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Abstract: The Eigenstate Method has been developed to deduce the fermion propagator with a constant external

magnetic field. In general, we find its result is equivalent to other methods and this new method is more convenient,

especially when one evaluates the contribution from the infinitesimal imaginary term of the fermion propagator. Using

the Eigenstate Method we try to discuss whether the infinitesimal imaginary frequency of the fermion propagator

in a strong magnetic field and Lorentz-violating extension of the minimal SU(3)×SU(2)×SU(1) Standard Model

could have a significant influence on the dynamical mass. When the imaginary term of the fermion propagator in

this model is not trivial (
√

(α−1)eB/3< σ <
√

(α−1)2eB/3), this model gives a correction to the dynamical mass.

When one does not consider the influence from the imaginary term (σ >
√

(α−1)2eB/3), there is another correction

from the conventional term. Under both circumstances, chiral symmetry is broken.
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1 Introduction

In quantum field theory, the infinitesimal imaginary
term of the fermion propagator can cause remarkable ad-
justment to the calculations in some cases. The method
of Schwinger proper time [1, 2] is very useful in the NJL
model, but the disadvantage with this method is that
it is not easy to process the influence of the infinites-
imal imaginary term. Song Shi, Hong-shi Zong et al.
developed a new method, the Eigenstate Method [3],
to deduce the NJL gap equation. This new method is
very convenient for studying NJL problems with exter-
nal magnetic field, because one does not need to first
find the expression for 〈x|Ŝ|y〉 (where Ŝ is the fermion
propagator). It is also applicable for further study, such
as the Schwinger-Dyson equations. For the finite chemi-
cal potential µ case, this method will continue giving the
right fermion propagator. The starting point of develop-
ing this new Eigenstate Method is to evaluate how much
influence the infinitesimal imaginary term of the fermion
propagator has on the final results. However, for a con-
ventional NJL model with finite temperature and chem-

ical potential, the influence from the imaginary term is
trivial, as shown in Ref. [3].

The SU(3)×SU(2)×SU(1) Standard Model, although
phenomenologically successful, leaves a variety of issues
unresolved. Over the past few decades, many new the-
ories have been proposed. Some studies showed that
Lorentz violation may exist in loop quantum gravity,
noncommutative field theories and M-theory, etc [4–6].
Kostelecký and Samuel considered the possibility that
spontaneous breakdown of Lorentz symmetry is explored
via covariant string field theory [7]. Colladay and Kost-
elecký then presented a general Lorentz-violating exten-
sion of the minimal SU(3)×SU(2)×U(1) Standard Model
including CPT-even and CPT-odd terms [8–10]. To iden-
tify signals between the new proposed fundamental theo-
ries and the Standard Model, one approach is to examine
new proposed fundamental theories for effects that are
qualitatively different from Standard Model physics. As
this Lorentz-violating extension of the Standard Model
may show, the signal differs from the Standard Model.

Strong magnetic fields could play an important role
in astrophysics [11] and high energy physics [12]. The
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magnetic field of the early universe [13–15] and the in-
ner superstrong field of some magnetars are estimated
to be of order 1024G and 1018−1020G [11, 16, 17]. The
magnetic fields produced at RHIC and LHC are esti-
mated to eB ∼ 1.5m2

π
and even higher 15m2

π
[18], re-

spectively. This has caused much research on the impact
of strong magnetic fields on the nature of quark mat-
ter, on the QCD phase diagram and the color supercon-
ducting phase transition, etc. In the NJL model, due
to the magnetic catalysis effect, the external magnetic
field stimulates QCD condensate. In the chiral limit,
however, when the temperature exceeds a critical value
Tc, the system undergoes a phase transition, namely the
broken chiral symmetry is restored. Hence, in this work
we study the influence of the magnetic field and Lorentz-
violating term on QCD condensate, and discuss whether
the effects of the Lorentz-violating term are similar to
those of the magnetic field or temperature on quark con-
densate.

Considering the above situation—strong magnetic
field and Lorentz violation— we use the Eigenstate
Method to discuss whether the infinitesimal imaginary
frequency of the fermion propagator in a strong mag-
netic field and Lorentz-violating extension of the Stan-
dard Model will have a significant influence on the dy-
namical mass. This work is organized as follows. In Sec-
tion 2, we introduce the Lorentz-violating term into the
NJL model within a constant strong background mag-
netic field. In Section 3, by the Eigenstate Method, we
discuss the dynamical mass and the imaginary term de-
pending on the Lorentz-violating term and the constant
strong magnetic field. The numerical results and analysis
are given in Section 4.

2 NJL model in Lorentz-violating exten-

sion of the standard model

In 1+3 dimensional time-space, the bosonized two
flavor NJL Lagrangian with external magnetic field is

L= iψ̄γµ(∂µ +iqQ⊗A)ψ− ψ̄(σ+iγ5⊗~π ·~τ )ψ− N

2G
Σ2,

(1)

where ~τ are the Pauli matrices and

Σ2 =σ2 +π
2, �ψ̄ψ�=σ, �ψ̄γ0ψ�= π,

Q11 = qu =
2

3
, Q22 = qd =−1

3
, q=−e.

In the above Lagrangian, we have already assumed that
the current mass of the fermion is zero, and the potential
of the external magnetic field Aµ is present. Aµ can be
defined as

(A0,A1,A2,A3) =

(

0,
B

2
x2,−B

2
x1,0

)

, (2)

where xi are the components of time-space coordinates
(x0,x1,x2,x3). Depending on the Lagrangian (1), the
fermion propagator within the magnetic field is

Ŝ=
1

γµΠ̂µ−σ
,

where

Π̂µ = i∂µ +qfeAµ, qf = qu,d. (3)

In the derivation above, we do not consider the effect
of the imaginary term. For a free fermion propagator,
the infinitesimal imaginary term is iε. It is well-known
in quantum field theory that the infinitesimal imaginary
term does not always play a role as a pointer of the in-
tegral path. When external fields or external elements
interfere, it is not safe to claim that the imaginary term
still remains iε. In some cases, it can cause remarkable
adjustment to the calculations. A convincing example is
the case when the system has finite chemical potential
µ. In Minkowski space, the infinitesimal imaginary term
is µ dependent [1, 19],

S(k,µ) =
/̃k+m

k̃2−m2 + iε(k0 +µ)sgn(k0)
,

therefore one needs to properly deduce the imaginary
term with caution.

By a convenient trick for the path integral, the defi-
nition of the partition function of quantum field theory
is

Z =

〈

0

∣

∣

∣

∣

T exp

{

− i

∫ +∞

−∞

Ĥ dt

}
∣

∣

∣

∣

0

〉

.

Introducing a factor (1− iε) to change the expression
of the partition function will derive a ε-dependent La-
grangian:

Z= lim
ε→0+

〈

0

∣

∣

∣

∣

T exp

{

− i(1− iε)

∫ +∞

−∞

Ĥ dt

}
∣

∣

∣

∣

0

〉

= lim
ε→0+

∫

dψ

〈

ψ

∣

∣

∣

∣

T exp

{

− i(1− iε)

∫ +∞

−∞

Ĥ dt

}∣

∣

∣

∣

ψ

〉

= lim
ε→0+

∫

Dψ̄Dψ ei
∫

dxLε .

On the basis of the above, the improved fermion propa-
gator in the NJL model with an external magnetic field
becomes

Ŝ=
/Π+σ

(/Π)2−σ2 +iO(ε)
,

O(ε)= ε(| ~Π|2 +σ2−qfeBσ
12), (4)
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where σ12 = diag(1,−1,1,−1).
Unlike the free fermion propagator, in the propagator

above the Π̂1 and Π̂2 are not commutable. Hence it is
not possible to find a representation in which all four Π̂µ

eigenstates exist simultaneously. Rather than employing
Schwinger proper time regularization to rewrite the de-
nominator, by the Eigenstate Method, we do not need to
find the eigenstates for all Π̂µ. Instead, we turn to find

the eigenstates of Π̂2 to deal with this denominator. For
operators (Π̂0, Π̂3, Π̂

2
⊥), we can use their eigenstates

|Π̂0, Π̂3;n,a〉= |Π̂0〉0⊗|Π̂3〉3⊗| n,a〉12 (5)

as a set of complete basis tensors in four-dimensional
Hilbert space, where

Π̂2
⊥ = Π̂2

1 +Π̂2
2 ,

Π̂2
⊥|n,a〉=(2n+1)|qf |eB|n,a〉,n∈{0,1,2...},

〈Π0,Π3|Π0,Π3〉=
1

(2π)2

∫

dx0dx3,

∫

da〈n,a|n,a〉= |qf |eB
2π

∫

dx1dx2. (6)

From the discussion above, in Eqs. (4, 6), we can see
that the imaginary term O(ε) is permanently positive.
Since Π2

⊥ is quantized to (2n+1)|qf |eB, the imaginary
term O(ε) is equivalent to iε, and the influence is triv-
ial. As mentioned in the Introduction, in the NJL model
with a magnetic field, the Eigenstate Method was devel-
oped to consider the influence of external interference on
the infinitesimal imaginary term of the fermion propaga-
tor. However, in a conventional NJL model with finite
temperature and finite chemical potential, the influence
from the imaginary term is still trivial. This leads us
to introduce a Lorentz-violating extension of the mini-
mal Standard Model term into the NJL model within a
constant external magnetic field.

Colladay and Kostelecký presented a general Lorentz-
violating extension of the minimal SU(3) × SU(2) ×
SU(1) Standard Model including CPT-even and CPT-
odd terms [8]. This theory can be viewed as the low-
energy limit of a physically relevant fundamental the-
ory with Lorentz-covariant dynamics in which sponta-
neous Lorentz violation occurs. In this fermion sector of
the Standard Model extension, the contribution to the
Lagrangian can be divided into four parts according to
whether the term is CPT even or odd and whether it in-
volves leptons or quarks. The CPT-even and CPT-odd
terms involving the quark fields are respectively

LCPT−odd
quark =−(aq)µABψ̄qA

γµψqB−(q→u)−(q→ d)

LCPT−even
quark =

1

2
i(cq)µνAB ψ̄qA

γµ←→D νψqB

+(q→u)+(q→ d). (7)

The Hermitian coefficients aµ have the dimensions of
mass. The dimensionless coupling coefficients cµν could
in principle have both symmetric and antisymmetric
space-time components but can be assumed traceless. A
non-zero trace would not contribute to Lorentz violation
and in any case can be absorbed by a conventional field
normalization ensuring the usual kinetic operator for the
matter fields.

Considering the above situation, we can apply the
Lorentz-violating extension of the minimal Standard
Model to the NJL Model. Under normal circumstances,
we need to consider the influence of the effects of both
CPT-odd and CPT-even terms on the infinitesimal imag-
inary term. However, as a general rule, the more complex
the theoretical structure becomes, the less likely it is that
a useful field redefinition exists. For the sake of simplic-
ity, we do not discuss the CPT-odd term in this work.
When only considering the CPT-even term, the Lorentz-
violating extension of the NJL model with a constant
background field is

LLV =iψ̄γµ(∂µ +iqQ⊗A)ψ− ψ̄(σ+iγ5⊗~π ·~τ )ψ

+iηµβ(L)ψ̄γµDβψ−
N

2G
Σ2. (8)

The coupling coefficients ηµβ which are equivalent to cµν

in Eq. (7) above, could in principle be Hermitian, di-
mensionless and can be assumed to be traceless. They
contribute to both Lorentz violation and CPT-evenness.
Because the existence of the pion condensate would vio-
late parity, throughout this paper it is considered to be
zero.

Based on Eq. (8), we can obtain the propagator

Ŝ(k,µ) =
γµ(Π̂µ +η ν

µ Π̂ν)+σ

[γµ(Πµ +η ν
µ Πν)]2−σ2 +iε

, (9)

and the following expression

[γµ(Πµ +η ν
µ Πν)]2 =

qfe

2
σµρ[Fµρ +(η σ

ρ Fµσ +η ν
µ Fνρ)

+η ν
µ η σ

ρ Fνσ]+Π2 +(ηµρ +ηρµ)ΠµΠρ +η ν
µ ηµρΠνΠρ,

(10)

where σµρ = i[γµ,γρ]/2. By the Eigenstate Method we
have the following relationships

Π0 =P0, [Π1,Π2] =−iqfeB, Π3 =P3,

Π1 =−p1 +
1

2
qfeBx

2,Π2 =−p2− 1

2
qfeBx

1. (11)

Using relationship (11) and ηµν(L) anti-symmetry, Eq.
(10) can be converted to

[γµ(Πµ +η ν
µ Πν)]

2 =Π2−qfeBσ
12− [σ13η 2

3 (L)

−σ23η 1
3 (L)]qfeB. (12)
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Using Eqs. (9, 12), we obtain the imaginary term from a
strong background magnetic field and Lorentz-violating
term as follows

O(ε)=Π2
⊥ +Π2

3 +qfeB[σ12 +σ13η 2
3 (L)

−σ23η 1
3 (L)]+σ2. (13)

By using Π2
⊥ = (2n+1)|qf |eB, the imaginary term O(ε)

may be negative permanently, so when ηµν(L) is of ap-
propriate value, the influence is no longer trivial.

3 Gap equations

Now we discuss the gap equation within the Lorentz-
violating extension. The general gap equation in the two
flavor NJL model is

σ

G

∫

d4x= i
∑

f

TrŜ. (14)

The rigorous deduction of the gap equation is shown in
Ref. [3]. Depending on Eq. (12), we simplify the propa-
gator (9) to be

Ŝ(k,µ) =
γµ(Π̂µ +η ν

µ Π̂ν)+σ

Π̂2
0 −Π̂2

3 −Π̂2
⊥−σ2 +qfeBb1 +iO(ε)

, (15)

where b1 = (η 2
3 σ

31 +η 1
3 σ

23−σ12).
Normally, we need to calculate TrŜ. By a set of com-

plete basis tensors in four-dimensional Hilbert space (5),
TrŜ can be treated as

TrŜ=

∫

dΠ0dΠ3

∫

da

+∞
∑

n=0

〈Π0,Π3;n,a|trŜ|Π0,Π3;n,a〉

=

+∞
∑

n=0

∫

dΠ0dΠ3 〈Π0,Π3|Π0,Π3〉
∫

da〈n,a|n,a〉

×tr
σ

Π2
0 −Π2

3 −Π2
⊥−σ2 +qfeBb1 +iO(ε)

. (16)

In order to further simplify the relations above, we

can employ the relations (6) to cancel

∫

dx4 on the LHS

of Eq. (14), then let Π0 have a Wick rotation. Firstly,
we insert the relations

〈Π0,Π3|Π0,Π3〉=
1

(2π)2

∫

dx0dx3,

∫

da〈n,a|n,a〉= |qf |eB
2π

∫

dx1dx2, (17)

into Eq. (16) and calculate the trace. Then Eq. (16)
will be simplified to

TrŜ=
|qf |eBσ

4π
3

∫

dΠ0dΠ3

∫

dx4

( +∞
∑

n=0

1

a+α|qf |eB

+
+∞
∑

n=1

1

a−|qf |eBα
+A

)

=TrŜ1 +Â, (18)

where

α=
√

η 2
3 +η 1

3 +1, a=Π2
0 −Π2

3 −(2n+1)|qf |eB,

Â=
|qf |eBσ

4π
3

∫

dΠ0dΠ3

∫

dx4 1

a−α|qf |eB+iε
. (19)

When σ >
√
c=

√

(α−1)|qf |eB, there is no influence of
the imaginary term, and the Wick rotation is regular.

Now we discuss the case of σ <
√
c. Let Π0 have a

Wick rotation. By making a cutoff
1

Λ2
to the lower limit

of the integral of s, eventually we get TrŜ1 and Â that
are suitable for numerical calculation, as shown in Eq.
(20). We employ the above results, replace Eq. (20) into
Eq. (14), and simplify the gap equation. Then we have
Eq. (21).

Up to now, by using this Eigenstate Method, we
have deduced gap equations such as those in the NJL
model with magnetic field and Lorentz-violating exten-
sion Standard Model. This method is very convenient
for studying NJL problems with external magnetic field,
especially when one evaluates the contribution from the
infinitesimal imaginary term of the fermion propagator,
because one does not need to first find an expression for
〈x|Ŝ|y〉.

TrŜ1 =−i
π|qf |eBσ

4(π)3

∫

dx4

∫ +∞

0

ds
e−σ2

s

s
×

(

1

e3|qf |eBs−e|qf |eBs
eseB
√

(η 2
3

)2+(η 1
3

)2+1

+
1

2
Csch(|qf |eBs)e−seB

√
(η 2

3
)2+(η 1

3
)2+1

)

.
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Â=
|qf |eBσ

√
π

4π
3

∫

dx4

∫ ∞

1

Λ2

[

e−(c−σ2)s

√
s

∫

√
c−σ2

0

eΠ2
3sdΠ3ds− i

∫ ∞

1

Λ2

∫ ∞

√
c−σ2

d
e−(Π2

3+σ2−c)s

√
s

Π3ds

]

. (20)

4π
3

G
=

∑

f

|qf |eBπ

∫ +∞

0

ds
e−σ2

s

s

(

1

e3|qf |eBs−e|qf |eBs
eseB
√

(η 2
3

)2+(η 1
3

)2+1 +
1

2
Csch(|qf |eBs)e−seB

√
(η 2

3
)2+(η 1

3
)2+1

)

+i
∑

f

|qf |eB
√

π

∫ ∞

1

Λ2

ds

(

e(σ2−c)s

√
s

∫

√
c−σ2

0

eΠ2
3sdΠ3− i

e(c−σ2)s

√
s

∫ ∞

√
c−σ2

de−Π2
3s

)

. (21)

4 Numerical results and analysis

In the analysis above, we get a gap equation (21)
that corresponds to a Lorentz-violating Standard Model.
Now we discuss the influence of the imaginary term
from this model, as shown in Fig. 1. When σ <=
√

(α−1)eB/3, as in region ., there is no influence from
the imaginary term, since it does not meet the minimum
free energy. Based on the same reasons, the influence
from the imaginary term mainly exists in region /, ex-
cept for the right-hand side of region /. In region 0,
where σ >

√

(α−1)2eB/3, there is only the conventional
influence from the Lorentz-violating term α, and no influ-
ence from the imaginary term of the fermion propagator.

Fig. 1. (color online) Influence of the imaginary
term from Lorentz-violating minimal Standard
Model.

Based on the gap equation above and the data from
Ref. [20] (for fπ = 93 MeV,mπ = 138 MeV,G =
25.4 GeV−2, the current mass m0 = 5.5MeV and the cut-
offs Λ= 0.99 GeV), we are able to draw the relation of the
Lorentz-violating terms and eB as shown in Fig. 2. It
shows the dependence of external field eB with Lorentz-
violating terms α−1. When the Lorentz-violating term
α−1 is non-zero, it turns out there is a critical eB. As
long as the system’s magnetic field exceeds the critical
eB, the imaginary term will be non-trivial. In fact, it is
well known that the Lorentz-violating term should be a
minimal value. This shows that the influence from the

imaginary term is still very small under the current ob-
served magnetic field in nature. In order to show this de-
pendency better, here we let the Lorentz-violating term
expand to 0.01 magnitude.

Fig. 2. (color online) The external field eB depen-
dence of Lorentz-violating terms α−1, when the
influence of the imaginary term from the Lorentz-
violating minimal Standard Model is not trivial.

When the influence from imaginary term is not triv-
ial (and

√

(α−1)eB/3<σ<
√

(α−1)2eB/3), it is clear
that when the strength of the magnetic field eB and
Lorentz-violating terms α− 1 increases, the dynamical
mass σ will increase with it, and the chiral symmetry is
always broken. When eB and α−1 are strong enough,
the dynamical mass σ has a nearly linear response to the
magnetic field and Lorentz-violating terms, as shown in
Fig. 3(a) and 3(b).

When one does not consider the influence from the
imaginary term (σ >

√

(α−1)2eB/3), Fig. 4(a) and Fig.
4(b) show the relations between dynamical mass σ and
Lorentz-violating terms α−1 (or external field eB), and
the chiral symmetry is always broken. In Fig. 4(b), when
Lorentz-violating terms α−1→ 0, the (σ,eB) curves re-
store to the conventional NJL model. When eB → 0,
there are lower [σ,(α− 1)] curves, then the bigger the
strength of eB, the higher the [σ,(α−1)] curves. With
a fixed Lorentz-violating term, when the external field is
strong enough, the dynamical mass has a nearly linear
response to the magnetic field.
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Fig. 3. (color online) σ dependence of (a) α−1 with
different eB and (b) of eB with different α− 1,
when the influence from the imaginary term is
not trivial.

Fig. 4. (color online) σ dependence of (a) α−1 with
different fixed eB and (b) eB with different fixed
α−1, when the influence from the imaginary term
is not considered.

5 Discussion

In this paper, we have introduced the Lorentz-
violating extension of the minimal SU(3)×SU(2)×SU(1)
Standard Model into the NJL model within a con-
stant strong magnetic field. Then, using the Eigenstate
Method (which is different from the Schwinger proper
time method) to deduce the fermion propagator, we dis-
cuss the influence from the Lorentz-violating term α and
constant strong magnetic field eB on dynamical mass σ.

The Lagrangian of this model gives Lorentz-violation
terms ηµν . To maintain the influence of the imaginary
term from the Lorentz-violation extension minimal Stan-
dard Model, the external eB and Lorentz-violation term
α must maintain a certain relationship as shown in Fig.
2. When the imaginary term of the fermion propaga-
tor in this model is not trivial (

√

(α−1)eB/3 < σ <
√

(α−1)2eB/3), the dynamical mass σ will increase as
eB and the Lorentz-violating term α increase, as shown
in Fig. 3(a) and Fig. 3(b), and chiral symmetry is always
broken. When we do not consider the influence from
the imaginary term (σ >

√

(α−1)2eB/3), the Lorentz-
violation terms also influence the dynamical mass, as
shown in Fig. 4(a) and Fig. 4(b). Under the two kinds of
circumstances considered here (whether the influence of
the imaginary term is trivial or not), the chiral symmetry
is always broken.

The effect from finite temperature can also be dis-
cussed, and it is also possible to include this effect from
Lorentz violation on the QCD condensate and dynam-
ical chiral symmetry breaking. That is because the
imaginary term O(ε) within both finite temperature and
Lorentz violation may be permanently negative, so when
ηµν(L) is an appropriate value, the influence is no longer
trivial. In addition, in this model we also can study
various susceptibilities. We need to enhance the NJL
model of Eq. (8) with the current mass m. Correspond-
ingly, the new gap equation can be achieved simply by
replacing σ with σ+m on the RHS of the gap equation.
Then, treating σ as an implicit function of m,T,α (the
CPT term) and eB, namely σ(m,T,eB,α), we can make
partial differentiations of m,T,α,eB and get the corre-
sponding equations for the susceptibilities. We would
like to discuss this situation in our next work.

The Eigenstate Method has been developed to de-
duce the fermion propagator with a constant external
magnetic field. We find its result is equivalent to other
methods, when there is only an external constant mag-
netic field rather than an external electric field or an
external electromagnetic field. This new method is more
convenient than other methods, especially when evalu-
ating the contribution from the infinitesimal imaginary
term of the fermion propagator.
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