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Abstract: The nuclear structure of the actinide even–even thorium isotopes from A=230-234 have been investigated

within the framework of the Interacting Boson Model (IBM-1). Predictions are given for the excited state energies

for the ground state, β and γ-bands, the transition probabilities between these states, the rotational moment of

inertia, and the energy staggering in the γ-band energies. The results of these calculations are compared with the

experimental data on these isotopes.
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1 Introduction

The atomic nucleus is a many-body, strongly formed
interaction quantal system. The coherence of many
possible basis wave functions between different single-
particle configurations can lead to collective properties in
many nuclei, which exhibit themselves in a range of de-
formed shapes for the nuclear mean field [1]. A strongly
prolate or oblate deformed nucleus can rotate and ex-
hibit the characteristic I(I+1) rotational band structure
in its intrinsic energy spacing, sometimes with remark-
able regularity [1–4].

The properties of excited nuclear states, such as exci-
tation energy, spin and parity, and electromagnetic tran-
sitions probabilities, are determined by the intrinsic, un-
derlying shape or deformation of the nuclear mean field
and its (proton) charge distribution [5]. It is particularly
important to analyse the structure of heavy actinide nu-
clei where the quadrupole deformation is well established
and noted [6–10].

The Interacting Boson Model (IBM-1) [4, 11] has
been found to be successful in phenomenological stud-
ies when describing the low-lying levels and quadrupole
collective states of medium and heavy nuclei. The mi-
croscopic foundation of the IBM has been studied exten-
sively in order to derive an IBM Hamiltonian starting
from the underlying nucleon degrees of freedom [12–15].

It is known that IBM expects very strong odd-even
energy staggering (OES) in U(5) and O(6) limits, while
in the exact SU(3) limit there is no staggering in the
gamma band energies. Very small staggering can be in-
duced by band mixing with the ground and the excited

K = 0 band. Well deformed nuclei that show sizeable
staggering deviate from SU(3) in the direction of either
U(5) or O(6), which exhibit large staggering. The OES
in the K = 2, gamma band has been interpreted as a
result of the interaction between the even angular mo-
mentum of the γ band and the corresponding states in
the β band [16]. This suggestion has been addressed to
the SU(3) limit in which the lowest β and γ rotational
bands interact in the framework of the same irreducible
representation (λ, µ=2) of the group SU(3) [15–18].

The SU(3) geometrical limit describes a particular
kind of deformed rotational nucleus, which shows a low
lying Kπ= 2+and Kπ= 0+ excited state bandheads, usu-
ally referred to as the γ and β band, respectively. Ex-
citation modes built on these bandheads can result in
even-spin states which are near-degenerate. In the SU(3)
limit, transitions from the γ band to the ground band
are forbidden. Empirically, these bands seldom degen-
erate exactly. Furthermore, γ to ground band B(E2)
values are known to be collective (typically 5–10W.u.)
[6]. These two features rule out an exact SU(3) descrip-
tion of these nuclei and, indeed, most collective model
descriptions of such deformed nuclei have used broken-
SU(3) numerical diagonalizations of the IBM Hamilto-
nian [6]. A recent survey of well-deformed rare earth
nuclei showed that B(E2) values from the γ band to
the ground band could be approximately explained by a
parameter-free description in terms of a partial dynami-
cal symmetry (PDS) [6]. A description of the collective
states of the ground state, β- and γ-bands and an analy-
sis of the spectrum of lanthanide and actinide neighbour
even–even nuclei are important [19].
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A few studies have been conducted on the structure
of the thorium nucleus in recent years. In 2013, K. No-
mura et al. studied the shape phase transition [20] be-
tween stable octupole deformation and octupole vibra-
tions in thorium nuclei, using a microscopic framework
based on nuclear density functional theory for the anal-
ysis [20]. In the same year (2013) Li et al. studied the
collective Hamiltonian description of the octupole shape
phase transition for the Th isotopes [21]. For two regions
of octupole deformation and collectivity – Th, Ra, Sm,
and Ba-K. Nomura et al. [22] used the IBM Hamilto-
nian to calculate excitation spectra and transition rates
for the positive- and negative-parity collective states in
four isotopic chains. Due to the lack of experimental
information on Th isotopes in this part of the nuclear
chart, more theoretical calculations are needed to clarify
the underlying structure of these isotopes.

The aim of this work is to study the nuclear struc-
ture of the deformed even-even thorium (A = 230−234)
isotopes using the IBM-1 prescription.

2 Theoretical background

2.1 Interacting boson model (IBM-1)

The IBM-1 model of Arima and Iachello [23, 24] has
become widely accepted as a workable theoretical scheme
for describing the low-lying collective properties of nu-
clei across an entire major shell using a simple Hamil-
tonian [25]. In the IBM, the properties of a low-lying
collective for even-even nuclei are described in terms of
the interacting s bosons (L=0) and d bosons (L=2) [23,
26]. The valence particles outside the major closed shells
dominate and are thus studied as a part of the struc-
ture of the low-lying levels. The numbersNπ and Nυ are
proton bosons and neutron bosons, respectively. These
are counted from the nearest closed shell, with the to-
tal boson number defined as N = Nπ +Nυ. This model,
and the underlying structure of the six-dimensional uni-
tary group SU (6), leads to a simple Hamiltonian capable
of describing three dynamical symmetries, namely U(5)
corresponding to a vibrational limit [24], SU (3) corre-
sponding to an axially symmetric rotationally limit [27]
and O(6) which corresponds to a γ-unstable rotational
limit [28]. Furthermore, there is also the presence of
transitional nuclei [29]. It is intermediate between these
limits.

The most general parameterization of the IBM-1
Hamiltonian can be written in the following multipole
form [4, 25]

Ĥ = εn̂d +a0

(

P̂ †.P̂
)

+a1

(

L̂.L̂
)

+a2

(

Q̂.Q̂
)

+a3

+
(

T̂3.T̂3

)

+a4

(
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where n̂d = (d̂†.
ˆ̃
d)is the d-boson number operator, P̂ =
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√
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d](3) is the octupole oper-
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√
7

2
[d̂† ×

ˆ̃
d](2) represents the

quadrupole operator, ε = εd−εs is the boson energy, and
a0,a1,a2,a3, and, a4 are the phenomenological parame-
ters. The Q̂ operator is used to calculate electromagnetic
transition strengths and moments T (E2)= eBQ̂[29,30] ,
where eB is the boson effective charge.

Two Hamiltonians of IBM-1 [4, 25] were used in the
present work, as follows:

Ĥ = a1(L̂. L̂)+a2(Q̂.Q̂) (2)

and
Ĥ = εn̂d +a1

(

L̂.L̂
)

+a2

(

Q̂.Q̂
)

(3)

where a0= 2PAIR, a1= 1/2 ELL, a2= 1/2 QQ, ε= EPS.

2.2 Reduced transition probabilities, B(E2)

The general form of the B(E2) operator in IBM-1 is
given as follows [23, 26, 32–34]:
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The reduced E2 transition probability (E2) is illus-
trated as [8, 9]:
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The general form to calculate the relative B(E2) val-
ues of transition for γ -bands is shown as [35]:
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, (6)

where Iγ is the intensity of the transition, Eγ is the
gamma ray energy, δ is the mixing ratio and ref stands
for the reference transition.

2.3 Moment of inertia and square of rotational
energy

The general form for calculating the moment of iner-

tia
2ϑ

~2
and the square of the rotational energy (~ω)

2
are

[36, 37]
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=

4L−2
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(7)
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and (~ω)2=

[

E (L)−E (L−2)
√

L(L+1)−
√

(L−2)(L−1)

]2

(MeV)2(8)

where ϑ is the moment of inertia, Eγ is the transition
energy, and the L is angular momentum of the initial,
decaying state [37].

2.4 Staggering in γ-band energies

The symmetry changes SU(3), U(5) and O(6) infor-
mation carried by the OES effect is observed in the γ–
bands; this is among the most sensitive phenomena noted
[38]. It is most strongly pronounced in nuclei charac-
terized by the U(5) and O(6) limits and it is relatively
weaker in nuclei close to SU(3) symmetry [38]. In even-
even nuclei, the odd-even staggering represents a rela-
tive displacement of the odd-angular momentum levels
for the γ band with respect to their neighbouring states,
even where this includes angular momentum [17]. The
staggering between in γ-band energies is defined by [39,
40]:

S (J)

=

{

E
(

J+
γ

)

−E
[

(J−1)
+

γ

]}

−
{

E
[

(J−1)
+

γ

]

−
[

(J−2)
+

γ

]}

E
(

2+
1

)

(9)

2.5 Potential energy surface

The potential energy surface, in general, as a function
of geometrical variables β and γ is given by [25]:

E (N,β,γ)=
Nεdβ

2

(1+β2)
+

N (N −1)

(1+β2)
2

(α1β
4 +α2β

3 cos3γ +α3β
2 +α4) , (10)

where N is the total boson number, εd is the d boson
energy, β is the quadrupole deformation parameter, γ
is the asymmetry angle, taking values from 0◦ to 60◦,

and α1,α2,α3, and α4 are parameters of the potential
surface.

3 Results and discussion

In the current work, the predicted energy levels, re-
duced electric quadrupole transition probabilities, stag-
gering in γ-band energies, overlap with SU(3) limit of
the wave function, and potential energy surfaces for
230,232,234Th isotopes have been investigated using two
different procedures, and subsequently compared with
the experimental data:

(a) (Th.) using Hamiltonian equation (2)
(b) (Th. +EPS) using Hamiltonian equation (3) us-

ing the IBM-1code PHINT [41].

3.1 Energy levels

In the present study, the rotational limit of the IBM-
1 has been used to calculate energy levels for 230−234Th
isotopes and the breaking of this limit by the introduc-
tion of the EPS term (ε) into the Hamiltonian equation.
The excitation energy ratios E(4+

1 )/E(2+
1 ) = R(4/2) for

230,232,234Th are 3.27, 3.28 and 3.29, respectively [42].
This near-ideal rotor value reflects the emergence of nu-
clear quadrupole collectivity, which can be used to dis-
tinguish between the U(5), SU(3) and O(6) limits of the
IBM [43]. The first 2+ state (E(2+

1 )) of 230,232,234Th de-
creases smoothly with increasing mass number, indicat-
ing that these Th isotopes are close to the SU(3) limit.
Two sets of parameters for Th isotopes which were ap-
plied in the current work are shown in Tables 1 and 2.
The parameters for EPS, ELL and Q.Q were changed by
values typical of the expected changes from one nucleus
to its neighboring region. The Q.Q parameter for234Th
was estimated by calculating the energy of the second 2+

state from the expressions [39]:

Erot (J) =
~

2

2I
[J (J +1)−K (K +1)] (11)

Table 1. Adopted values for the parameters used for IBM-1 calculations using Hamiltonian equation for SU(3) limit,
where N = boson number, EPS = energy, PAIR = pairing, ELL = angular momentum, QQ = quadrupole, OCT
= octupole, HEXA = hexadecapole, and CHI=

√

5χ). All the parameters are in MeV except CHI.

isotopes N EPS PAIR ELL QQ OCT HEXA CHI
230Th 11 0.0 0.000 0.0130 −0.0198 0.0 0.0 −2.958
232Th 12 0.0 0.000 0.0084 −0.0214 0.0 0.0 −2.958
234Th 13 0.0 0.000 0.0082 −0.0216 0.0 0.0 −2.958

Table 2. Adopted values for the parameters used for IBM-1 calculations using Hamiltonian equation for SU(3) limit
+ eps, all parameters in MeV except CHI.

isotopes N EPS PAIR ELL QQ OCT HEXA CHI
230Th 11 0.0530 0.000 0.0090 −0.0208 0.0 0.0 −2.958
232Th 12 0.0493 0.000 0.0073 −0.0217 0.0 0.0 −2.958
234Th 13 0.0490 0.000 0.0074 −0.0219 0.0 0.0 −2.958
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The calculated energy levels were compared with the
available experimental values as shown in Figs. 1–3.
These calculations give a reasonable description of the
energy systematic of the low-lying states. Additional lev-
els were predicted by these IBM calculations which have
not yet been observed experimentally. The comparison
illustrates that an effective agreement is found between
the experimental and the calculated values. Generally,
the ground bands and beta bands in all their isotopes
are well reproduced. The gamma-band states in the sec-
ond procedure (as shown in Section 3(b)) for the 230Th
isotope are in reasonable agreement with the experimen-
tal data. As shown in Figs. 2 and 3, for each band
the level energies follow closely the expected L(L + 1)
behavior expected for rotational nuclei. The beta and
gamma bands have similar excitation energies, suggest-

ing that the 232,234Th isotopes are approaching the SU(3)
limit.

3.2 B(E2) values

The transition probabilities and related B(E2) values
were calculated. The values of E2SD (E2SD=α2), and
E2DD (E2DD=

√
5β2) [31] have been selected to be com-

patible with the SU(3) limit. The values of E2SD were
determined by normalizing the calculations to the previ-
ously experimentally determinedB(E2 : 2+

1 → 0+
1 )values.

The parameter values of E2DD and E2SD are summa-
rized in Table 3. The calculated values of B(E2) for
the isotopes under study, together with the available
experimental values [42], are shown in Table 4. The
B(E2) values for the(2+

1 → 0+
1 ),(4+

1 → 2+
1 )decay de-

creases with increasing mass number, A. The transitions
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Fig. 1. (color online) The calculated low-lying energy levels using IBM-1 and the experimental data [42] of 230Th isotope.

Fig. 2. (color online) The calculated low-lying energy levels using IBM-1 and the experimental data [42] of 232Th isotope.
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Fig. 3. (color online) The calculated low-lying energy levels using IBM-1 and the experimental data [42] of 234Th isotope.

(2+
2 → 2+

1 ),(4+
2 → 4+

1 ),(3+
1 → 4+

1 ) are forbidden in the
SU(3) limit [4] and are rather weak, as expected, as can
be seen in Tables 4 and 5. Overall, the calculated re-
sults are in agreement with experimental values. The
calculated wave functions can be further tested using the
B(E2) values. The overlaps of the wave functions for the
SU(3) symmetry are 1. To calculate the overlap of any
isotope, one has to calculate the wave functions of this
isotope. Therefore, in such a study the wave functions
of 230,232,234Th isotopes were calculated. The overlap is
obtained by taking the sum of the multiplications of the
corresponding terms of the wave functions of each state
in these isotopes. However, the calculated overlaps come

to 1 for 230,232,234Th isotopes in applying the Hamiltonian
equations without EPS; they run approximately to 0.99
when the Hamiltonian equation with EPS is applied, as
shown in Table 6, which shows the overlaps for the first
0+

1 2+
1 , 4+

1 and 2+
2 states of 230,232,234Th isotopes.

Table 3. The values of parameters E2SD and
E2DD in (e2b2) of B(E2) for 230,232,234Th iso-
topes.

isotopes E2SD E2DD
230Th 1 −1.2108
232Th 1 −1.0556
234Th 1 −1.9556

Table 4. B(E2) values for 230,232,234Th isotopes in (e2b2)

isotopes Ji → J f EXP B(E2)[42] Th. B(E2) Th. + eps B(E2)

230Th

2+
1 → 0+

1 1.640 1.640 1.644

4+
1 → 2+

1 2.218 2.300 2.306

6+
1 → 4+

1 — 2.449 2.455

2+
2 → 0+

1 0.022 0.027 0.001

2+
2 → 2+

1 – 0.021 0.002

2+
2 → 4+

1 0.083 0.009 0.005

4+
2 → 4+

1 — 0.043 0.001

4+
2 → 6+

1 — 0.008 0.006

3+
1 → 2+

1 — 0.042 0.051

3+
1 → 4+

1 — 0.022 0.028

2+
3 → 0+

1 0.024 0.001 0.029

2+
3 → 2+

1 0.046 0.023 0.048

2+
3 → 4+

1 0.003 0.007 0.003

4+
3 → 2+

1 — 0.003 0.013

4+
3 → 6+

1 — 0.013 0.007
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Continued

isotopes Ji → J f EXP B(E2)[42] Th. B(E2) Th. + eps B(E2)

232Th

2+
1 → 0+

1 1.676 1.676 1.677

4+
1 → 2+

1 2.421 2.357 2.358

6+
1 → 4+

1 2.760 2.525 2.524

2+
2 → 0+

1 0.023 0.013 0.002

2+
2 → 2+

1 0.004 0.0001 0.003

2+
2 → 4+

1 0.027 0.019 0.008

3+
1 → 2+

1 — 0.049 0.056

3+
1 → 4+

1 — 0.026 0.030

3+
1 → 4+

1 0.0001 0.015 0.003

4+
2 → 6+

1 — 0.008 0.009

2+
3 → 0+

1 0.024 0.019 0.032

2+
3 → 2+

1 0.061 0.052 0.052

2+
3 → 4+

1 0.001 0.0001 0.003

4+
3 → 2+

1 0.0001 0.004 0.015

4+
3 → 6+

1 0.0002 0.015 0.007

234Th

2+
1 → 0+

1 1.569 1.569 1.564

4+
1 → 2+

1 — 2.211 2.205

6+
1 → 4+

1 — 2.376 2.369

2+
2 → 0+

1 — 0.005 0.005

2+
2 → 2+

1 — 0.007 0.007

2+
2 → 4+

1 — 0.001 0.0009

3+
1 → 2+

1 — 0.009 0.009

3+
1 → 4+

1 — 0.004 0.004

4+
2 → 2+

1 — 0.003 0.003

4+
2 → 6+

1 — 0.004 0.004

2+
3 → 0+

1 — 0.0003 0.0003

2+
3 → 2+

1 — 0.002 0.002

2+
3 → 4+

1 — 0.002 0.002

4+
3 → 2+

1 — 0.0003 0.0002

4+
3 → 2+

1 — 0.009 0.009

2+
3 → 0+

1 — 0.00008 0.00008

Table 5. B(E2) values for 230,232,234Th isotopes.

isotopes B(E2)ratio EXP[42] Th. Th. + EPS

230Th

4+
1 → 2+

1

2+
1 → 0+

1

1.352 1.402 1.402

2+
2 → 2+

1

2+
1 → 0+

1

— 0.012 0.001

232Th

4+
1 → 2+

1

2+
1 → 0+

1

1.444 1.406 1.406

2+
2 → 2+

1

2+
1 → 0+

1

0.002 0.00005 0.002

234Th

4+
1 → 2+

1

2+
1 → 0+

1

— 1.409 1.409

2+
2 → 2+

1

2+
1 → 0+

1

— 0.004 0.004
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Table 6. The overlap for the first 0+
1 ,2+

1 ,4+
1 and2+

2 states of 230,232,234Th isotopes, the calculated wave functions were
provided using the Hamiltonian equation with EPS.

isotopes(Th.+eps) 0+
1 2+

1 4+
1 2+

2
230Th 0.99075 0.990967 0.991425 0.983356
232Th 0.99344 0.993551 0.993827 0.98612
234Th 0.99427 0.994354 0.994558 0.979914

The relative B(E2) values of the inter-band tran-
sition from 2+

γ ,4+
γ ,3+

γ ,and5+
γ states to ground states for

230,232,234Th were calculated and were compared with the
experimental data, as shown in Figs. 4, 5 and 6, and
good agreement was found.

Fig. 4. (color online) The calculated and experi-
mental values [42] of relative B(E2) for 230Th iso-
tope.

Fig. 5. (color online) The calculated and experi-
mental values [42] of relative B(E2) for 232Th iso-
tope.

3.3 Moment of inertia and square of rotational
energy

The moment of inertia and the square of rotational
energy for the ground state band of even-even 230−234Th
isotopes has been calculated, as shown in Figs. 7, 8
and 9. The 232Th isotope shows a backbending effect
at I = 18+, which means there is a band crossing. It

then changes behavior and increases gradually. This oc-
curs in some heavy nuclei because the rotational energy
increases, so the energy required to break a pair of cou-
pled nucleons increases. In this effect, the unpaired nu-
cleons move into different orbits and change the nuclear
moment of inertia [36]. The 230,234Th isotopes no longer
have backbending, which that means the properties of
these isotopes run unchanged.

Fig. 6. (color online) The calculated values of rel-
ative B(E2) for 234Th isotope.

160

140

120m
o
m

en
t 

o
f 

in
er

ti
a 

/ M
eV

−
1

230Th exp
Th.
Th + eps

0.00 0.02
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Fig. 7. (color online) The calculated moment of in-

ertia
2ϑ

~2
versus square of rotational energy (~ω)2

for 230Th isotope.

3.4 Staggering in γ- band energies

The S(J), particularly S(4), distinguishes different
model descriptions ranging from vibrational, to rota-
tional, to axially asymmetric. It is also a useful signature
of transitional regions between these ideal limiting cases
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[39]. Figures 10 and 11 shows the odd–even staggering
for 230,232,234Th. One can see that these isotopes are de-
formed and no notable staggering is apparent, consistent
with nuclei close to the SU(3) symmetry [40].
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Fig. 8. (color online) The calculated moment of in-

ertia
2ϑ

~2
versus square of rotational energy (~ω)2

for 232Th isotope.
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Fig. 9. (color online) The calculated moment of in-

ertia
2ϑ

~2
versus square of rotational energy (~ω)2

for 234Th isotope.

Fig. 10. (color online) Staggering S(J) in γ-
band calculations using Hamiltonian equation for
SU(3) limit and the available experimental data
[42] for 230,232,234Th isotopes.

Fig. 11. (color online) Staggering S(J) in γ-
band calculations using Hamiltonian equation for
SU(3) limit +EPS and the available experimental
data [42] for 230,232,234Th isotopes.

3.5 Potential energy surface calculations

The potential energy surfaces were calculated to
predict the lowest energy shape configurations for
230,232,234Th. These are shown in Figs. 12, 13 and 14.
The quadrupole deformation parameter is equivalent to
β > 0 for prolate and β < 0 for oblate shapes. For γ
equal to 0◦ [10], it is prolate type, and when γ equals
60◦ [19], it is oblate type [4, 23, 44]. Our main intention
in this study is to obtain the first hints of nuclear phase
shape in the region. In this context, we find signatures
of the prolate deformation deeper than oblate, where the
βmin of these isotopes comes equal to 1.4, for that is the
SU(3) limit. We can conclude that all the nuclei under
study are deformed and have rotation.

4 Conclusions

The IBM-1 model has been applied to interpret the
low-lying structure of the deformed nuclei 230,232,234Th.
From these calculations, the rotational limit has been
used and the calculated results of two procedures for the
predicted excited state energy levels are shown to be in
agreement with the available experimental data. Abso-
lute and relative B(E2) values were calculated and are
found to be, in general, in agreement with experimen-
tal data where available. However, there is not enough
experimental data in the 234Th isotope for a detailed
comparison and therefore, the B(E2) values and relative
B(E2) were predicted for this case only.

The overlap of the wave functions for (with and with-
out EPS) ranges from 0.98 to 1, which suggests that the
230,232,234Th isotopes lie close to the SU(3) limit. The
square of rotational energy and the moment of inertia
were reasonably produced with experimental values. The
odd-even staggering in γ-bands has been studied, the
S(J) is weak (with and without eps), consistent with
structures close to the SU(3) limit.
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Fig. 12. (color online) (a) The potential energy surface for 230Th isotope as a function of β and γ plot for γ=0 and
γ=60. (b) The potential energy surface in β-γ for 230Th isotope.

Fig. 13. (color online) (a) The potential energy surface for 232Th isotope as a function of β and γ plot for γ=0 and
γ=60. (b) The potential energy surface in β-γ for 232Th isotope.
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Fig. 14. (color online) (a) The potential energy surface for 234Th isotope as a function of β and γ plot for γ=0 and
γ=60. (b) The potential energy surface in β-γ for234Th isotope.

The potential energy surfaces are calculated and pre-
dict prolate deformed states which would show clear
rotational behavior for the230−234Th isotopes.
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