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Abstract: We have carried out an approximate analytical solution to precisely consider the influence of magnetic

field on the transverse oscillation of particles in a cyclotron. The differential equations of transverse oscillation

are solved from the Lindstedt-Poincare method. After careful deduction, accurate first-order analytic solutions are

obtained. The analytical solutions are applied to the magnetic field from an isochronous cyclotron with four spiral

sectors. The accuracy of these analytical solutions is verified and confirmed from comparison with a numerical

method. Finally, we discussed the transverse oscillation at v0=
N

2
, using the same analytical solution.
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1 Introduction

The motion of particles in a cyclotron can be precisely
investigated from numerical methods, but the effect of
magnetic field on particle motion cannot be visualized.
An analytical formula with certain accuracy can consider
and visualize the effect of the magnetic field.
There are many analytical formulas for transverse

oscillation which describe synchrotrons and classic cy-
clotrons at relatively simple magnetic field, as shown in
Ref. [1]. However, no one has reported such a formula
for a cyclotron with spiral sectors.
Formulas for calculating transverse oscillation fre-

quency have been reported by several investigators, as
shown in Refs. [2–5]. However, the accuracy of these
formulas is limited.
In this paper, we solve the linear equations for trans-

verse oscillation through the Lindstedt-Poincare (LP)
method. We have obtained different formulas for cal-
culating transverse oscillation and oscillation frequency.
Finally, these formulas are compared with numerical re-
sults and shown to be accurate.

2 Linear equations for transverse oscilla-

tion

In Ref. [6],the linear equations for transverse oscilla-
tion around the equilibrium orbit are given as:
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Equation (1) is for radial oscillation and Eq. (2) is for
axial oscillation; x and z are respectively the radial and
axial offset of the equilibrium orbit, and px and pz are
correspondingly the radial and axial momentum offset of
the equilibrium orbit.
The coefficients of the above linear differential equa-

tions are determined from the parameters of equilibrium
orbit such as re and pre. As long as the magnetic fields
are given, the equilibrium orbit can be determined from
numerical integration or Gordon’s formulas [3] followed
by the determination of the coefficients of the equation.
In order to simplify these equations, let
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Then the radial oscillation equations can be written as

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By using the following formula:

x(θ)=
√

b(θ)·u(θ), (5)

Eq. (4) can be rewritten as a Hill’s equation,

u′′+G(θ)·u=0, (6)

where
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Here G(θ) has the same periodicity as the equilibrium
orbit. Expanding G(θ) into a Fourier series,

G(θ)=v2+
∑

n

Pncosnθ+Qnsinnθ. (8)

In order to simplify, let

g(θ)=
∑

n

Pncosnθ+Qnsinnθ. (9)

Then Eq. (6) becomes

u′′+ν2u=−g(θ)u. (10)

Equation (10) is a simplified radial oscillation equation.
We can get the simplified axial equation directly by re-
placing Eqs. (5) and (7) with the following two formulas:
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3 Solving oscillation equations by LP

method

Equation (10) is a linear differential equation with
variable coefficients, and the LP method is very effective
for solving such equations.
Now, we want to solve Eq. (10) by using the LP

method. First, we introduce a small parameter ε with
the condition of 06ε61 and rewrite Eq. (10) as follows:

u′′+ν2u=−ε·g(θ)u. (13)

According to the LP method [7, 8], we will try to solve
Eq. (13) by inserting a perturbation series:

u(θ)=u0(θ)+ε·u1(θ)+ε
2
·u2(θ)+··· , (14)
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2
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2
·v2

2+··· , (15)

and then find the expressions of u0(θ), u1(θ), u2(θ) as
well as the values of v2

0 , v
2
1 , v

2
2 . Finally, the solutions of

Eq. (10) are obtained by letting ε=1.

Substituting Eqs. (14) and (15) into Eq. (13), we can
get
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The coefficient of each power of ε should be zero, hence
we can get:
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From the above procedures, we transform Eq. (13) into
several ordinary differential equations. The solution of
the first equation of Eq. (17) is

u0(θ)=Acosv0θ+Bsinv0θ. (18)

Substituting Eq. (18) into the second equation of Eq. (17)
gives:
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2
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where −v2
1(Acosv0θ+Bsinv0θ) on the right-hand side is

the secular term. The LP method requires avoidance of
the secular term by choosing a suitable value of v2

1 . It
is obvious that v2

1 must be zero to eliminate the secular
term, which is
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The solution of Eq. (19) is:
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In order to simplify, let






C1=v2
0−(n+v0)

2

C2=v2
0−(n−v0)

2,
(22)

and substitute Eq. (21) into the third formula of Eq. (17),
so the secular term can be written as
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The secular term can be eliminated by choosing the
value of v2

2 . Letting Eq. (23) be equal to zero, we can get
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Substituting Eqs. (20) and (24) into Eq. (15), and letting
ε=1, Eq. (15) becomes
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Since the values of v2, Pn and Qn have been determined
from Eq. (8), we can get the value of v0 by solving the
above equation with the help of the bisection method.
So far, we have found the expressions of u0, u1 and

the values of v0,v1,v2. By letting ε=1, eventually we can
get the solution of Eq. (10):
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where A and B can be determined from the initial condi-

tions of u(0) and u′(0). Finally, according to the Eq. (5),
we can get the expression of x(θ)

x(θ)=
√

b(θ)·u(θ). (27)

The solution for axial oscillation z(θ) can be found from
the same method, but the details of the calculation are
not shown here.

4 Comparison with numerical solution

The analytical solutions are applied to the magnetic
field from a SC200 cyclotron. The SC200 cyclotron is a
compact superconducting proton cyclotron with four spi-
ral sectors, used for proton therapy. The highest energy
of the SC200 is 200 MeV, the extracting radius is 60 cm,
and the central magnetic field is 2.95 T. The transverse
oscillation under the initial conditions of Ek=100 MeV,
x0=2 mm, x

′
0=0, z0=2 mm, and z′0=0 was calculated

from Eqs. (25), (26) and (27).
We also calculated the equilibrium orbit and the gen-

eral orbit by solving the equation of motion using the 4th
order Runge-Kutta method, with the above initial condi-
tions. The equation of motion and the numerical method
of calculating the equilibrium orbit come from Ref. [9].
The transverse oscillation is then obtained by comparing
the general orbit with the equilibrium orbit.
A comparison of the result from the formulas with

those of the above numerical method is shown in Figs.
1–4.

Fig. 1. (color online) (left) 5-180 MeV equilibrium orbits of SC200 cyclotron, with energy step of 5 MeV. (right)
Magnetic field in mid-plane.
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Fig. 2. (color online) (left) Equilibrium orbit for a 100 MeV particle; (right) G(θ), obtained from Eq. (7).

Fig. 3. (color online) Oscillation around the equilibrium orbit, obtained from Eqs. (26) and (27) (red curve), and
that of the numerical method (blue curve). (left) Radial oscillation around the 100 MeV equilibrium orbit. (right)
Axial oscillation around the 100 MeV equilibrium orbit.The results of the two methods are almost indistinguishable.

Fig. 4. (color online) The oscillation frequency v0, obtained from Eq. (25) (red curve) and numerical method (blue
curve). (left) Radial frequency νr and (right) axial frequency νz. The difference in radial frequency is negligible.
The difference in axial frequency is also very small except at 80 MeV and 130 MeV. The deviations at 80 MeV and
130 MeV may be due to unavoidable error.

5 Improved formulas when v0=
N

2

The value of the denominator v2
0−(n−v0)

2 in (26) will
be zero at v0=

N

2
, where n=1,2,3··· and N is an integer.

So, Eq. (26) will be invalid at v0=
N

2
.

Therefore, further processing of Eq. (26) is required.
Actually, Eq. (26) is deduced based on initial conditions
such as

{

u(0)=u0(0)+u1(0)+u2(0)+··· ,

u′(0)=u′0(0)+u
′
1(0)+u

′
2(0)+··· .

(28)
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Now, we solve Eq. (10) again based on a new initial con-
dition:

{

u(0)=u0(0), u1(0)=0, u2(0)=0,···

u′(0)=u′0(0), u′1(0)=0, u′2(0)=0,··· .
(29)

then u(θ) is obtained as:
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−

PnA

2

[

cos(n+v0)θ

v2
0−(n+v0)2

+
cos(n−v0)θ

v2
0−(n−v0)2

]

−
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(31)
The initial condition Eq. (28) is equivalent to Eq. (29),
while the difference between the resulting formulas Eqs.
(26) and (30) is a small quantity of high order. In con-
trast, Eq. (26) has high accuracy, but Eq. (30) is pre-
ferred due to the constant coefficients of A and B during
v0→

N

2
, which encourages further simplification.

So, we make the following transformation for the for-
mulas in square brackets of Eq. (30), such as the first

square bracket
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=
cos(n+v0)θ

v2
0−(n+v0)2

+
cos(n−v0)θ

v2
0−(n−v0)2

−
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=
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θ
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After the above transformation, u(θ) becomes

u(θ) = u0(θ)+u1(θ)=A∗cosv0θ+B
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∑
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It is easy to find that C∗
n and D∗

n remain constant during
v0→

N

2
. According to the initial condition, A∗ and B∗

can also be written as:
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v0

, (35)

which indicate that A∗ and B∗ also remain constant during v0→
N

2
.

So, the expression of u(θ) under v0=
N

2
can be obtained as

lim
v0→

N

2
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N

2
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N
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θ+

∑

n

C∗
ncos(n+

N

2
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−
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−
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Equation (36) is an improved formula for calculating os-
cillation at v0=

N

2
. As we can see, Eq. (36) contains the

terms θ ·sinN

2
θ and θ ·cos N

2
θ, which indicates that the

amplitude of u(θ) increases with respect to the azimuth.

Fig. 5. (color online) Calculated results of radial
oscillation from Eq. (36). The amplitude of oscil-
lation increases with respect to azimuth at v0=1.

Here we have calculated the transverse oscillation at
v0 =1 for two different particles with the initial condi-
tion of A=0.02,B=0.04 and A=0.006,B=−0.04 using
Eq. (36). The values of Pn,Qn come from the parameters
of 2.7 MeV equilibrium orbit, where the corresponding
v0 is very close to 1. The result is shown in Fig. 5.

6 Summary

In this work, we have proposed approximate formulas

for the calculation of transverse oscillation, around the
equilibrium orbit, using the LP method. These formu-
las have been further confirmed from the nice correla-
tion of numerical and LP-based results. Moreover, these
formulas are highly accurate for the calculation of trans-
verse oscillation and oscillation frequency. Finally, we
discussed the transverse oscillation at v0=

N

2
, where the

amplitude increases with azimuth.
The numerical method can be used to study the

transverse oscillation precisely, but there are some lim-
itations. Firstly, it is unable to directly demonstrate
the influence of magnetic field structures on motions of
particles. Secondly, in a given magnetic field with fixed
working diagrams, particles may not cross the resonance
lines that are proposed to be studied, or they do passed
them but the influence imposed on motions of particles
is not obvious and thus insufficient information can be
obtained. However, the analytical solution seems more
flexible. The transverse oscillation of particles under any
resonance line can be studied by only changing the pa-
rameters of the magnetic field in the formulas concerned,
with no necessity to change the whole magnetic field.
The influence of the N th harmonic on the transverse os-
cillation can be studied by changing the amplitude of the
N th harmonic in the given magnetic field.
The method of calculating transverse oscillation given

in this paper can also be applied in the transverse oscilla-
tion equation with high order terms and coupling terms,
and more information about the high-order resonances
and coupling resonances may be obtained.
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