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How can the neutrino interact with the electromagnetic field? *
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Abstract: Maxwell electrodynamics in the fixed Minkowski space-time background can be described in an equivalent

way in a curved Riemannian geometry that depends on the electromagnetic field and that we call the electromagnetic

metric (e-metric for short). After showing such geometric equivalence we investigate the possibility that new processes

dependent on the e-metric are allowed. In particular, for very high values of the field, a direct coupling of uncharged

particles to the electromagnetic field may appear.
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1 Introductory comments

In Ref. [1] Shabad and Usov have considered the max-
imum possible value of a magnetic field without revising
QED. They arrived at the value 1042 Gauss. This value
is only a few orders of magnitude less than the more
speculative value of 1047 Gauss that should be obtained
by the hypothetical super conducting cosmic strings.

Whatever its origin, it is almost compelling the be-
lief that nature has provided a mechanism by means of
which the electromagnetic field cannot attain an unlim-
ited value, according to the ideas in the pioneering work
of Born and Infeld1) (see also an analogous argument con-
cerning the existence of a maximum of the gravitational
field in Refs. [3, 4]).

The existence of such an upper bound is necessary for
the introduction of an electromagnetic metric (e-metric)
as we will describe in this paper. We then show that
the dynamics of Maxwell electrodynamics in Minkowski
space-time can be equivalently described as a non-linear
electrodynamics in a curved space-time endowed with
another metric written in terms of the electromagnetic
field itself. In this representation, the linear Maxwell
theory becomes non-linear.

Why change the simplicity of Maxwell linear theory
as described in Minkowski geometry for a non-linear de-
scription? This change could be justified only if some
new insight is produced by means of the introduction of
the e-metric. This is precisely what we will analyze in
this paper, under the hypothesis that this e-metric is uni-
versal, that is, it is perceived by all charged or uncharged

bodies. The characterization of such an e-metric opens
a new window to couple (charged or uncharged) parti-
cles of any kind to the electromagnetic field. We will
present a direct example of such coupling for the case of
an uncharged fermion, a neutrino for instance.

Before entering into this subject let us give a short
pedagogical review of other ideas concerning the uses of
an effective electromagnetic metric as proposed by dif-
ferent authors to deal with non-linear electrodynamics.

2 Introduction

The first example of the use of an effective metric to
describe electromagnetic waves appeared in early 1923
due to W. Gordon [5]. In modern language, it states
that the propagation of an electromagnetic wave in a
moving dielectric characterized by a refractive index n
and 4-velocity uµ obeys the Hamilton-Jacobi equation

gµνkµkν =0

where

gµν =ηµν+(n2−1)uµuν (1)

is the effective metric. Note that in such an optical
approximation only photons move in geodesics of gµν :
all other particles of the dielectric live in the Minkowski
background. After that, the method of effective metric
was largely used to describe the propagation of electro-
magnetic waves in non-linear theories (see for instance
Refs. [6, 7, 10]).
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2.1 Causal structure of non-linear electrody-

namics controlled by the effective metric

Just for completeness and to fix notation let us review
briefly the Hadamard analysis [11] of the propagation of
the discontinuities for non-linear electrodynamics in the-
ories such that the Lagrangian depends only on the in-
variant F≡Fµν F µν of the form L(F ). The corresponding
equation of motion takes the form

(LF F µν),ν =0, (2)

where a comma means partial derivative and LF rep-
resents the derivative LF ≡ ∂L/∂F. In the Hadamard
method we start by defining Σ as the surface of discon-
tinuity of the field by the equation

Σ(xµ)=constant.

The discontinuity of any function f is given by the rela-
tion

[f(x)]
Σ
= lim

ε→0+

(

f(x+ε)−f(x−ε)
)

. (3)

According to Hadamard the discontinuity of the field
and its first derivatives are

[Fµν ]Σ=0, [Fµν,λ]Σ=fµνkλ, (4)

where the wave vector kλ is orthogonal to Σ, that is,
kλ=Σ,λ and fµν represents the intensity of the disconti-
nuity of the field.

Let us consider the discontinuity of the equations of
motion (2). We have

LF fµνkν+2χLFF F µνkν =0, (5)

where χ is defined by

F αβfαβ≡χ.

Taking the discontinuity of the identity

Fµν,λ+Fνλ,µ+Fλµ,ν =0

and multiplying by F µν kλ, it follows that

χk2+F µνfνλkλkµ+F µνfλµkλkν =0. (6)

Then, from Eq. (5), for χ 6=0,

LF k2−4LFF F µαFα
λkµkλ=0, (7)

which can be written as

gµνkµkν =0,

where the effective metric is

gµν =LF ηµν−4LFF F µαFα
ν . (8)

We note that once kν is a gradient this equation im-
plies that energetic photons in a non-linear electrody-
namics controlled by the Lagrangian L = L(F ) do not
propagate along the null cones of the geometry of the
background, but instead follow null geodesics in another
metric given by Eq. (8).

It is not difficult to generalize the above procedure
for the case where the Lagrangian depends not only on
F but also on the other invariant G given by

G=F ∗

µνF µν =
1

2
ηαβµν Fαβ Fµν

where ηαβµν =−εαβµν/
√−η and η is the determinant of

ηµν .
For later reference we present the case of Born-Infeld

theory [2] (see also Einstein concerning an analogous
maximum value for the gravitational field in Ref. [3]).
The Lagrangian is given by

L=β2
(

1−
√

U
)

(9)

where

U≡1+
F

2β2
− G2

16β4

and β is a constant.
The discontinuities (waves) of this theory are

geodesics in the effective metric given by (up to a non-
relevant conformal term)

gµν =ηµν−
1

β2
Φµν (10)

where
Φµν =Fµ

λFλν .

Born and Infeld showed that the Lagrangian (9) can be
written in terms of a non-symmetric quantity

Cµν≡ηµν+Fµν

and it takes the form

L∼detCµν.

However, there is another way to re-write the Born-
Infeld Lagrangian in terms of a symmetric tensor that is
precisely the effective metric that controls the propaga-
tion of its discontinuities.

Indeed, it is not difficult [12] to show that the Born-
Infeld Lagrangian may be written as

LBI =β2

[

1−1

2
(detgµν)

1
8

]

. (11)

This expression shows that Born-Infeld dynamics
may be given in terms of a functional of the determinant
of the effective metric. We can then state the following
self-consistent result: the Born-Infeld dynamics for the
electromagnetic field is given by the extremum of the
determinant of the corresponding effective metric that
controls the causal structure of the nonlinear photons
generated by this theory.

This effective metric procedure was then used as a
tool to mimic certain configurations of gravity in the
realm of general relativity (see for instance Ref. [10]).
However, it is possible to go beyond such limited uses
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and analyze not only the properties of waves but prop-
erties of the dynamics of the electromagnetic field itself.
In the next section we show how it is possible to describe
all properties (not only the propagation of the waves) of
the electrodynamics in the realm of the effective metric.
In a subsequent section we will go one step further and
investigate some consequences of accepting a deeper role
for the effective metric, making the hypothesis that it
has a true universal character.

3 Uses of the effective metric: the bridge

formulation

In the present section we focus on the statement [13]
according to which the standard Maxwell electrodynam-
ics in a Minkowski background can alternatively be de-
scribed as a non-linear theory described in a curved space
endowed with a metric constructed with the electromag-
netic field itself (the e-geometry for short). These two
dynamics are one and the same. We present a rather
simple and direct proof of this.

Let SM represent the free part of Maxwell’s action in
Minkowski space-time:

SM =−
∫ √

−ηF d4x

where η is the determinant of the Minkowski metric,

F =Fµν F µν =FαµFβν ηαβηµν .

From an analogy to the description of the propagation of
waves in non-linear electrodynamics, we are led to con-
sider the electromagnetic metric as1)

êµν =ηµν− 1

β2
Φµν (12)

in which the constant β2 has the dimension of [F ] and
Φµν is the same as that in the preceding equations, that
is Φµν =Fµ

λFλν . The determinant of the e-metric is given
by

√
−ê=

√−η

U

where

U =1+
F

2β2
− G2

16β4
.

We note that this expression is present in Born-
Infeld theory. Thus we can apply a similar analy-
sis to that made by these authors concerning the con-
stant β. Indeed, in the case of a pure electrostatic field,
U =1−E2/β2. From the form of the determinant and to
keep the geometry (Eq. 12) well-behaved, the quantity
U should not change sign. This yields a limitation for
the field, that is

E2<β2

similar to the maximum value of the field that was hy-
pothesized by Born and Infeld ( see Ref. [2]). From now
on we will attribute to the constant β the meaning of the
maximum possible value for the field.

For later application, we make explicit the identity

Φµ
αΦαν =

1

16
G2ηµν−

1

2
F Φµν .

The next step is to assume that the e-metric is Rieman-
nian, that is, there is a covariant derivative constructed
with this metric in such way that it obeys the metricity
condition

êµν
;α=0.

This allows us to define a connection

Γ̂α
µν =

1

2
êαλ (êλµ,ν+êλν,µ−êµν,λ)

where a comma means the ordinary derivative. We use
a hat to characterize objects that are represented in the
e-metric. The inverse metric defined as

êαν êνβ =δα
β

is given by
êµν =Aηµν+BΦµν

where

A=
2+F/β2

2U
, (13)

B=
1

β2U
. (14)

Remember that for any non-hat tensorial quantity
all properties concerning the relationship between co-
variant and contra-variant indices are performed by
the Minkowski metric ηµν . The effect of the map from
Minkowski geometry into the e-metric does not change
the covariant form of the electromagnetic tensor, that is

F̂µν =Fµν .

It then follows that for the contra-variant form

F̂ µν =êµα êνβ Fαβ=(ΣF µν+ΠF ∗µν) (15)

Consequently the associated invariants F̂ and Ĝ are
related to their counterparts in Minkowski space by

F̂ =(ΣF+ΠG), (16)

Ĝ=U G, (17)

where

Σ=1+
F

β2
+

1

4β4

(

F 2+
G2

4

)

, (18)

and

Π=
1

2β2
G

(

1

4β2
F+1

)

. (19)

1) It has been shown [7] that waves in non-linear electrodynamics are described as geodesics in a generic e-metric of the form
aηµν+bΦµν where a and b were taken as functions of the invariants F and G.
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The inverse expressions of formulas (15), (16) and
(17) that relate F and G to their correspondents in the
e-metric are very involved. However, we can obtain valu-
able information if we restrict our calculations up to or-
der O(1/β2). We find

F µν≈F̂ µν− 1

β2

[

F̂ F̂ µν+
Ĝ

2
∗F̂ µν

]

(20)

Thus

F≈F̂− 1

β2
(F̂ 2+

1

2
Ĝ2)

G≈Ĝ− 1

2β2
(F̂ Ĝ).

With these preliminaries we are prepared to prove
the equivalence of dynamics contained in the following
proposition: the dynamics of Maxwell electrodynamics
in Minkowski space-time can be equivalently described
as a non-linear electrodynamics in a curved space-time
endowed with another metric written in terms of the elec-
tromagnetic field itself.

Let us consider the action defined in the e-space:

Ŝ=

∫ √
−êL̂d4x (21)

To write this action in terms of the Minkowski met-
ric we must insert in it the functions of the determinant
of the e-metric and the Lagrangian L̂ in terms of the
quantities F and G. Take the expression of the action of
Maxwell dynamics in Minkowski geometry:

IM =− 1

4

∫ √
−ηF d4x

Using the bridge formulas, we obtain up to order O(1/β2)

IM =−
∫ √

−ê

(

1

4
F̂− 4

32β2
[F̂ 2+Ĝ2 ]

)

d4x

which is the form of Maxwell electrodynamics as it ap-
pears when represented in the e-metric space. It is nat-
ural that in this space, endowed with a metric that de-
pends on the electromagnetic field, Maxwell linear the-
ory appears in a non-linear form. This equivalence is
not restricted to Maxwell theory but it can be displayed
for any non-linear theory. Let us take the case of Born-
Infeld dynamics. In the standard formulation in the rigid
space-time described by Minkowski geometry, its action
is given by

IBI =−
∫ √

−ηβ2 (1−
√

U)d4x

and using the bridge formulas we obtain up to order
O(1/β2)

IBI =−
∫ √

−ê

(

1

4
F̂− 5

32β2
[F̂ 2+Ĝ2 ]

)

d4x

We note that the non-linearities of Maxwell and Born-
Infeld dynamics in the e-representation are quite similar.
Indeed, the first non-linear terms of O(1/β2) have the
same structure but are multiplied by factors 4/32 and
5/32 respectively.

Summarizing, we can state that from the above ex-
pressions it follows that Maxwell’s dynamics can be de-
scribed in two equivalent ways:

1) Standard formulation in the Minkowski back-
ground:

(√
−ηF µν

)

,ν
=0.

2) Alternative formulation in the e-metric:
(√

−ê

[

U

Σ
F̂ µν−Π

Σ
∗F̂ µν

])

,ν

=0

where in the expressions of Σ and Π given by Eqs. (18,
19), F and G must be given in terms of F̂ ,Ĝ.

Using the approximation up to order 1/β2 we obtain
(√

−ê

[

F̂ µν− 1

2β2
(F̂ F̂ µν+Ĝ∗F̂ µν)

])

,ν

≈0

We note that in the e-metric formulation one must use
the covariant derivative. Up to order O(1/β2) we have
the relation

F̂ µν
;ν≈F̂ µν

,ν−
1

2β2
F̂ µν F̂,ν

where a comma (,) represents a simple derivative and (;)
represents a covariant derivative.

3.1 The source

Let us now consider the case in which a current is
introduced, changing the dynamics into the form

1√−η

(√
−ηF µν

)

,ν
=Jµ (22)

This can be written in terms of the e-metric in the ap-
proximation we are considering as
(

1− F̂

2β2

)

√
−ê

[√
−ê

(

F̂ µν− 1

2β2
(F̂ F̂ µν+Ĝ∗F̂ µν)

)]

,ν

≈Jµ.

(23)
or, using the covariant derivative (;) it becomes

(

F̂ µν− 1

2β2
(F̂ F̂ µν+Ĝ∗F̂ µν)

)

;ν

≈Ĵµ, (24)

where

Ĵµ=(1+
F̂

2β2
)Jµ.

The conservation of the current can thus be expressed
either in the Minkowski background

Jµ
,µ=0
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or equivalently in the e-metric as

Ĵµ
;µ=0

using the covariant derivative of the e-metric.
Let us pause and consider what we have achieved. We

have shown that there are two equivalent formulations of
Maxwell electrodynamics, to wit:

1) Maxwell linear action in a given frozen metric, say,
Minkowski geometry ηµν ;

2) A non-linear action written in terms of an electro-
magnetic metric described in terms of the electromag-
netic tensor.

The description of electrodynamics in either one of
these approaches is just a matter of taste. This equiv-
alence is valid for any non-linear electrodynamics that
preserves gauge invariance. Besides, the background
does not need to be restricted to Minkowski space-time
but may be any metric gµν . Thus, not only can elec-
tromagnetic waves be described in terms of the effective
e-metric, but the dynamics of the electromagnetic field
itself can be described in the e-metric framework.

All this is straightforward. As mentioned earlier,
changing from the simplicity of Maxwell linear theory as
described in Minkowski geometry to a non-linear descrip-
tion can only be justified if some new insight is produced
by means of the introduction of the e-metric. This is
precisely what we will analyze in the rest of this paper.

We start such a proposal by suggesting that the e-
metric be treated as universal and that it not only de-
scribes the dynamics of the electromagnetic field but in-
fluences all kind of bodies, all kind of fields and parti-
cles. In this case, what about uncharged bodies? Should
they interact with the e-metric? Should this mean that
uncharged bodies can interact with the electromagnetic
field? This unexpected result becomes a true possibil-
ity due to the equivalence between the description of the
electromagnetic field in a fixed Minkowski geometry and
in the space-time controlled by the e-metric. It is in the
realm of the analysis of test particles that we will explore
such an idea here.

The world of elementary particles shows that there
are particles that do not interact directly with the elec-
tromagnetic field in the Standard Model. Another way
to state this fact is to say that these particles do not
have electric charge. This is an obvious statement in
the standard gauge framework. However, in the e-metric
formulation such an identification is no longer true. We
can consider, as a working hypothesis, that it may be
possible to generate a direct interaction of a neutral par-
ticle, say a neutrino, and the electromagnetic field (see
however for a different approach the interesting works
Refs. [8] [9]). The theory of gravity suggests a way to
realize this. Indeed, we have learned from general rela-
tivity that the existence of a non-flat metric changes the

properties of measuring distances and times in an univer-
sal way. Otherwise it is just a convenient tool to describe
certain particular properties, as is the case of Gordon’s
analysis of propagation of light in moving dielectrics or
in Unruh’s sound propagation [10].

Thus it seems worth investigating the consequences
of the hypothesis of universality of the e-metric, repre-
senting the modification it produces on all kind of matter
embedded in an electromagnetic field.

In this vein, charged particles acquire two channels of
interaction: the standard one (that needs a charge to es-
tablish the contact of the body with the electromagnetic
field) and another one mediated by a modification of
the geometry, a process that is made theoretically possi-
ble only after the introduction of the e-metric associated
with the electromagnetic field. Assuming universality of
the geometric structure implies that uncharged bodies
interact with the electromagnetic field only through the
e-metric channel.

Then an immediate question arises: how can this pro-
posal be reconciled with the observation that there exist
particles which are inert in an electromagnetic field? The
answer should be found by analysis of the intensity of the
field. Indeed, the effects of such a geometric formulation
are important only for very high values of the field, on
the verge of its maximum possible value, which we call
β.

All the new results in the present work rely upon the
existence of such an upper limit. If this value is taken
to be infinite, then the e-metric becomes identical to the
Minkowski background and we recover that uncharged
bodies do not interact with the electromagnetic field. In
this vein, the new properties concerning the possibility
of a new channel of interaction with the electromagnetic
field do not conflict with standard observations in ordi-
nary values for the electromagnetic field. Only for very
high fields do some new effects appear, depending upon
the smallness of the quantity 1/β that controls the inten-
sity of the e-metric. In other words, we have shown that
the presence of an equivalent metric associated with the
space-time can be used alternatively to describe the elec-
tromagnetic field. Having defined this electromagnetic
metric, two ways to couple fields to the electromagnetic
field appear:

1) The standard minimal coupling principle, which
changes the derivative ∂µ into the form ∂µ−ieAµ;

2) Minimal coupling with the e-metric, which changes
∂µ into a covariant derivative ∇µ defined in terms of the
connection of the metric.

The possibility of describing electrodynamics in
terms of a modification of the metric of space-time opens
a new scenario to investigate the interaction of particles
of any kind with the electromagnetic field. Let us explore
this possibility for a fermion.
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4 Influence of the electromagnetic field

on charged and uncharged fermions

In Minkowski space-time a free fermion is described
by Dirac’s equation:

iγµ∂µΨ−mΨ =0,

where we take ~=c=1. In the presence of an electromag-
netic field, the gauge principle states that the interaction
of a fermion endowed with charge e is provided by the
substitution

∂µ→∂µ−ieAµ.

This form of coupling requires the existence of a
charge e. Equivalently, only charged particles interact
with the electromagnetic field. However, the possibility
of treating the electromagnetic interaction in terms of
a modification of the metric opens another theoretical
treatment that is worth examining.

First of all we recognize that the existence of a di-
mensionless metric allows the possibility to couple any
particle to the electromagnetic field through the mini-
mal coupling principle in a similar way as is done in the
gravitational interaction in the framework of general rel-
ativity. The starting point concerns the definition of an
internal connection Γ̂µ, according to Fock and Ivanenko.
Thus the minimal coupling of an uncharged fermion to
an electromagnetic field takes the form

iγ̂µ∇̂µΨ−mΨ =0, (25)

where the internal covariant derivative is given by

∇̂µΨ =∂µΨ−Γ̂µΨ

through the Fock-Ivanenko coefficient defined by [14]

Γ̂µ=− 1

8

(

γ̂λ γ̂λ,µ−γ̂λ,µ γ̂λ−Γ̂ %
µα(γ̂α γ̂%−γ̂% γ̂α).

)

(26)

From the form of the metric,

êµν =ηµν− 1

β2
Φµν

where
Φµν =F µαFα

ν .

Note that the gamma matrices satisfy the relation

γ̂µ γ̂ν+γ̂ν γ̂µ=2êµν
I

where I is the identity of the Clifford algebra. We can
then write γ̂µ in terms of the constant matrices of the
Minkowski background γµ :

γ̂µ=P µ
αγα (27)

where

P µ
α=δµ

α−
1

β
F µ

α

and
γµγν+γνγµ=2ηµν

I

The inverse covariant expression γ̂µ = êµν γ̂ν is given
by

γ̂µ=Mµαγα

where

Mµα =Aηµα−
1

β

(

A− F

2β2U

)

Fµα+
G

4β3U
F ∗

µα+
1

β2U
Φµα,

and the quantity A was defined in the inverse expression
of the metric Eq. (13). Note that Mµα has no definite
symmetry. Using this in the expression for the spinor
connection, we obtain

−8Γ̂µ=P λ
α

(

Mλβ,µ−Γ̂ %

µλM%β

)

Σαβ , (28)

where Σαβ=γαγβ−γβγα. Now, we have

γ̂µ Γ̂µ=−1

8

(

γµ− 1

β
F µ

εγ
ε

)

YαβµΣαβ

where

Yαβµ=P λ
α

(

Mλβ,µ−Γ̂ %

µλM%β

)

.

Using the identity

γµΣ%ν =2ηµ%γν−2ηµνγ%+2iεµ%νσγ5γσ, (29)

we set the equation for the fermion in a more suitable
form.

We are interested in describing such a new form of
interaction in the standard Minkowski background. To
simplify our task we limit ourselves to O(1/β2). Let us
list the approximations of the relations that we need to
obtain the form of the covariant derivative and the de-
terminant of the e-metric. We have:

√
−ê≈

√
−η(1− F

2β2
)≈

√
−η(1− F̂

2β2
)

G≈Ĝ− F̂ Ĝ

2β2

A=
2+F/β2

2U
≈1

Mµν≈ηµν−
1

β
Fµν+

1

β2
Φµν

êµν≈ηµν+
1

β2
Φµν

γ̂µ≈γµ−
1

β
Fµ

αγα+
1

β2
Φµ

αγα

8Γ̂µ≈
(

1

β
Fαβ,µ−

1

β2
(FλαF λ

β,µ+Φαµ,β )

)

Σαβ .

From these expressions we obtain

Γ̂ %
µα(γ̂α γ̂%−γ̂% γ̂α)≈ 1

β2
Φαµ,βΣαβ .
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Then the equation of the uncharged fermion up to
O(1/β) written in the Minkowski representation takes
the form

iγµ∂µΨ+
i

β
F µν γµ∂νΨ+

i

2β
∂αFµ

αγµΨ−mΨ =0. (30)

Without any limit for the electromagnetic field, that is,
in the present framework, to take the limit β →∞, the
extra coupling terms disappear. This is the case of stan-
dard Maxwell theory: no limit for the energy of the field
and consequently no electromagnetic interaction for the
uncharged particle. At this point one should consider
the possible limits on the correction that the term in β
induces. A good reference for this is give in Refs. [8] and
[9].

5 Back-reaction: the influence of un-

charged fermions on the dynamics of

the electromagnetic field

In the previous section we described the influence of
the electromagnetic field on uncharged fermions. Let us
now consider the back-reaction that affects the dynamics
of the electromagnetic field. To simplify our presentation
(and due to the fact that the value of β is very high) we
will limit our analysis to first order O(1/β.)

We set the total action S =SEM+SΨ . Assuming the
minimal coupling of the fermion with the e-metric pro-
vides the following action for the fermion:

SΨ =

∫ √
−ê

(

i

2
Ψ̄ γ̂µ∇̂µΨ− i

2
∇̂µΨ̄ γ̂µΨ−mΨ̄Ψ

)

. (31)

The hypothesis that matter of any kind (charged or
not) interacts with the electromagnetic metric changes
the dynamics of the field. Let us re-write this dynam-
ics as it appears in the Minkowski representation. We
obtain in O(1/β)

SΨ≈SD+Sint (32)

where

SD=

∫ √
−η

(

i

2
Ψ̄ γµ∂µΨ− i

2
∂µΨ̄ γµΨ−mΨ̄Ψ

)

Sint≈− i

2β

∫ √
−ηF µν Zµν

and we have defined

Zµν =Ψ̄ γν ∂µΨ−∂µΨ̄ γν Ψ.

We note that iZµν is hermitian. The net effect of or-
der O(1/β) of the uncharged fermion is to generate an
interaction provided by1)

Lem≈ i

2β
F µν Zµν .

Thus the corresponding dynamics of the electromagnetic
field acquires the form

F µν
,ν =Jµ+

i

β
Z [µν]

,ν .

The term dependent on the current Jµ exists only for
charged bodies, although the very small extra term is
universal.

6 Final comments

The description of Maxwell electrodynamics in terms
of a special modification of the metric of space-time
opens a new possibility to describe the interaction of par-
ticles with the electromagnetic field besides the standard
gauge form ∂µ−ieAµ, a procedure that can be used only
for charged particles (see also Ref. [16]).

In this paper we suggest that the electromagnetic
metric could be used as a new channel of interaction for
all particles with the electromagnetic field. This univer-
sality, which seems weird at first glance, could be recon-
ciled with observations once the new effects appear only
for extremely high values of the electromagnetic field.
The formal existence of a regular electromagnetic met-
ric requires the existence of an upper bound of the field,

1) A final remark concerning the quantity
Zµν≡Ψ̄ γν ∂µΨ−∂µΨ̄γνΨ.

The interaction of the spinor field with the two classical fields, gravity and electromagnetism, can be described using this second order
tensor Zµν . Gravity interacts with the symmetric part of Zµν and the electromagnetic field interacts with its antisymmetric part. Indeed,
for gravity one sets the coupling of the gravitational field given by

gµν =ηµν+hµν

with the symmetric energy-momentum tensor Tµν =Zµν+Zνµ+ hermitian conjugate (hc) under the form

Lint≈ihµν Zµν .

For the case of the electromagnetic interaction in the realm of the e-metric representation a similar structure occurs once the interaction
of the fermion with the electromagnetic field takes the form

Lem≈iF µν Zµν .
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which we named β. The present model is not able to pro-
vide a theoretical value for β1). However, the analysis
described in Ref. [9] concerning electromagnetic effects
on neutrinos can help in searching for this limit.

Finally, if there is no upper limit for the electro-
magnetic field, setting β to ∞, this corresponds to the
standard formulation of electrodynamics. As there are
abundant neutrinos in the universe, it should be inter-

esting to analyze our present geometrical proposal in
some astrophysical and cosmological situations, which
could help fix limits for β, see for instance Ref. [1]. This
is under investigation.

We would like to thank Ugo Moschella for a critical

reading of a previous version of this paper.

Appendix A

Charged bodies in an electromagnetic field

Let us consider now the modifications of the electromag-
netic force on a test particle endowed with velocity vµ due to
the presence of the associated e-metric.

We set
v̂µ=vµ.

The contra-variant form is given by

v̂µ=êµν v̂ν =(1−
E2

β2
)vµ

−

2

β2
qµ

where qµ = 1
2
ηµναβ Eν vαHβ is the heat flux (Poynting vec-

tor). Remember that for any non-hat tensorial quantity all
properties concerning the relationship between covariant and
contra-variant indices are performed by the Minkowski metric
ηµν .

In the standard formulation of Maxwell’s theory in
Minkowski space-time, an uncharged particle does not in-
teract with the electromagnetic field. The gauge principle
that guides such an interaction needs a dimensional quan-
tity, the charge, to implement this interaction. Thus, there
is no room for coupling an uncharged particle directly to the
electromagnetic field. However, from the knowledge of the
e-metric a new possibility appears. In order to analyze the
motion of the particle in the e-metric, we proceed from first
principles and use a formal expression directly to analyze the
acceleration suffered by a charged or an uncharged particle.
We appeal to the intimate relationship between the field and
the metric. The acceleration is given by

âµ=v̂µ;ν v̂ν =
(

v̂µ,ν−Γ̂ α
µν v̂α

)

v̂ν . (A1)

We can then proceed and develop the connection to ob-

tain

Γ̂ α
µν v̂α v̂ν =

1

2
êλν,µ v̂λ v̂ν

Let us deal with the simplest case where we can set qµ=0
and

vµ,ν =aµvν .

Using the inverse metric êµν we have

êλν,µ v̂λ v̂ν =(1−
E2

β2
)2
(

X,µ−2γλν aλvν vµ

)

(A2)

where

X≡

1

U

(

1+
H2

β2

)

.

Then the acceleration in the e-metric is given by:

âµ=(1−
E2

β2
)aµ−

1

2
(1−

E2

β2
)2X,µ. (A3)

where aµ=qFµν vν is the acceleration in the limit β→∞ and
q is the charge.

Then we can re-write the acceleration up to order O(1/β2)
as

âµ=
q

m
F̂µν v̂ν

−

1

2β2
(E2),µ (A4)

where we are using c = 1. This is the form of action of the
electromagnetic field on a test particle. Note that correction
of the Lorentz force appears only if the field is high enough,
that is, if we cannot neglect terms of order E2/β2. For un-
charged bodies only the second term of Eq. (A4) survives. If
there is no limit for the values of the field and we can take
β→∞, this formula reduces to the Lorentz force.

1) Besides the values described in Ref. [1], there are other forms of analysis as for instance in Ref. [15], which analyzes the critical
field Ecr=2m2c3/e~.

013102-8



Chinese Physics C Vol. 42, No. 1 (2018) 013102

References

1 A. E. Shabad and V. V. Usov: Positronium Collapse and the
maximum magnetic field in pure QED in Physical Review Let-
ters, 96: 180401 (2006)

2 M. Born and L. Infeld Proc. Roy. Soc. A, 144: 425 (1934)
3 A. Einstein in The meaning of Relativity, 2nd Edition (Prince-

ton University Press, 1950)
4 M Novello and S E P Bergliaffa: Bouncing Cosmologies in

Physics Reports, 463: 4 (2008)
5 W. Gordon, Ann. Phys. (Leipzig), 72: 421 (1923)
6 J. Plebansky in Lectures on nonlinear electrodynamics, Ed.

Nordita, (Copenhagen, 1968)
7 M. Novello, V. A. DeLorenci, J. M. Klippert, and J. M. Salim

in Geometrical aspects of light propagation in nonlinear Elec-
trodynamics: Phys. Rev. D, 61: 045001 (2000)

8 Maxim Dvornikov and Alexander Studenikin, Phys. Rev. D,
69: 073001 (2004); arXiv hep-ph/ 0305206v6

9 Carlo Giunti and Alexander Studenikin, Rev. Mod. Phys., 87:
531 (2015); arXiv hep-ph/ 1403.6344 v3

10 Artificial Black Holes, Ed. M Novello, M.Visser and G. Volovik
(Eds) World Scientific (2002)

11 Yvonne Choquet-Bruhat, Cecile De Witt-Morette and Mar-
garet Dillard-Bleick in Analysis, manifolds and physics. North-
Holland Ed. (1977)

12 Exercicios de Cosmologia in www. marionovello.com.br
13 M. Novello and E. Bittencourt in Metric Relativity and the dy-

namical bridge: highlights of Riemannian geometry in physics:
Brazilian Journal of Physics, 45(6): 756–805 (2015)

14 D. R. Brill and J. A. Wheeler: Interaction of neutrinos and
gravitational fields in Reviews of Modern Physics, 29(3): 465
(1957)

15 J. Schwinger: On gauge invariance and vacuum polarization in
Phys. Rev. D, 82: 664 (1951)

16 M. Novello and E. Bittencourt: A proposal for the origin of
the anomalous magnetic moment in International Journal of
Modern Physics A, 29: 13 (2014)

17 M. Novello: Weak and electromagnetic forces as a consequence
of the self-interaction of the γ field in Phys. Rev. D, 8: 2398
(1973)

013102-9


