011

Gµ 7.772+0.004
−0.004 7.527+0.016

−0.017 7.554+0.017+0.001
−0.017−0.002

α(0) 7.036+0.023
−0.023 7.424+0.037

−0.037 7.527+0.037+0.005
−0.037−0.009

250 α(MZ ) 8.446+0.028
−0.028 7.350+0.037

−0.036 7.481+0.037+0.006
−0.037−0.011

Gµ 7.831+0.004
−0.004 7.564+0.017

−0.017 7.591+0.017+0.001
−0.016−0.002

In Table 3, we compare the predicted e+e−→µ+µ−H
cross section from the literal full calculation with that
from NWA. For the sake of concreteness, we take

√
s=

240 GeV, and employ the α(0) scheme. At LO, the NWA
prediction is about 3% higher than the full prediction,
while O(α) and O(ααs) corrections are observed to be
only slightly different. As a consequence, the NWA pre-
diction to the total cross section at NNLO accuracy turns
out to be about 4% higher than the full NNLO predic-
tion.

Table 3. Compare the full and NWA predictions
to the cross sections at

√
s=240 GeV, at various

levels of perturbative accuracy.

LO NLO NNLO

σ/fb 6.983 7.385 7.488

σ|NWA/fb 7.241 7.657 7.760

7 Summary

Higgsstrahlung is the leading Higgs production mech-
anism at CEPC. The mixed electroweak-QCD correction
to e+e− → ZH has recently become available [14, 15].
This piece of NNLO correction appears to be surpris-
ingly large, about 1% of the Born-order result, therefore
must be considered when matching the exquisite exper-
imental accuracy.

To make closer contact with the actual experimen-
tal measurement, in this work we have investigated both

NLO weak and mixed electroweak-QCD corrections to
one of the golden mode in CEPC, i.e. e+e−→µ+µ−H ,
with the finite Z0 width properly accounted. At

√
s≈240

GeV, the NLO weak correction may reach 6% of the Born
order cross section, while the NNLO mixed electroweak-
QCD correction can reach 1.5% of the LO cross sec-
tion, greater than the projected experimental accuracy
of 0.9%. We also present numerical predictions to vari-
ous differential cross sections at NNLO accuracy, in par-
ticular we predict the µ+µ− invariant-mass spectrum of
the Breit-Wigner shape. We have also compared our full
predictions with those based on the NWA, and found
the agreement within a few percents. It is interesting to
await the future experiment to examine our predictions.

We also carefully address the issue about scheme-
dependence of our predictions, at various levels of per-
turbative accuracy. Employing three popular renormal-
ization sub-schemes, we find that the predicted LO cross
sections substantially differ from each other. Including
the NLO weak correction is crucial to stabilize the pre-
dictions from different schemes, however including mixed
electroweak-QCD correction seems not to help. To yield
a scheme-insensitive prediction, it appears to be com-
pulsory to continue to include the NNLO electroweak
correction.

We are grateful to Gang Li and Qing-Feng Sun for

useful discussions.
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