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Abstract: The Bethe-Salpeter equation is solved in the framework of the unitary coupled-channel approximation
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is deduced in a dimensional regularization scheme, where the relativistic kinetic effect and off-shell corrections are

taken into account. Based on the experimental data at the K−p threshold, the subtraction constants in the loop
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1 Introduction

There are some different views about the structure of
Λ(1405), and its structure has been challenging the stan-
dard view of baryons made of three quarks for decades.
Some theorists think that the Λ(1405) could be a kind
of molecular state arising from the interaction of the πΣ
and K̄N channels [1–3]. Furthermore, the number of
poles in the complex energy plane is also a puzzle for
the Λ(1405) resonance. Some people predict that one
pole corresponds to the Λ(1405) resonance [1, 4, 5], while
the calculation results in the unitary coupled-channel ap-
proximation show there are two poles in the 1400 MeV
region [6–10]. Two Λ(1405) states were claimed for the
first time in Ref. [6], explained as combinations of a single
state and a octet state when the SU(3) symmetry breaks
up [7]. It is reported that only one resonance state is ob-
served around 1400 MeV [11–14]. However, in a modern
K+Σπ photoproduction experiment by the CLAS Col-
laboration, some signature effects for a two-pole picture
of the isospin I=0 Λ(1405) have been found [15].

In the past few years, the energy shift and width of
the 1s state of kaonic hydrogen have been measured pre-
cisely at the SIDDHARTA experiment at DAΦNE [16],
providing a constraint on the determination of parame-
ters in the unitary coupled-channel approximation. The
new experimental data have stimulated theoretical stud-
ies of the kaon-nucleon interaction and the properties of
the Λ(1405) particle [17–20], where the Bethe-Salpeter
equation is solved in the unitary coupled-channel ap-
proximation, and the two-pole picture of the Λ(1405)

particle is stressed. A direct comparison of the most re-
cent approaches is made in Ref. [21]. However, a loop
function of the meson and the baryon in the on-shell
factorization is used when the Bethe-Salpeter equation
is solved, and some important elements might be elimi-
nated in this approximation, which would result in the
uncertainty of the calculation. In this article, we cal-
culate the loop function in a dimensional regularization
scheme, and then solve the Bethe-Salpeter equation in
the unitary coupled-channel approximation.

This manuscript is organized as follows. In Section 2,
the framework of the unitary coupled-channel approxi-
mation is discussed. In particular, the loop function of
the pseudoscalar meson and the baryon octet is obtained
in the dimensional regularization. In Section 3, the pa-
rameters in the unitary coupled-channel approximation
are determined according to the experimental data at
the K−p threshold. In Sections 4 and 5, the cases with
isospin I=0 and I=1 are calculated, respectively. Some
discussion and a conclusion are given in Section 6.

2 Framework

The lowest order meson-baryon chiral Lagrangian is
given as [22–24]

L=〈B̄iγµ 1

4f 2
[(Φ∂µΦ−∂µΦΦ)B−B(Φ∂µΦ−∂µΦΦ)]〉, (1)

where the symbol 〈···〉 denotes the trace of a matrix in
SU(3) space. The matrices of the pseudoscalar meson
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and the baryon octet are given as follows:
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. (3)

Ten coupled channels are considered in the case of
pseudoscalar meson-baryon octet scattering processes in
the low energy region. These are: K−p, K̄0n, π

0Λ, π
0Σ0,

π
+Σ−, π

−Σ+, ηΛ, ηΣ0, K+Ξ− and K0Ξ0 [7].
The potential of the baryon octet and the pseu-

doscalar meson can be obtained from the lowest order
meson-baryon chiral Lagrangian in Eq. (1), and can be
written as

Vij =−Cij

1

4f 2
Ū(p2)γµU(p1)(k

µ
1 +kµ

2 ), (4)

where p1, p2 (k1, k2) are the initial and final momenta
of the baryons (mesons), respectively. In the case of low

energies, the three-momenta of the baryons and mesons
can be neglected, and thus only the γ0 component is rel-
evant, i.e.,

Ū(p2)γµU(p1)≈
(

Mi+E

2Mi

) 1

2

(

Mj+E′

2Mj

) 1

2

, (5)

where Mi and Mj denote the initial and final baryon
masses, respectively, while E and E ′ stand for the initial
and final baryon energies in the center of mass frame,
respectively. The spin orientation of the initial baryon is
the same as that of the final baryon. Moreover,

k0

1+k0

2≈2
√

s−Mi−Mj, (6)

with
√

s the total energy of the system in the center of
mass frame.

Therefore, if and only if the external particles are all
on-shell, the potential in Eq. (4) takes a simple form as
follows [7]:

Vij =−Cij

1

4f 2
(2
√

s−Mi−Mj)

(

Mi+E

2Mi

) 1

2

(

Mj+E′

2Mj

) 1

2

,

(7)

where the coefficient Cij is shown in Table B1, and the
decay constant f =1.123fπ [9] with the pion decay con-
stant fπ=92.4 MeV.

The scattering amplitude can be constructed by solv-
ing the Bethe-Salpeter equation

T (p1,k2;p2,k2) = V (p1,k2;p2,k2)+i

∫

d4q

(2π)4
V (p1,k1;q,p1+k1−q)S(q)∆(p1+k1−q)T (q,p1+k1−q;p2,k2)

= V (p1,k2;p2,k2)+i

∫

d4q

(2π)4
V (p1,k1;q,p1+k1−q)S(q)∆(p1+k1−q)V (q,p1+k1−q;p2,k2)+··· , (8)

where the propagators of the intermediate baryon and
meson can be written as iS(q) = i/(/q +Ml + iε) and
i∆(p1+k1−q)=i/[(p1+k1−q)2−m2

l+iε], respectively [25]. If
the potential V (p1,k1;q,p1+k1−q) in Eq. (8) is divided into
an on-shell part and an off-shell part, the off-shell part of
the potential V (p1,k1;q,p1+k1−q) should be proportional
to the on-shell part, and can be absorbed into the on-
shell part of the potential if a suitable renormalization
of coupling constants is performed. Therefore, only the
on-shell part of the potential of the baryon and the meson
needs to be taken into account when the Bethe-Salpeter
equation is solved. Thus the Bethe-Salpeter equation in
Eq. (8) is simplified as

T =V +V GT, (9)

or

T =[1−V G]−1V, (10)

where the loop function of a baryon and a meson G is
a diagonal matrix, i.e., Gln = Glδln, and the diagonal

element Gl can be written as

Gl=i

∫

d4q

(2π)4
/q+Ml

q2−M 2
l +iε

1

(P−q)2−m2
l +iε

, (11)

with P =p1+k1 the total momentum of the system, ml

the meson mass, and Ml the baryon mass, respectively.
More detailed discussion on how to transform the Bethe-
Salpeter equation from an integral form to an algebra
form can be found in Refs. [25, 26].

In Ref. [26], the loop function G in Eq. (11) is
calculated numerically by setting the maximum three-
momentum qmax, which is called the momenum cut-off
method. However, in Ref. [6], a dimensional regulariza-
tion form of the loop function G is deduced with the
on-shell approximation

/q+Ml=2Ml, (12)

which is valid only when it is applied to the Dirac spinor
U(q).

In the on-shell factorization approximation, the loop
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function is denoted as

G′

l(s) = i

∫

ddq

(2π)4
2Ml

q2−M 2
l +iε

1

(P−q)2−m2
l +iε

=
2Ml

16π
2
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+
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√
s)

−ln(−s−(M 2
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√
s)

]

}

, (13)

with µ=630 MeV the scale of dimensional regularization
and the symbol al the subtraction constant.

In Eq. (13), q̄l denotes the three-momentum of the
meson or the baryon in the center of mass frame and is
given by

q̄l=
λ1/2(s,m2

l ,M
2
l )

2
√

s
=

√

s−(Ml+ml)2
√

s−(Ml−ml)2

2
√

s
,

(14)
with λ the triangular function.

Actually, the loop function in Eq. (11) can be calcu-
lated in the dimensional regularization without the on-
shell approximation taken into account. Thus the loop
function takes the form of

Gl=
γµP µ

32P 2
π

2

[

(al+1)(m2

l−M 2

l )+(m2

l ln
m2

l

µ2
−M 2

l ln
M 2

l

µ2
)

]

+

(

γµP µ[P 2+M 2

l −m2

l ]

4P 2Ml

+
1

2

)

G′

l.

(15)

Since the total three-momentum ~P = 0 in the center of
mass frame, only the γ0P

0 parts remain in Eq. (15). The
external particles in the potential of the baryon and the
meson in Eq. (7) are all on-shell, so the anti-particle is
not included in the intermediate states when the Bethe-
Salpeter equation is solved. Thus γ0P

0 can be treated
as the total energy of the system P 0 =

√
s in Eq. (15).

Therefore, the loop function in Eq. (15) is simplified as

Gl=

√
s

32π
2s

[

(al+1)(m2

l−M 2

l )+(m2

l ln
m2

l

µ2
−M 2

l ln
M 2

l

µ2
)

]

+

(

s+M 2

l −m2

l

4Ml

√
s

+
1

2

)

G′

l .

(16)
Apparently, some off-shell corrections have been included
in the revised form of the loop function in Eq. (16), which
can be regarded as a kind of relativistic kinetic effect of
the loop function.

Assuming the amplitudes near the pole to behave as

Tij =
gigj

z−zR

, (17)

with zR the position of the pole on the complex
√

s plane,
and j and i being the initial and final channels, respec-
tively, we can obtain the size of the coupling constants gi

by evaluating the residues of the diagonal elements Tii.
When the strongest coupled channel is determined, the
coupling constants to the other channels, gj , can be eval-
uated with the residues of the non-diagonal elements Tij

and the largest coupling constant gi by using Eq. (17).

3 Experimental data and parameter fits

The energy shift and the width of the 1s state of
kaonic hydrogen measured by the SIDDHARTA Collab-
oration are given as

∆E=283±36±6 eV, (18)

and
Γ =541±89±22 eV, (19)

respectively [16]. These results will constrain the param-
eter fit when the Bethe-Salpeter equation is solved.

In order to fit the experimental data at the K−p
threshold with the same formula as in Ref. [17], the po-
tential of the baryon octet and the pseudoscalar meson
in Eq. (7) has to be multiplied by a factor of

√

MiMj ,
where Mi and Mj denote the masses of the initial and
final baryons, respectively, i.e.,

Ṽij =Vij

√

MiMj . (20)

In the meantime, the loop function in Eq. (16) is divided
by the mass of the intermediate baryon Ml, i.e.,

G̃l=Gl/Ml. (21)

Since the pole appears when the determinant |1−V G|=0,
the modification in Eqs. (20) and (21) will not signifi-
cantly affect the pole position on the complex

√
s plane.

The forward scattering amplitude fij is related to the
T-matrix,

fij(
√

s)=
1

8π

√
s
T̃ij(

√
s), (22)

with T̃ =[1−Ṽ G̃]−1Ṽ , and the K−p scattering length can
be defined by the K−p elastic scattering amplitude at
threshold,

a(K−p)=f11(
√

s=MK−+mp), (23)

which is a complex number when the inelastic channels
are taken into account.

The energy shift and width of the 1s state of kaonic
hydrogen are related to the K−p scattering length, which
can be written as [27]

∆E−i
1

2
Γ =−2α3µ2

γa(K−p)[1+2αµγ(1−lnα)a(K−p)],

(24)

with α the fine structure constant and µγ =
m

K−
Mp

m
K−

+Mp
the

K−p reduced mass.
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Moreover, the branching ratios at the K−p threshold
are defined as

γ=
Γ (K−p→π

+Σ−)

Γ (K−p→π
−Σ+)

=
σ51

σ61

, (25)

Rn=
Γ (K−p→π

0Λ)

Γ (K−p→neutral states)
=

σ31

σ31+σ41

, (26)

and

Rc=
Γ (K−p→π

+Σ−,π−Σ+)

Γ (K−p→all inelastic channels)
=

σ51+σ61

σ51+σ61+σ31+σ41

,

(27)
respectively. All partial cross sections σij are calculated
at the K−p threshold.

σij =
q̄i

q̄j

∣

∣

∣T̃ij

∣

∣

∣

2

16πs
, (28)

where q̄j and q̄i are the three-momentum of the initial
and final states in the center of mass frame, respectively.

The values of three branching ratios are taken from
Ref. [28, 29], i.e.,

γ=2.36±0.04, Rn=0.189±0.015, Rc=0.664±0.011, (29)

The subtraction constants al in Eq. (16) for different
channels can be determined according to experimental
data at the K−p threshold, which are labeled Off-shell

in Table I. Moreover, the corresponding subtraction con-
stants in the original on-shell factorization approxima-
tion in Eq. (13) are also listed in Table 1, labeled On-
shell [9].

Table 1. The subtraction constants used in the cal-
culation with µ=630 MeV. The label Off-shell de-
notes the values for the loop function in Eq. (16),
where some off-shell corrections are taken into ac-
count, while the label On-shell stands for those
original values in the on-shell factorization ap-
proximation in Eq. (13) [9].

al K̄N πΛ πΣ ηΛ ηΣ KΞ

On-shell −1.84 −1.83 −2.0 −2.25 −2.38 −2.67

Off-shell −1.1 −1.6 −1.9 −2.7 −2.6 −2.8

The corresponding values of the energy shift ∆E and
width Γ of the 1s state of kaonic hydrogen, and the
branching ratios Rn and Rc defined in Eqs. (26) and (27)
reproduced with the loop function in Eq. (16), are listed
in Table 2. The subtraction constants labeled with Off-
shell are used. These values are also calculated with the
On-shell subtraction constants in the on-shell factoriza-
tion approximation. The results show that the Off-shell
subtraction constants fitted with the experiment data at
the K−p threshold are reasonable.

Table 2. The energy shift ∆E and width Γ of the 1s state of kaonic hydrogen, and the branching ratios Rn and
Rc defined in Eqs. (26) and (27), calculated with different subtraction constant sets. The meanings of the labels
On-shell and Off-shell are the same as in Table 1.

∆E/eV Γ/eV Rn Rc

Experimental data 283±36±6 541±89±22 0.189±0.015 0.664±0.011

On-shell −180.11 444.14 0.28 0.61

Off-shell 283.13 541.06 0.3 0.61

Since the meson-baryon amplitude Tij is calculated
in the isospin sectors, the subtraction constant aKN is
supposed to take the same value both in the K−p chan-
nel and in the K̄0n channel. Thus the branching ratio γ
is always one in our calculation.

4 The isospin I=0 sector

We shall discuss the scattering amplitude in the
isospin states, and thus we must use the average mass
for the π(π+,π0,π−), K(K+,K0), K̄(K̄0,K−), N(p,n),
Σ(Σ+,Σ0,Σ−) and Ξ(Ξ0,Ξ−) particles. There are four
coupled states with isospin I=0 and strangeness S=−1,
which are K̄N , πΣ, ηΛ and KΞ.

The phase conventions |π+〉=−|1,1〉, |K−〉=−| 1
2
,− 1

2
〉,

|Σ+〉=−|1,1〉 and |Ξ−〉=−| 1
2
,− 1

2
〉 are used for the isospin

states, which are consistent with the structure of the Φ
and B matrices. The isospin state with I =0 can then

be written as

|K̄N,I=0〉= 1√
2
(K̄0n+K−p),

|πΣ,I=0〉=− 1√
3
(π+Σ−+π

0Σ0+π
−Σ+),

|KΞ,I=0〉=− 1√
2
(K0Ξ0+K+Ξ−).

(30)

The corresponding coefficients Cij for the isospin
states with I = 0 are listed in Table B2. With these
coefficients, the amplitudes T with isospin I = 0 can
be obtained by solving the Bethe-Salpeter equation in
Eq. (10).

The squared amplitude |T |2 in the πΣ channel with
isospin I = 0 on the complex

√
s plane is shown in

Fig. 1. Some poles are generated dynamically when the
Bethe-Salpeter equation is solved in the unitary coupled-
channel approximation. In Fig. 1, the poles generated
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Fig. 1. Comparison of poles in the strangeness S=−1 and isospin I =0 sector. NEW denotes the case calculated
from the loop function in Eq. (16), while PRE stands for the case of the loop function in the on-shell factorization
approximation in Eq. (13).

dynamically with the loop function in Eq. (16) are la-
beled with NEW, while the label PRE denotes the poles
generated with the loop function in the on-shell factor-
ization in Eq. (13).

Table 3. Coupling constants to meson-baryon
states in the isospin I=0 sector. The label NEW
denotes the case calculated from the loop func-
tion in Eq. (16), while the label PRE stands for
the case of the loop function in the on-shell fac-
torization approximation in Eq. (13).

PRE NEW

zR 1390+66i 1383+81i

(I=0) gi |gi| gi |gi|
πΣ −2.5−1.5i 2.9 −2.1−1.5i 2.5

K̄N 1.2+1.7i 2.1 0.8+0.8i 1.1

ηΛ 0.0+0.8i 0.8 −0.1+0.2i 0.24

KΞ −0.5−0.4i 0.6 −0.4−0.5i 0.6

PRE NEW

zR 1426+16i −
(I=0) gi |gi| gi |gi|

πΣ 0.4−1.4i 1.5 − −
K̄N −2.5+0.9i 2.7 − −
ηΛ −1.4+0.2i 1.4 − −
KΞ 0.1−0.3i 0.4 − −

PRE NEW

zR 1680+20i 1653+12i

(I=0) gi |gi|2 gi |gi|2
πΣ −0.0−0.3i 0.3 −0.1−0.3i 0.3

K̄N 0.3+0.7i 0.8 −0.0+0.7i 0.7

ηΛ −1.1−0.1i 1.1 −1.1+0.2i 1.1

KΞ 3.4+0.1i 3.5 3.0−0.1i 3.0

In the energy region near 1400 MeV, only one pole
is generated dynamically in the isospin I =0 sector, lo-
cated at 1383+81i MeV on the complex

√
s plane. This

pole is higher than the πΣ threshold and lies in the sec-
ond Riemann sheet, and thus it can be regarded as a
counterpart of the Λ(1405) particle in the Particle Data
Group (PDG) data [30]. Actually, another peak is gen-
erated dynamically, at 1435+2i MeV on the complex

√
s

plane. However, it is too low to be detected in Fig. 1. Ap-
parently, when the off-shell correction of the loop func-
tion in the Bethe-Salpeter equation is taken into account,
the peak near the K̄N threshold is suppressed strongly,
and only one pole is detected in the region of 1400 MeV.
The resonance at 1383+81i MeV couples strongly to the
πΣ channel. In the K̄N , ηΛ and KΞ channels, the cases
are similar to that in the πΣ channel, and only one pole
can be found clearly. Furthermore, there is another pole
at 1653+12i MeV generated dynamically on the com-
plex

√
s plane, lower than the ηΛ threshold, and lying

in the third Riemann sheet. The pole at the position
of

√
S =1653+12i MeV can be regarded as a candidate

for the Λ(1670)1/2− resonance, which couples strongly
to the KΞ channel.

Their coupling constants to different meson-baryon
states are listed in Table 3, where the label New denotes
the results with the loop function in Eq. (16), while the
label PRE means the results calculated with the loop
function in the on-shell factorization, as in Eq. (13).

5 The isospin I=1 sector

In the isospin I=1 sector, we have five coupled states,
K̄N , πΣ, πΛ, ηΣ and KΞ.

The isospin state with I=1 can be written as

|K̄N,I=1〉= 1√
2
(K̄0n−K−p),

|πΣ,I=1〉= 1√
2
(π−Σ+−π

+Σ−),

|KΞ,I=1〉= 1√
2
(K0Ξ0−K+Ξ−).

(31)

The coefficients Cij for the isospin states with I =1
can be constructed by using Eq. (31) and Table B1, and
are given in Table B3.

There is only one peak of squared amplitudes |T |2
detected at 1570+i244 MeV on the complex

√
s plane. It
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is lower than the ηΣ threshold and lies in the fourth Rie-
mann sheet. The resonance at 1570+i244 MeV is similar
to the Σ(1580)3/2− state in the PDG data. Neverthe-
less, in the S-wave approximation, the total angular mo-
mentum of the resonance at 1570+i244 MeV is J =1/2,
and its parity is negative. Furthermore, its decay width
is too large, so it apparently cannot be Σ(1580)3/2−.
The resonance at 1570+i244 MeV is more possible to
correspond to the Σ(1620)1/2− state in the PDG data,
although its mass is lower about 50 MeV than the lat-
ter. From Table 4, we know that this resonance couples
strongly to the KΞ channel.

Table 4. Same as Table 3 but for the isospin I=1 sector.

PRE NEW

zR 1579+264i 1570+244i

(I=1) gi |gi|2 gi |gi|2
πΛ 1.4+1.5i 2.0 1.3+1.4i 1.9

πΣ −2.2−1.5i 2.7 −2.2−1.2i 2.5

K̄N −1.1−1.1i 1.6 −1.0−1.2i 1.6

ηΣ 1.2+1.4i 1.9 1.1+1.3i 1.7

KΞ −2.5−2.4i 3.5 −2.4−2.1i 3.2
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Fig. 2. Same as Fig. 1 but for the strangeness
S=−1 and isospin I=1 sector.

The squared amplitude |T |2 in the πΣ channel with
strangeness S=−1 and isospin I=1 as a function of the
total energy

√
s in the center of mass frame is depicted

in Fig. 2, where the label PRE denotes the results calcu-
lated with the loop function in the on-shell factorization,
and the label NEW means those of the loop function in
Eq. (16). The pole positions are different in these two
schemes.

6 Discussion and conclusion

In this article, the formula of the loop function in the
Bethe-Salpeter equation is deduced in the dimensional
regularization scheme. Compared with the loop function
in the on-shell factorization approximation, the relativis-
tic kinetic effect and off-shell corrections are taken into
account in the revised scheme.

The interaction between the pseudoscalar meson and
the baryon is studied in the strangeness S = −1 sec-
tor. According to the experimental data at the K−p
threshold, the subtraction constants of the loop func-
tion in the Bethe-Salpeter equation are determined, and
some resonances are generated dynamically in the uni-
tary coupled-channel approximation. When the off-shell
correction of the loop function is taken into account,
the squared amplitude is suppressed strongly, and only
one resonance peak is detected in the 1400 MeV region,
which is above the πΣ threshold and is assumed to be
associated with the Λ(1405) particle. Moreover, the cou-
pling constants of the resonance to meson-baryon states
are similar to the corresponding states in Ref. [7], and
the resonance in the 1400 MeV region couples strongly
with the πΣ channel.

We would like to thank Han-Qing Zheng, Eulogio

Oset and En Wang for useful discussions.

Appendix A

A loop function in the dimensional regularization scheme

In the dimensional regularization scheme, the loop function in the Bethe-Salpeter equation can be deduced according to
the Passarino-Veltman procedure [31],

Gl(s)=i

∫

d4q

(2π)4
/q+Ml

q2−M2
l +iε

1

(P−q)2−m2
l +iε

=−/PA(s)+
1

2
G

′(s), (A1)

where

G
′(s) = i

∫

d4q

(2π)4
2Ml

q2−M2
l +iε

1

(P−q)2−m2
l +iε

=
2Ml

16π
2

{

al+ln
M2

l

µ2
+

m2
l −M2

l +s

2s
ln

m2
l

M2
l

+
q̄l
√

s

[

ln(s−(M2
l −m

2
l )+2q̄l

√

s)+ln(s+(M2
l −m

2
l )+2q̄l

√

s)

−ln(−s+(M2
l −m

2
l )+2q̄l

√

s)−ln(−s−(M2
l −m

2
l )+2q̄l

√

s)
]

}

, (A2)

074108-6



Chinese Physics C Vol. 41, No. 7 (2017) 074108

and

P
µ
A(s) = −i

∫

d4q

(2π)4
qµ

q2−M2
l +iε

1

(P−q)2−m2
l +iε

.

Since −2P ·q = [(P−q)2−m2
l ]−[q2

−M2
l ]+m2

l −M2
l −P 2,

−2P
2
A(s) = −i

∫

d4q

(2π)4
−2P ·q

q2−M2
l +iε

1

(P−q)2−m2
l +iε

= −i

∫

d4q

(2π)4
[(P−q)2−m2

l ]−[q2
−M2

l ]+m2
l −M2

l −P 2

[q2−M2
l +iε][(P−q)2−m2

l +iε]

= −i

∫

d4q

(2π)4
1

q2−M2
l +iε

−i

∫

d4q

(2π)4
−1

(P−q)2−m2
l +iε

−i

∫

d4q

(2π)4
m2

l −M2
l −P 2

[q2−M2
l +iε][(P−q)2−m2

l +iε]

= −
M2

l

16π
2

(

1+al+ln(
M2

l

µ
)

)

+
m2

l

16π
2

(

1+al+ln(
m2

l

µ
)

)

−
(P 2+M2

l −m2
l )

2Ml
(−G

′(s)).

Thus the formula of A(s) can be written as

A(s)=
1

−2P 2

{

−
M2

l

16π
2

(

1+al+ln(
M2

l

µ
)

)

+
m2

l

16π
2

(

1+al+ln(
m2

l

µ
)

)

−
(P 2+M2

l −m2
l )

2Ml
(−G

′(s))

}

, (A3)

with P 2=s.
By replacing the G′(s) and A(s) in Eq. (A1) with Eqs. (A2) and (A3), respectively, the formula of the loop function in

Eq. (15) is obtained.

Appendix B

The coefficients Cij in the pseudoscalar meson-baryon octet interaction in the S=−1 channel

Table B1. The coefficients Cij in the pseudoscalar meson-baryon octet interaction in the S=−1 channel, Cij =Cji.

K−p K̄0n π
0Λ π

0Σ0 ηΛ ηΣ0
π
+Σ−

π
−Σ+ K+Ξ− K0Ξ0

K−p 2 1

√
3

2

1

2

3

2

√
3

2
0 1 0 0

K̄0n 2 −
√

3

2

1

2

3

2
−
√

3

2
1 0 0 0

π
0Λ 0 0 0 0 0 0

√
3

2
−
√

3

2

π
0Σ0 0 0 0 2 2

1

2

1

2

ηΛ 0 0 0 0
3

2

3

2

ηΣ0 0 0 0

√
3

2
−
√

3

2

π
+Σ− 2 0 1 0

π
−Σ+ 2 0 1

K+Ξ− 2 1

K0Ξ0 2
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Table B2. The coefficients Cij for the isospin states with I=0, Cij =Cji.

K̄N πΣ ηΛ KΞ

K̄N 3 −
√

3

2

3√
2

0

πΣ 4 0

√

3

2

ηΛ 0 − 3√
2

KΞ 3

Table B3. The coefficients Cij for the isospin states with I=1, Cij =Cji.

K̄N πΣ πΛ ηΣ KΞ

K̄N 1 −1 −
√

3

2
−

√

3

2
0

πΣ 2 0 0 1

πΛ 0 0 −
√

3

2

ηΣ 0 −
√

3

2

KΞ 1
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