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Hawking radiation and entropy of a black hole in Lovelock-Born-Infeld

gravity from the quantum tunneling approach *
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Abstract: The tunneling radiation of particles from black holes in Lovelock-Born-Infeld (LBI) gravity is studied

by using the Parikh-Wilczek (PW) method, and the emission rate of a particle is calculated. It is shown that the

emission spectrum deviates from the purely thermal spectrum but is consistent with an underlying unitary theory.

Compared to the conventional tunneling rate related to the increment of black hole entropy, the entropy of the black

hole in LBI gravity is obtained. The entropy does not obey the area law unless all the Lovelock coefficients equal

zero, but it satisfies the first law of thermodynamics and is in accordance with earlier results. It is distinctly shown

that the PW tunneling framework is related to the thermodynamic laws of the black hole.
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1 Introduction

Forty years ago, it was proved by Hawking [1] that
black holes can radiate thermally. All research on black
hole radiation, such as Refs. [2–6], aimed to prove that
the energy spectrum is precisely thermal until 1995,
when a method to describe Hawking radiation as a tun-
neling process where a particle moves in dynamic geom-
etry was developed by Kraus and Wilczek [7] and elabo-
rated upon by Parikh and Wilczek [8–9]. They think that
the barrier is created by the outgoing particle itself and
their key insight is to find a coordinate system which is
well behaved at the horizon. Taking the self-interaction
effect into account and considering energy conservation,
they calculated the corrected emission spectra of spheri-
cally symmetric black holes, such as Schwarzschild black
holes and Reissner-Norström black holes. In 2005, Hawk-
ing changed his opinion and argued that information can
indeed get out of the black hole [10], which maybe partly
be based on the PW work. Since then, the PW method
has been used to calculate the emission rate of particles
from various black holes [11–24] and to obtain modified
spectra. In this paper, we would like to extend the quan-
tum tunneling approach to black holes in LBI gravity
to calculate the corrected emission spectrum of parti-
cles from their event horizons and their entropies, so as
to explore the influence on the thermodynamic proper-
ties due to the higher derivative gravity. Because the
metric contains a hypergeometric function, the analysis

becomes complicated and it is nontrivial to calculate the
thermodynamics completely.

2 Radial motion equation of particles

Among the higher curvature gravity theories, the so-
called Lovelock gravity [25] is quite special. Its La-
grangian consists of the dimensionally extended Euler
densities. In this gravity theory, the field equation is
only second order and the quantization of the linearized
Lovelock theory is free of ghosts [26]. Thus, it is nat-
ural to study the effects of higher curvature terms on
the properties and thermodynamics of black holes. The
black hole solutions and their thermodynamics in Love-
lock gravity have been widely studied [27–54]. Moreover,
it is natural to consider the nonlinear terms on the mat-
ter side of the action while accepting the nonlinear terms
of the invariants constructed by the Riemann tensor on
the gravity action. Thus, in the presence of an elec-
tromagnetic field, it is worth to apply the Born-Infeld
action [55] instead of the Maxwell action. Motivated by
this, Ref. [27] presented topological black hole solutions
in Lovelock-Born-Infeld gravity.

The action of third order Lovelock gravity with non-
linear Born-Infeld electromagnetic field is [27]

IG =
1

16π

∫

dn+1x
√
−g(−2Λ+L1+α2L2 +α3L3 +L(F )),

(1)
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where Λ is the cosmological constant, α2 and α3 are the
second and third order Lovelock coefficients, L1 = R
is the Einstein-Hilbert Lagrangian, L2 = RµνγδR

µνγδ −
4RµνR

µν +R2 is the Gauss-Bonnet Lagrangian,

L3 = 2RµνσκRσκρτRρτ
µν +8Rµν

σρR
σκ
ντ Rρτ

µκ +24RµνσκRσκνρR
ρ
µ

+3RRµνσκRσκµν +24RµνσκRσµRκν +1624RµνRνσRσ
µ

−12RRµνRµν +R3

(2)
is the third order Lovelock Lagrangian, and L(F ) is the
Born-Infeld Lagrangian given as

L(F ) = 4β2

(

1−

√

1+
F 2

2β2

)

. (3)

When the Born-Infeld parameter β goes to infinity, L(F )
reduces to the standard Maxwell form L(F ) = −F 2,
where Fµν = ∂µAν − ∂νAµ. Aµ is the electromagnetic
vector field given as

Aµ =

√

n−1

2n−4

q

rn−2
F (η)δ0

µ. (4)

When η → 0 (β → ∞) , F (η) → 1, and therefore the
vector potential (4) reduces to the gauge potential of the
Maxwell field.

Considering the case

α2 =
α

(n−2)(n−3)
, α3 =

α2

72

(

n−2

4

) , (5)

Ref. [27] derived the (n + 1)-dimensional static solution.
For the k = 1 case corresponding to spherical topology,
the metric of the black hole reads

ds2 =−f(r)dt2 +
dr2

f(r)
+r2dΩ2 (6)

where

f(r)=1+
r2

α

(

1− 3

√

g(r)
)

,

g(r)=1+
3αm

rn
−

12αβ2

n(n−1)
[

1−
√

1+η−
Λ

2β2
+

n−1

n−2
ηF (η)

]

,

dΩ2 =dθ2
1 +

n−1
∑

i=2

i−1
∏

j=1

sin2 θjdθ2
i . (7)

dΩ2 denotes the line element of a (n− 1) dimensional
hypersurface with constant curvature (n−1)(n−2), and
F (η) is a hypergeometric function of the form

F (η) = 2F1

(

1

2
,

n−2

2n−2
;
3n−4

2n−2
;−η

)

(8)

where

η =
(n−1)(n−2)q2

2β2r2n−2
. (9)

The ADM (Arnowitt-Deser-Misner) mass and elec-
tric charge of the black hole in terms of the parameters
m and q are respectively given as [27]

M =
(n−1)Vn−1

16π

m, Q =
Vn−1

4π

√

(n−1)(n−2)

2
q

(10)
where Vn−1 is the volume of the (n−1)-dimensional hy-
persurface mentioned above.

Solving the equation f(r) = 0, we get the largest pos-
itive root and denote it by r+, from which we can deter-
mine the event horizon radius. In terms of r+, the ADM
mass and Hawking temperature of the black hole can be
written as

M =
(n−1)Vn−1r

n
+

48πα

{

−1+

(

1+
α

r2
+

)3

+
12αβ2

n(n−1)

[

1−
Λ

2β2
−
√

1+η+ +
n−1

n−2
F (η+)η+

]}

, (11)

T =
f ′(r)

4π

=
(n−1)[3(n−2)r4

+ +3(n−4)αr2
+ +(n−6)α2]+12r6

+β2(1−
√

1+η+)−6Λr6
+

12π(n−1)r+(r2
+ +α)2

(12)

where η+ =
(n−1)(n−2)q2

2β2r2n−2
+

and we have used the equal-

ity

(n−2)F (η+)−2(n−1)η+F ′(η+) =
n−2

√
1+η+

. (13)

To apply the Parikh-Wilczek method, we make the

transformation

dT = dt+
1

f(r)

√

r+

r
dr. (14)

Then the line element (6) becomes

ds2 =−f(r)dT 2 +2

√

r+

r
dTdr+

r−r+

r

1

f(r)
dr2 +r2dΩ2.

(15)
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Obviously, the line element (15) is well-behaved at
the horizon position, which is necessary to describe tun-
neling. The radial outgoing null geodesic is given by

ṙ = f(r)

(

1+

√

r+

r

)−1

(16)

where the dot denotes differentiation with respect to T .

3 Emission rate and entropy

The total energy of a stationary space-time should
be conserved during the emission. When particle’s self-
gravitation is taken into account and a particle of energy
ω is emitted, the black hole mass will become M − ω
and all above and following relevant equations should be
used with M → M −ω. Since the metric is of spherical
symmetry, regarding the outgoing particle as an s-wave,
i.e. a shell of energy, is reasonable.

The imaginary part of the action for a particle cross-
ing the horizon outwards from the initial radius ri to the
final radius rf can be expressed as

ImZ = Im

∫ Tf

Ti

LdT = Im

∫ rf

ri

prdr = Im

∫ rf

ri

∫ pr

0

dprdr

(17)

where pr is the canonical momentum conjugate to r.
Taking the Hamiltonian equation into account, we can
obtain

ṙ =
dH

dpr

∣

∣

∣

∣

r

(18)

where (dH)r = dM . Changing the variable from the
momentum to the energy and switching the order of in-
tegration, we have

ImZ =Im

∫ Mf

Mi

∫ rf

ri

dr

ṙ
dM

=Im

∫ Mf

Mi

∫ rf

ri

1+
√

r+/r

f(r)
drdM (19)

where Mi = M ;Mf = M−ω.
It is easy to find that the integrand is singular at the

point r = r+. The integral can be evaluated by deform-
ing the contour around the pole. Doing the r integral,
we have

ImZ =−2π

∫ Mf

Mi

1

f ′(rH)
dM. (20)

From Eq. (11), we obtain

dM

dr+

=
(n−1)[3(n−2)r4

++3(n−4)αr2
+ +(n−6)α2]+12r6

+β2(1−
√

1+η+)−6Λr6
+

48π

Vn−1r
n−7
+ . (21)

Substituting Eqs. (12) and (21) into Eq. (20), we
have

ImZ =−
n−1

8
Vn−1

∫ rf

ri

(rn−2
+ +2αrn−4

+ +α2rn−6
+ )dr+

=
n−1

8
Vn−1

[(

rn−1
i

n−1
+

2αrn−3
i

n−3
+

α2rn−5
i

n−5

)

−

(

rn−1
f

n−1
+

2αrn−3
f

n−3
+

α2rn−5
f

n−5

)]

. (22)

According to the WKB approximation, the relation-
ship between the tunneling probability and the imagi-
nary part of the action is described by [56]

Γ ∼ exp(−2ImZ). (23)

Then we obtain

Γ ∼ exp

{

n−1

4
Vn−1

[(

rn−1
f

n−1
+

2αrn−3
f

n−3
+

α2rn−5
f

n−5

)

−

(

rn−1
i

n−1
+

2αrn−3
i

n−3
+

α2rn−5
i

n−5

)]}

. (24)

The emission spectrum obviously deviates from the
pure thermal spectrum but is consistent with an under-
lying unitary theory. Compared with the conventional

tunneling rate

Γ ∼ e∆S , (25)

where ∆S = S(M −ω)−S(M) is the difference in the
black hole entropy before and after the emission, which
is shown in all of the early references about tunneling
radiation, we obtain the entropy of the black hole in LBI
gravity as

S =
n−1

4
Vn−1

(

rn−1
t

n−1
+

2αrn−3
t

n−3
+

α2rn−5
t

n−5

)

. (26)

The result is in accordance with that given in Refs. [27,
28]. It is obvious that the area formula of black hole
entropy breaks down unless α = 0.

Utilizing the equality (13) and noticing the black hole
charge is invariable, it is easy to verify from Eqs. (26)
and (11-12) that the first law of thermodynamics is sat-
isfied as

dM = TdS. (27)

It should be noted that the first law of thermodynamics
for a charged black hole should take the form

dM = TdS +φdQ. (28)
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However, in the case where the emitted particles are neu-
tral and uncharged, the charge of the black hole does not
change (dQ = 0), so the charge’s contribution to the first
law of thermodynamics is absent and Eq. (28) is reduced
to (27).

4 Discussion

Equation (27) is an incorporation of the energy con-
servation law dM = dQh (where Qh is the heat quantity
and no forces, including the electric field force, do work)
and the second law of thermodynamics dS = dQh/T .
The energy conservation is suitable for any process, but
the equation dS = dQh/T is only valid for a reversible
process (dS > dQh/T for an irreversible process). That
is, the emission process has been treated as a reversible

one in the PW tunneling framework.
For further discussion, we expand ∆S in ω. The tun-

neling rate (24) can be rewritten as

Γ ∼ exp(∆S)≈ exp(−βω+a2ω
2 +O(ω2)), (29)

where

a2 =
1

2

d2(∆S)

dω2

∣

∣

∣

∣

ω=0

, (30)

and β =
1

T
is the inverse of the Hawking temperature.

The leading term in Eq. (29) gives the familiar thermal
Boltzmann factor for the emanating radiation, while the
other terms, which can be calculated to any desired or-
der in ω, represent corrections from the response of the
background geometry to the emission of a quantum [16].
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