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Abstract: Taking doubly charged particles, positive-negative charge pair production and the effects of volume

fluctuations into account, the Poisson baseline of the fluctuations of net-charge is studied. Within the Poisson

baseline, the cumulants of net-charge are derived. Comparing to the Skellam baseline of net-charge, we infer that

doubly charged particles broaden the distributions of net-charge, while positive-negative charge pairs narrow the

distributions. Using the ratios of doubly charged particles and positive-negative charge pairs from neutral resonance

decays to the total positive charges from THERMINATOR 2, the first four orders of moments and the corresponding

moment products are calculated in the Poisson baseline for Au + Au collisions at
√

s
NN

= 200 GeV at RHIC/STAR.

We find that the standard deviation is mainly influenced by the resonance decay, while the third and fourth order

moments and corresponding moment products are mainly modified and fit the data of RHIC/STAR much better

after including the effects of volume fluctuations.
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1 Introduction

The high-order cumulants of conserved charges are
suggested as good probes of the quantum chromodynam-
ics (QCD) phase diagram [1, 2]. They are experimentally
accessible and theoretically calculable. In theory, non-
monotonic behavior and even sign changes can be found
in the high-order cumulants [3–7]. In experiments, the
cumulants of net-proton distributions and net-charge dis-
tributions are calculated based on the data taken by the
Solenoid Tracker at the Relativistic Heavy Ion Collider
(RHIC/STAR) with a wide range of collision energies
from

√
s
NN
= 7.7 GeV to

√
s
NN
= 200 GeV [8, 9].

Before some interpretations from the results of cumu-
lants measured at RHIC/STAR in terms of QCD critical
phenomena, the contributions of non-critical fluctuations
from other known physics must be quantified, such as the
statistical fluctuations due to finite numbers of produced
particles [10–13], global conservation laws in a subsys-
tem [14], volume fluctuations [15–17], and experimental

acceptance cuts [18, 19]. It is also suggested to study the
dynamical cumulants, which is the difference of the cu-
mulants calculated from experiments and corresponding
statistical fluctuations [20, 21]. Usually, the statistical
fluctuations are considered as a baseline.
The cumulants or cumulant ratios of net-protons

measured at RHIC/STAR are often compared to a base-
line that assumes Poisson and negative binomial statis-
tics. In case of the Poisson statistics, the proton and anti-
proton multiplicities are randomly sampled from their
mean values, resulting in a Skellam distribution of net-
protons [8]. The baselines based on negative binomial
distributions (NBDs) are constructed by using both the
measured mean values and variances of the proton and
anti-proton [11].
Turning to the baseline of net-charge, is it still proper

to assume a Poisson distribution or NBD for the total
positive and negative charges? In fact, in the cases of
Poisson and NBD statistics, the particles are all pro-
duced independently. This assumption is suitable for
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the baseline of the proton and antiproton, but not so
reasonable for positive and negative charges.
On one hand, a lot of charged particles come from

resonance decays [22]. These contribute in two ways.
One is from doubly-charged particles, which is included
in the data through their decay products. The other is
from positive-negative charge pairs generated from the
resonance decay. Strong correlations are reserved for the
positive-negative charge pairs. On the other hand, quan-
tum effects are more crucial for small masses, such as pi-
ons. They cannot be ignored in the studies of net-charge
fluctuations. In Ref. [23], it was shown that the contri-
bution of quantum effects broadens the distribution of
net-charge, just like the doubly charged particles.
In this paper, taking these two aspects of the contri-

bution of resonance decays into account, we study the
Poisson statistics with a new assumption. First, the to-
tal positive or negative charges are divided into three
parts. The first part is from doubly charged particles,
the second part is from positive-negative charge pair pro-
duction, and the third part consists of all the rest. The
three groups of particles are all assumed to follow Poisson
distributions. Under this framework, a Poisson baseline
of net-charge fluctuations can be derived.
Under the assumption that the fluctuations of

charged particle number and volume are independent,
the effects of the volume fluctuations are included in the
Poisson baseline. Usually, a Glauber model that includes
nuclear geometry and particle production is used to gen-
erate the volume or rather participant fluctuations [24].
Based on the Glauber model, the distribution of par-
ticipants is determined by a certain centrality selection.
In the case of net-charge distributions measured by the
STAR collaboration, however, the contribution of vol-
ume fluctuations can be approximately carried out in
non-central collisions [25].
The paper is organized as follows. The cumulants of

net-charge in the Poisson baseline are derived after tak-
ing the doubly charged particles and positive-negative
charge pair production into account in Section 2. The
effects of volume fluctuations on the cumulants of net-
charge are studied in Section 3. In Section 4, comparing
with the Skellam baseline of net-charge, the influence
on the distributions of net-charge from doubly charged
particles is discussed, as is the influence of the positive-
negative charge pairs. With the ratios of doubly charged
particles and positive-negative charge pairs to the total
positive charges from THERMINATOR 2, which simu-
lates Au + Au collisions at

√
s
NN
= 200 GeV, the first

four orders of moments and corresponding moment prod-
ucts from the Poisson baseline and the Poisson baseline,
including the effects of volume fluctuations, are calcu-
lated. The results are compared to the Skellam baseline

and the data from RHIC/STAR. Finally, we summarize
in Section 5.

2 Framework of the Poisson baseline

Assuming that the distribution of particle multiplic-
ity follows a Poisson distribution is equivalent to the as-
sumption that the number of particles produced in each
event is a discrete random variable N , and the probabil-
ity mass function (PMF) of N is given by,

f(k;λ)=Pr(N=k)=
λke−λ

k!
, k=0,1,2..., (1)

where λ>0 equals the expected value and also the vari-
ance of N .
If the number of positive and negative charges is as-

sumed to follow the Poisson distribution directly, as done
in Ref. [9], then the net-charge will follow the Skellam
distribution [26]. Its cumulants are only determined by
the mean value of the positive charge (M+) and negative
charge (M−) as follows,

CS
2n−1=M+−M−, C

S
2n=M++M−, n=1,2,3,... (2)

where CS
2n−1 and C

S
2n represent the odd-order and even-

order of cumulants, respectively. CS
1 and CS

2 are the
mean and variance of net-charge distribution in the Skel-
lam baseline.
In this paper, considering the contribution of reso-

nance decay to the charge distributions, we use six dis-
crete random variables N2+ (N2−), Np+ (Np−), and N1+

(N1−) to represent the numbers of doubly positive (nega-
tive) charged particles, singly positive (negative) charged
particles from positive-negative charge pair productions,
and the rest singly positive (negative) charged particles
in each event, respectively. The decay products of the
doubly charged particles are assumed to be in the same
event, and so are the positive-negative charged particles
from pair production. The six discrete random variables
are all assumed to follow Poisson distributions.
The positive (negative) charges from the doubly posi-

tive (negative) charged particles no longer follow Poisson
distributions. Their PMF is as follows,

f(2k;2〈N2+〉)=
〈N2+〉ke−〈N2+〉

k!
, k=0,1,2..., (3)

where 〈N2+〉 represents the mean value of N2+. Then
2〈N2+〉 is the mean value of charges taken by doubly
positive charged particles.
As we know, the sum of two Poisson distributions

is still a Poisson distribution. Its expected value is the
sum of the expected values of the two Poisson distribu-
tions. Then the PMF of the total positive charge (N+) is
the convolution of PMF of N1+, 2N2+ and Np+. It can be
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written as follows,

f(k;〈N+〉)=
∞∑

x=−∞

f(x;2N2+)f(k−x;〈N1++Np+〉)

=

∞∑

x=−∞

〈N2+〉x/2e−〈N2+〉

(x/2)!

〈N1++Np+〉k−xe−〈N1++Np+〉

(k−x)! ,

k=0,1,2...,
(4)

The nth-order cumulants (C
N+
n ) of the total charges

can be derived from its cumulant generating function
(CGF),

KN+
(t;〈N+〉)=

∞∑

k=0

tk

k!
C
N+

k , (5)

where KN+
(t;〈N+〉) = lnG(et;〈N+〉), and G(t;〈N+〉) is

the probability generating function (PGF), i.e.,

G(t;〈N+〉)=
∞∑

k=0

f(k;〈N+〉)tk. (6)

So the nth-order cumulant of total charge is as follows,

CN+

n =〈N1+〉+〈Np+〉+2n〈N2+〉, n=1,2,3,... (7)

For the cumulants of total negative charges, one can just
replace 〈N1+〉, 〈Np+〉 and 〈N2+〉 with 〈N1−〉, 〈Np−〉 and
〈N2−〉 in Eq. (7).
Usually, the PMF of difference of two independent

random variables is the cross-correlation of their PMFs.
One may think that through the cross-correlation of the
PMFs of total positive and negative charges, the PMF
of the net-charge can be derived. However, this is not
the case here. We should be careful when dealing with
the net-charge from positive-negative charged pair pro-
duction.
The positive and negative charges from pair pro-

duction are all assumed to follow Poisson distributions.
Not only are their expected values equal to each other
〈Np+〉 = 〈Np−〉, but also they share the same random
number sequence in the same order. If N i

p+ and N
i
p− are

used to represent the number of singly positive and neg-
ative charged particles from pair production in the ith
event, respectively, one can get the following relation,

N i
p+=N

i
p−. (8)

This means that the distribution of net-charge (Np+−
Np−) from pair production is not a Skellam distribution
any more, but zero. In fact, it reflects the conserva-
tion law of charge, which has an important influence on
net-charge fluctuations. If the experimental acceptance
can get to the full space and the detection efficiency is
one, the event-by-event net-charge fluctuations will be
decided only by the initial volume fluctuations or rather
participant fluctuations.

Now, analyzing the total distribution of net-charge of
all charged particles, we just need to consider the contri-
bution of singly charged particles, having already consid-
ered those from pair production and doubly charged par-
ticles. The PMF of the net-charge is the cross-correlation
of the PMFs of N1++2N2+ and N1−+2N2−. Under
this case, the corresponding odd-order (CN

2n−1) and even-
order (CN

2n) cumulants of net-charge have been derived
in Ref. [12],

CN
2n−1=〈N1+〉−〈N1−〉+22n−1(〈N2+〉−〈N2−〉),

CN
2n=〈N1+〉+〈N1−〉+22n(〈N2+〉+〈N2−〉).

n=1,2,3... (9)

3 Volume fluctuations

A general expression for the cumulants of net-baryons
including the effects of volume fluctuations is derived in
Ref. [27], under the assumption that the fluctuations of
the baryon number and volume are independent. The
expression is suitable for an arbitrary probability distri-
bution for the fluctuations of net-baryon number as well
as for the fluctuations of the volume. If the fluctuations
of charged particle number and volume are assumed to
be independent, the same expression can be obtained for
the cumulants of net-charge.
Let us use cn=C

N
n /V to represent the nth-order re-

duced cumulants of net-charge, corresponding to the net-
charge number fluctuations per unit volume in a fixed
volume V . If fluctuations of volume are allowed, the
first four orders of reduced cumulants vn of volume fluc-
tuations are as follows,

v1=
〈V 〉
〈V 〉=1, v2=

〈(δV )2〉
〈V 〉 ,

v3=
〈(δV )3〉
〈V 〉 , v4=

〈(δV )4〉−3〈(δV )2〉2
〈V 〉 , (10)

where δV =V−〈V 〉. Then according to Eq. (7) in Ref. [27],
the first four orders of reduced cumulants of net-charge
including the effects of volume fluctuations are as follows,

κ1=c1, κ2=c2+c1
2v2,

κ3=c3+3c2c1v2+c1
3v3,

κ4=c4+(4c3c1+3c2
2)v2+6c2c1

2v3+c1
4v4. (11)

For a detailed derivation, please see Section 2 in Ref. [27],
replacing the net-baryon number with the net-charge
number.
In this paper, the volume is regarded as the number of

participants directly. Based on the Glauber model, the
distribution of participants is determined by a certain
centrality selection. In non-central heavy-ion collisions,
however, the second to fourth orders of reduced cumu-
lants of volume fluctuations can be approximated with
v2=1, v3=2, v4=6 [25]. Then the reduced cumulants of
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net-charge including the effects of volume fluctuations in
Eq. (11) are simplified to

κ1=c1=
CN

1

〈Npart〉
,

κ2=c2+c1
2=

CN
2

〈Npart〉
+

CN
1

2

〈Npart〉2
,

κ3=c3+3c2c1+2c1
3=

CN
3

〈Npart〉
+
3CN

2 C
N
1

〈Npart〉2
+
2CN

1

3

〈Npart〉3
,

κ4=c4+(4c3c1+3c2
2)+12c2c1

2+6c1
4

=
CN

4

〈Npart〉
+
4CN

3 C
N
1 +3C

N
2

2

〈Npart〉2
+
12CN

2 C
N
1

2

〈Npart〉3
+
6CN

1

4

〈Npart〉4
.

(12)

The corresponding cumulants CV
n of net-charge includ-

ing the effects of volume fluctuations are the reduced
cumulants multiplying 〈Npart〉,

CV
1 =〈Npart〉κ1, CV

2 =〈Npart〉κ2,

CV
3 =〈Npart〉κ3, CV

4 =〈Npart〉κ4. (13)

4 Moments of net-charge from the Pois-

son baseline including volume fluctua-

tions

For the Poisson baseline, using the relations 〈N+〉=
〈N1+〉+2〈N2+〉+〈Np+〉 and 〈N−〉=〈N1−〉+2〈N2−〉+〈Np−〉,
the first four orders of cumulants of net-charge are as
follows,

CN
1 =〈N+〉−〈N−〉,

CN
2 =〈N+〉+〈N−〉+2(〈N2+〉+〈N2−〉)−(〈Np+〉+〈Np−〉),

CN
3 =〈N+〉−〈N−〉+6(〈N2+〉−〈N2−〉),

CN
4 =〈N+〉+〈N−〉+14(〈N2+〉+〈N2−〉)−(〈Np+〉+〈Np−〉),

(14)

where 〈N+〉 and 〈N−〉 are the mean values of the total
positive and negative charges, respectively.
Comparing CN

2 in Eq. (14) and CS
2 in Eq. (2), it is

clear that the doubly charged particles broaden the dis-
tribution of net-charge in the Skellam baseline, while the
particles from pair production narrow the distribution.
Supposing that the ratio of singly charged particles

from pair production to the total positive charges is
rp = rp+ = 〈Np+〉/〈N+〉= rp− = 〈Np−〉/〈N+〉. Similarly,
the ratios of doubly positive and negative charges are
r2+ = 〈N2+〉/〈N+〉, and r2− = 〈N2−〉/〈N+〉, respectively.
The cumulants in Eq. (14) can be written as follows,

CN
1 =〈N+〉−〈N−〉,

CN
2 =〈N+〉+〈N−〉+2(r2++r2−−rp)〈N+〉,

CN
3 =〈N+〉−〈N−〉+6(r2+−r2−)〈N+〉,

CN
4 =〈N+〉+〈N−〉+(14r2++14r2−−2rp)〈N+〉. (15)

From the expression of CN
2 in Eq. (15), it is clear that

it is decided by the ratios r2+, r2− and rp that the distri-
bution of net-charge is wider or narrower in the Poisson
baseline than the Skellam baseline. Doubly charged par-
ticles are mainly ∆++ and its anti-particle ∆−−. Their
ratios are not big. However, there are lots of charges
from pair production in neutral and also higher-mass
resonance decays, whose effects have been studied in a
hadron resonance gas model [28].
Through several simple assumptions, the formulas of

the cumulants including the resonance decay effects have
been derived. It can be inferred through Eq. (15) that
there is great change in the cumulant after considering
the effects of resonance decay.
Assuming that the hadronic matter reaches thermal

equilibrium and undergoes rapid expansion leads to a re-
markably good description of the ratios of particle abun-
dances measured in heavy-ion experiments [29–31]. In
the THERMINATOR 2 model, simulating Au + Au col-
lisions at

√
s
NN
= 200 GeV [32], the resonance decay is

implemented. Considering the doubly charged ∆++ and
∆−−, we calculated the ratios r2+ and r2− in THER-
MINATOR 2 for the eight centralities available in this
model. Taking the seven kinds of neutral particles, ρ0,

η0, K0, K
0
, ω, K∗0 and K

∗0
into account, rp+ and rp−

for the eight centralities are obtained. The positive and
negative charged particle multiplicities within pseudora-
pidity η window of |η|<0.5 and the transverse momen-
tum pT range 0.2<pT<2 GeV/c are taken into account,
in the same way as in Ref. [9].
The mean values of the multiplicities of total positive

charges 〈N+〉, and the values of r2+, r2−, rp+ and rp− for
the eight centralities are shown in Table 1. From the
results, we find the values of r2+ are around 1.06%. The
difference is less than 0.02% for each centrality. The val-
ues of r2− are around 0.73%. The difference is less than
0.01% except for the centrality 60%-70%. The same hap-
pens for rp+ and rp−. In fact, the values of each ratio
are almost the same for all of the centralities, with no
change as the centralities vary. The slight difference,
less than 0.1%, between rp+ and rp− for each centrality
could be caused by the cuts of transverse momentum and
pseudorapidity. Because there is so little difference, it is
acceptable to choose the same value of the ratio for all
of the centralities. It is also demonstrated that it is fine
to set rp+=rp−.
Taking r2+=1.06%, r2−=0.73% and rp=rp+=rp−=

19.86% in the nine centralities of Au + Au collisions at√
s
NN
= 200 GeV at RHIC/STAR, the centrality depen-

dence of the mean (M=C1, Cn representing the nth-order
cumulant) in the Poisson baseline and including the ef-
fects of volume fluctuations are shown by the blue dia-
monds and pink squares in Fig. 1(a), respectively. The
corresponding standard deviation (σ =

√
C2), skewness
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Table 1. The values of the total positive charges and ratios for the eight centralities in THERMINATOR 2.

centrality(%) 〈N+〉 r2+(%) r2−(%) rp+(%) rp−(%)

0–5 256.859 1.07311 0.73937 19.8436 19.8562

5–10 220.962 1.06932 0.734299 19.8594 19.8737

10–20 171.967 1.07345 0.73921 19.8257 19.8156

20–30 121.545 1.07597 0.72834 19.8376 19.848

30–40 82.3718 1.05898 0.72571 19.8124 19.8796

40–50 52.5943 1.05536 0.733996 19.8603 19.857

50–60 28.3118 1.05221 0.737008 19.861 19.9299

60–70 9.1492 1.05889 0.690552 20.0105 20.0573

<N
part

>
0 100 200 300

M
ea

n 
(M

)

0

1

2

3

4 Au+Au 200GeV(a)

STAR
Po+VF
Poisson
Skellam

<N
part

>
0 100 200 300

S
td

.D
ev

ia
tio

n 
(σ

)

4

8

12

16

20
(b)

<N
part

>
0 100 200 300

S
ke

w
ne

ss
 (S

)

×10-3

-5

0

5

10

15 (c)

<N
part

>
0 100 200 300

K
ur

to
si

s 
(K

)

0

0.1

0.2
(d)

Fig. 1. (color online) The centrality dependence of (a) mean (M), (b) standard deviation (σ), (c) skewness (S), and
(d) kurtosis (K) of the net-charge distributions from RHIC/STAR (red stars), Poisson baseline including effects
of volume fluctuations (pink squares), Poisson baseline (blue diamonds) and Skellam baseline (green circles) with
ratios rp=19.86%, r2+=1.06% and r2−=0.73% for Au + Au collisions at

√

s
NN

= 200 GeV.

(S=C3/C2
1.5) and kurtosis (K=C4/C2

2) are shown in
Fig. 1(b), 1(c) and 1(d), respectively. The red stars are
data from RHIC/STAR [9], and the green circles are the
baseline from the Skellam distribution. The centrality is
represented by the average number of participating nu-
cleons 〈Npart〉. In Fig. 1(a), there is no doubt that the
mean value from each baseline is the same as the data.

In Fig. 1(b), σ from the Skellam baseline is system-
atically bigger than data at all centralities. After con-
sidering the doubly charged particles and particles from
pair production, the Poisson baseline gets closer to the
data. After including the effects of volume fluctuations,
the Poisson baseline of σ is almost unchanged.
For skewness and kurtosis in Fig. 1(c) and Fig. 1(d),
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Fig. 2. (color online) The centrality dependence of the moment products σ2/M , Sσ, and Kσ2 of net-charge dis-
tributions from RHIC/STAR (red stars), Poisson baseline including effects of volume fluctuations (pink squares),
Poisson baseline (blue diamonds) and Skellam baseline (green circles) with ratios rp=19.86%, r2+ =1.06% and
r2−=0.73% for Au + Au collisions at

√

s
NN

= 200 GeV.

the results from the Skellam baseline are systematically
smaller than the data, while the Poisson baseline is closer
to the data. After including the effects of volume fluc-
tuations, the Poisson baselines of S and K change a lot
and are very close to the data.
For standard deviation, the differences between the

Skellam and Poisson baselines increase going from pe-
ripheral collisions to central collisions, as do the differ-
ences between data and the baselines. For skewness and
kurtosis, the opposite is true. The differences become
smaller going from peripheral collisions to central colli-
sions.
To explore the Poisson baseline and effects of volume

fluctuations of net-charge distributions in depth, we fur-
ther compare the moment products σ2/M , Sσ, and Kσ2

from the three different kinds of baselines and data, as
shown in Fig. 2. Differences between the Poisson base-
line and the Skellam baseline decrease with the increase

of the order of the moments. After including the effects
of volume fluctuations, σ2/M is almost unchanged. Sσ
and Kσ2 change a lot.
In short, the standard deviation is more sensitive to

the resonance decay and less sensitive to the volume fluc-
tuations. The opposite is true for the third and fourth
order moments or moment products. These results are
similar to the results from a Monte Carlo hadron reso-
nance gas model in Ref. [17].
There are still large differences between the baselines

and data for σ2/M . As well as the strong correlation
caused by the doubly charged particles and positive-
negative charge pairs from neutral resonance decays,
there should still exist some other strong correlations
between the charged particles, which causes the distri-
bution of net-charge to be narrower in the data than in
the Poisson baseline. If higher-mass resonance decays
are included, the value of rp should be larger and the

074104-6



Chinese Physics C Vol. 42, No. 7 (2018) 074104

Poisson baseline may be closer to the data.

5 Summary

Taking doubly charged particles and positive-
negative charge pair production from resonance decays
into account, and assuming the numbers of doubly pos-
itive (negative) charged particles, singly positive (nega-
tive) charged particles from positive-negative charge pair
productions, and the remaining singly positive (negative)
charged particles all follow Poisson distributions, the cu-
mulants of net-charge distributions in the Poisson base-
line are derived. The effects of volume fluctuations are
also studied under the assumption that the fluctuations
of charged particle number and volume are independent.
Comparing with the Skellam distribution, we found

that doubly charged particles broaden the distribution
of net-charge, while positive-negative charge pairs nar-
row the distribution.
Through a THERMINATOR 2 simulation for Au +

Au collisions at
√
s
NN
= 200 GeV, the ratios of doubly

positive (negative) charged particles or positive-negative
charge pairs from neutral resonance decay to the total
positive charges were simulated. Using these ratios, the
mean, standard deviation, skewness and kurtosis, and
their products from the Poisson baseline, including the
effects of volume fluctuations, were calculated for Au +
Au collisions at

√
s
NN
= 200 GeV from RHIC/STAR.

We found that the Poisson baseline, especially after in-
cluding the effects of volume fluctuations, is closer to the
data than the Skellam baseline. The standard deviation
is more sensitive to the resonance decay and less sen-
sitive to the volume fluctuations, while the opposite is
true for the third and fourth order moments or moment
products.
There are still large differences in σ2/M between the

Poisson baseline and data. There should still exist some
other correlations between the charged particles, which
cause the distribution of net-charge to be narrower in the
data than in the Poisson baseline.
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