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Scattering of massless fermions by Schwarzschild and
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Abstract: We study the scattering of massless Dirac fermions by Schwarzschild and Reissner-Nordström black

holes. This is done by applying partial wave analysis to the scattering modes obtained after solving the massless

Dirac equation in the asymptotic regions of the two black hole geometries. We successfully obtain analytic phase

shifts, with the help of which the scattering cross section is computed. The glory and spiral scattering phenomena

are shown to be present, as in the case of massive fermion scattering by black holes.
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1 Introduction

The problem of black hole scattering is still ongo-
ing, despite the numerous papers that have dealt with
it so far. Most of these studies have been dedicated to
investigating different aspects of (massless) scalar wave
scattering by black holes [1–23]. However, there are also
papers that study the scattering of massless electromag-
netic waves [24–32] and gravitational waves [33–40]. The
problem of scattering of massive spinor 1/2 waves by
black holes was discussed in Refs. [5, 41–50]. The scat-
tering of massless fermions was studied in Refs. [51, 52],
where the scattering of massless fermions by a black hole
with a cosmic string and by a dilatonic black hole, re-
spectively, was investigated. It was also partially inves-
tigated in Ref. [46] for a Schwarzschild black hole. The
authors of Ref. [46] used numerical methods to solve the
Dirac equation in Schwarzschild black hole geometries in
order to find numerical phase shifts using a partial wave
analysis. In Ref. [49] we obtained, for the first time,
analytic expressions for the Schwarzschild phase shifts.
Furthermore, in Ref. [50] we extended our study to in-
clude the case of fermion scattering by charged Reissner-
Nordström black holes, where we again found analytic
phase shifts. Moreover, our study in Ref. [50] is to our
knowledge the first in the literature in which the prob-
lem of massive fermion scattering by Reissner-Nordström
black holes was investigated.

In this paper we study the scattering of massless
fermions by spherical symmetric black holes, with a focus
on Schwarzschild and charged Reissner-Nordström black

holes. We derive analytic phase shifts that will allow
us to write down analytic expressions for the scattering
cross sections.

Although it is generally assumed that astrophysical
black holes are electrically neutral [53], or at least have
negligible charges, it has been recently shown in Ref.
[54] that charged astrophysical black holes can in fact
exist in the context of minicharged dark matter models
[55]. These dark matter models predict new fermions
that can have fractional electric charge or fermions that
are charged under a U(1) hidden symmetry. Because
these new charges have just a small fraction of the elec-
tron’s charge, their coupling with the Standard Model
electromagnetic sector is suppressed. This means that
even in the case of massive fermions there could be no
direct interaction between the Dirac field and the elec-
tromagnetic field of the black hole. This could open new
possibilities for dark matter detection through neutrino-
wave scattering by black holes, besides the gravitational-
wave signatures discussed in Ref. [56].

In the original Standard Model of particle physics
neutrinos are assumed to be massless. Therefore, our
results will include the case of massless neutrino scat-
tering by black holes (see also Appendix A). However,
it has been observed experimentally [57, 58] that neutri-
nos have a nonzero mass that it is currently bound to
∑

mν<0.183 eV [59]. The electron neutrino mass could
be as small as mνe

∼0.01 eV or smaller. Having this in
mind one can easily assume that our results (presented
in the following sections) will give also a good approxi-
mation for the cross sections in the case of scattering of
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astrophysical neutrinos by black holes.
The paper is organised as follows. In Section 2 we

give a brief introduction of the general form of the mass-
less Dirac equation in a curved spacetime with spherical
symmetry. The Cartesian gauge is introduced and the
separation of spherical variables is made. In the Sec-
tion 3 we solve the massless Dirac equation in the case
of Schwarzschild and Reissner-Nordström black hole ge-
ometries. We focus only on scattering mode solutions.
Section 4 deals with the partial wave analysis, where we
give analytical expressions for the phase shifts that en-
ter into the definitions of the scattering amplitudes and
cross sections. Section 5 presents the main results ob-
tained. The paper ends with Section 6, where the final
conclusions and some remarks are presented.

In this paper we set G=c=~=1; the metric signature
used is (+,−,−,−); and the natural indices are labeled
with Greek letters µ,ν,α,..., while the local indices are
labeled with a,b,c,...; both can take values in the range
(0,1,2,3).

2 Preliminaries

Starting from the gauge invariant action

S=

∫

d4x
√−g

{

i

2
ψγaDaψ−

i

2
(Daψ)γaψ

}

, (1)

we can immediately derive the following Dirac equation
for a massless spinor field in a curved spacetime

iγaeµ
a∂µψ+

i

2

1√−g∂µ(
√−geµ

a)γaψ−1

4
{γa,Sb

c}ωc
abψ=0,

(2)
where eµ

a are the tetrad fields such that gµν = ηabeµ
ae

ν
b ;

γa are the point-independent Dirac matrices satisfying
{γa,γb}=2ηab; and S b

c are the generators of the spinor
representation of SL(2,C) [60] such that Sab= i

4
[γa,γb];

The covariant derivative Da and the spin-connection
read

Da=∂a+
i

2
Sb

cω
c
ab

ωc
ab=e

µ
ae

ν
b

(

êc
λΓ

λ
µν−êc

ν,µ

)

(3)

with ∂a=eµ
a∂µ and Γλ

µν stand for the GR Christoffel sym-
bols.

The spacetime geometry of a spherically symmetric
black hole is given by the following line element

ds2=h(r)dt2− dr2

h(r)
−r2

(

dθ2+sin2θdφ2
)

. (4)

In the Cartesian gauge [62, 63], the above line ele-
ment can be obtained from ds2 = ηabê

aêb with the fol-
lowing choice of the tetrad field êa(x)= êa

µdxµ (i.e. the
1-forms)

ê0=h(r)dt,

ê1=
1

h(r)
sinθcosφdr+rcosθcosφdθ−rsinθsinφdφ,

ê2=
1

h(r)
sinθsinφdr+rcosθsinφdθ+rsinθcosφdφ,

ê3=
1

h(r)
cosθdr−rsinθdθ. (5)

The main advantage of the above Cartesian gauge is that
in this gauge the Dirac equation (free or in central scalar
potentials) is manifestly covariant under rotations. This
means that the angular part of the equation can be solved
in terms of the usual 4-component angular spinors from
special relativity Φ±

m,κ(θ,φ) [60, 61]. Using the Cartesian
gauge, new (exact or approximate) analytical solutions
of the Dirac equation in curved backgrounds were found
[68–71].

Inserting the metric (4) in Eq. (2) and after some cal-
culations, one can put the Dirac equation into a Hamil-
tonian form Hψ(x)=i∂tψ(x), with

HD=−iγ0(~γ·~er)

(

h∂r+
h

r
−
√
h

r
K

)

(6)

and where K=2~S·~L+1=J2−L2+ 1
4

is the spin-orbit op-
erator [60], whose eigenvalues κ are related those of the
total angular momentum operator (J) and of the orbital
angular momentum (L) by

κ=















−
(

j+
1

2

)

=−(l+1) for j=l+
1

2

+

(

j+
1

2

)

=l for j=l−1

2

. (7)

The radial part of the Dirac equation can be derived
by searching for (particle-like) positive frequency solu-
tions of energy E of the type

ψ(x)=ψE,κ,mj
(t,r,θ,φ)=

=
e−iEt

r
√

h(r)

{

f+
E,κ(r)Φ+

mj ,κ(θ,φ)+f−

E,κ(r)Φ−

mj ,κ(θ,φ)
}

.

(8)

One can show that the final form of the equations satis-
fied by the radial wave-functions f±(r) (where for sim-
plicity we have dropped the indices E and κ) is







0 −h(r) d
dr

+κ
r
√

h(r)

h(r) d
dr

+κ
r
√

h(r) 0













f+(r)

f−(r)






=E







f+(r)

f−(r)






. (9)

123101-2



Chinese Physics C Vol. 41, No. 12 (2017) 123101

3 Massless Dirac equation in Schwarzschild

and Reissner-Nordström geometry

As already mentioned in the Introduction, we are
studying here only the scattering of massless fermions
by black holes. For that we need first to find the scatter-
ing modes of the Dirac equation (9) on which to ap-
ply the partial wave analysis (PWA) method. That
will allow us to find the phase shifts and then to cal-
culate all the physical quantities that are characteristic
of the scattering phenomena. For PWA one only needs to
know the asymptotic behaviour of the scattering modes.
As shown below, in the asymptotic region of both the
Schwarzschild and RN black hole, the Dirac equation (9)
can be brought to a simpler form that will allow us to
solve it analytically. Furthermore, having an analytical
solution at our disposal will allow us to find analytical
phase shifts.

In the case of a Reissner-Nordström black hole, the
function h(r) entering the line element (4) is defined by

h(r)=1−2M

r
+
Q2

r2
=
(

1−r+
r

)(

1−r−
r

)

, (10)

where M is the mass of the black hole and Q the electric
charge. The Cauchy (r−) and black hole horizon (r+)
radii are easily found to be r±=M±√M 2−Q2 (provided
Q<M). If we make Q= 0 in Eq. (10) we obtain the
Schwarzschild line element with r−=r+=r0=2M .

It proves useful to introduce a convenient Novikov-
like dimensionless coordinate [65, 66]

x=

√

r

r+
−1∈(0,∞). (11)

Then the Dirac equation (9) in the asymptotic region
of the black hole becomes









1
2

d
dx+κ

x −ε
(

x+1
x

)

ε
(

x+1
x

)

1
2

d
dx−

κ
x















f+(x)

f−(x)






=0, (12)

where we denoted ε = r+E. In obtaining Eq. (12) we
have used a Taylor expansion with respect to 1/x, from
which we neglected the O(1/x2) terms and higher.

After putting the terms proportional with x into di-
agonal form, using the transformation matrix

M=
√
ε

(

−i i

1 1

)

, (13)

that transforms (f+,f−)T → (f̂+,f̂−)T =M−1(f+,f−)T ,
the final system of radial equations is obtained

1

2

df̂+

dx
−iε

(

x+
1

x

)

f̂+=
κ

x
f̂−

1

2

df̂−

dx
+iε

(

x+
1

x

)

f̂−=
κ

x
f̂+. (14)

The analytical solutions of the above equations can
be found in terms of Whittaker M and W functions
[49, 50, 71]

f̂+(x)=C1

1

x
Mρ+,s(2iεx2)+C2

1

x
Wρ+,s(2iεx2)

f̂−(x)=C1

s−iε

κ

1

x
Mρ−,s(2iεx2)−C2

1

κ

1

x
Wρ−,s(2iεx2),

(15)

where the parameters s,ρ± are related to κ and ε by the
following relations

s=
√
κ2−ε2, ρ±=∓1

2
−iε. (16)

These solutions are the starting point for study-
ing the scattering phenomena by Schwarzschild and
Reissner-Nordström black holes with the help of partial
wave analysis. The Whittaker functions Mρ±,s(2iεx2)=

(2iεx2)s+ 1
2 [1+O(x2)] are regular in x=0 (i.e. in r=r+),

while the Whittaker Wρ±,s(2iεx2) are divergent as x1−2s

if s> 1
2

[67]. As showed in the Appendices of Refs. [49]
and [50] one must impose the asymptotic condition C2=0
in order to have elastic collisions with a correct Newto-
nian limit for large angular momentum.

4 Scattering cross section and phase

shifts

The phase shifts that result after applying the partial
wave analysis [49, 50] on the scattering modes (15) are
defined by

Sκ=e2iδκ =

(

κ

s−iε

)

Γ (1+s−iε)

Γ (1+s+iε)
eiπ(l−s). (17)

The scattering amplitudes are defined by [61]

f(θ)=

∞
∑

l=0

alPl(cosθ), g(θ)=

∞
∑

l=1

blP
1
l (cosθ), (18)

where al and bl are the partial amplitudes

al =
1

2ip
[(l+1)(S−l−1−1)+l(Sl−1)]

bl =
1

2ip
(S−l−1−Sl). (19)

Putting all together one gets the differential scattering
cross section

dσ

dΩ
=|f(θ)|2+|g(θ)|2 . (20)

In the next section we will give a selection of our
key results for the scattering of massless fermions by
Schwarzschild and Reissner-Nordström black holes. In
the derivation of the plots we have used a method
first proposed in Ref. [64] and further developed in
Refs. [46, 49, 50] for improving the convergence of the
partial wave series (18).
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5 Results

In Fig. 1 we compare the scattering of massless (v=1)
and massive (v 6= 1) fermions by a Schwarzschild black
hole (q=0) for a fixed value of the (frequency) param-
eter ME. The case of massive fermion scattering by
Schwarzschild and Reissner-Nordström black holes was
studied in more detail in our previous papers [49, 50].
Analyzing the differential cross section in the backward
direction (near θ≈π) one can see a minimum in the scat-
tering intensity. If the fermion is massive then the scat-
tering intensity in the backward direction is higher than
in the massless case. Moreover, with decreasing fermion
speed, the minimum will eventually become a maximum
in the backward direction (see Ref. [49] for more details).

Fig. 1. (color online) Comparison between the
scattering of massless (v=1) and massive (v 6=1)
fermions by a Schwarzschild black hole at ME=
2.5. The presence of a minimum in the backward
direction can be observed.

In optics the presence of a minimum or maximum in
the scattering intensity in the backward direction occurs
when the deflection angle of a ray is a multiple of π. This
is observed by the presence of a bright spot or halo in
the antipodal direction. If the orbit passes the scattering
center multiple times, then spiral (or orbiting) scattering
can occur. This can be seen by the presence of oscilla-
tions in the scattering intensity. As can be seen from
Figs. 1-5, the phenomena of glory and spiral scatter-
ing also occur in the case of massless fermion scattering
by Schwarzschild and charged Reissner-Nordström black
holes.

In Fig. 2 we plot the scattering intensity for a mass-
less spinor wave of fixed frequency for a Schwarzschild
black hole (q = 0), a typical Reissner-Nordström black
hole (with q = 0.5, q = 0.6, q = 0.9), and an extremal
Reissner-Nordström black hole (q=1). One can observe
(very clearly for ME=3) that at a fixed frequency the
glory width gets larger as the value of the charge-to-mass
ratio q increases. The same behaviour was also reported
in Ref. [17] in the case of scattering of massless scalar
waves by Reissner-Nordström black holes. In Ref. [51]
the authors found that the linear mass density of the cos-

mic string produces a similar effect. Furthermore, the os-
cillations present in the scattering intensity become less
frequent as we approach the extremal case q= 1. This
means that the spiral scattering becomes less important
as the black hole gets more and more charge on it.

Fig. 2. (color online) Comparison between the
massless fermion scattering cross section at fixed
frequency ME=1.5 for q=0, q=0.6, q=1 in one
case and at ME=3 for q=0.5, q=0.9, q=1 in the
other case. Fixing the frequency, the glory width
gets larger as the value of the charge-to-mass ratio
q increases.

In Fig. 3 the differential scattering cross section for
the massless fermion field is plotted, using a logarith-
mic scale, for different values of the incoming fermion
frequency ME = 2.5,3,3.5 at a chosen fixed value of
the charge-to-mass ratio q = 0 (Schwarzschild case),
q=0.5 (typical Reissner-Nordström) and q=1 (extremal
Reissner-Nordström case). The first thing to observe is
that the width of the glory becomes narrower as the fre-
quency increases. The oscillations (indicating spiral scat-
tering) present in the scattering intensity become more
frequent, however, as the value of ME is increased. This
can be best seen for the extremal case q=1.

Figure 4 shows the behaviour of the massless fermion
differential scattering cross section at low frequency for a
typical Reissner-Nordström black hole (q=0.5). In Fig.
5 the extremal Reissner-Nordström case (q=1) is stud-
ied for a large variance of ME. We notice the absence of
oscillations at very low frequency (ME=0.1) in the dif-
ferential scattering cross section. However, as the value
of ME is increased, the spiral scattering and eventually
glory start to occur.
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Fig. 3. (color online) Reissner-Nordström scatter-
ing intensity for ME = 2.5, 3, 3.5 in the case of
a black hole with no charge q = 0, with charge
q = 0.5 and the extremal case with charge q = 1.
Increasing the frequency causes narrowing of the
glory width. At the same time, the oscillations in
the scattering intensity become more frequent.

Fig. 4. (color online) Differential scattering cross
section for massless fermions at low frequen-
cies (ME = 0.4,0.6,0.8) for a typical Reissner-
Nordström black hole with charge q=0.5.

Exploring the parameter space (q,ME), we have
found situations when two different sets of parameters

present similar scattering patterns (see Fig. 6). In some
cases (like in Fig. 6B) the scattering patterns are almost
the same. For example, the difference between the val-
ues in the scattering intensity of (0.6,1.1) and (1.0,0.2)
curves is less than 17%. As a consequence, one will need
higher accuracy in the observed data in order to distin-
guish between the two data sets.

Fig. 5. (color online) Scattering cross section for
extremal Reissner-Nordström black hole (q = 1)
for ME = 0.1,1,3. Increasing the value of ME,
spiral scattering and glory start to occur in the
scattering intensity.

Fig. 6. (color online) Dependence of the scattering
pattern on the black hole charge and frequency.
One can observe similarities between the scatter-
ing patterns for certain values in the parameter
space (q,ME).

6 Conclusions and final remarks

In this paper we have studied the scattering of mass-
less fermions by Schwarzschild and charged Reissner-
Nordström black holes. We have showed that glory and
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spiral scattering phenomena could occur for both types of
black holes analysed, similar to what happens in the case
of massive fermion scattering by black holes [46, 49, 50].
As can be seen from Figs. 1–5, the scattering of mass-
less fermions always has a minimum in the backward
direction (as opposed to the massless scalar case [17]).
However, if the fermion becomes massive (see Fig. 1),
then this minimum starts to increase and will become
eventually a maximum [49].

The dependence of the scattering on the charge-to-
mass ratio q=Q/M was analysed for typical values in-
cluding the extreme case q=1. As shown in Fig. 2, for
a fixed value of ME the glory width gets larger as the
value of q is increased. One the other hand, keeping the
value of q fixed and varying the frequency ME we ob-
serve an increase in the number of oscillations present in
the scattering intensity, as shown in Fig. 3.

As already mentioned, at a fixed frequency, the glory
pick is wider in the case of the Reissner-Nordström black
hole (q 6=0) compared with the Schwarzschild black hole
(q = 0). As a consequence the glory phenomenom will
be easier to observe astronomically for a Schwarzschild
black hole than for a charged Reissner-Nordström one.
Moreover, the glory for the extremal Reissner-Nordström
case is the hardest for astronomy observation.

We have used the parameter ME to label our figures.
Restoring the units we can make the following dimension-
less quantity

ε=
GME

~c3
=

πrS

vλC

, (21)

where rS = 2MG is the Schwarzschild gravitational ra-
dius, λC =h/p is the associated Compton wavelength of
the particle and v=p/E is its speed (v=1 for massless
fermions). One can interpret ε as a measure of the grav-
itational coupling. The results obtained in the previous
sections show that glory and spiral scattering of massless
fermions by black holes are significant when the gravi-
tational coupling is of the order of π. This implies that

we must have rS ∼λC . Thus we can conclude that the
diffraction patterns of massless fermions (like the glory
and spiral scattering) by black holes are significant if the
condition rS∼λC is fulfilled.

Neutrinos have the smallest mass of the fermions
known experimentally today. The current upper bound
limit on the sum of the three known neutrinos is
∑

mν < 0.183eV [59]. If we assume the mass of the
electron neutrino to be mνe

∼0.01eV , then the condition
rS∼λC implies a black hole mass of M∼1022 kg, which
is much smaller than the mass of an astrophysical stelar
black hole MBH ∼ 1031 kg. This means that neutrino
glory and spiral scattering can be observed only for scat-
tering by small black holes. Such types of primordial
black holes could have been created in the very early
universe. Another possible scenario for the existence of
such small black holes is in the context of theories with
large extra-dimensions [72]. In these circumstances the
possibilities of observing and detecting diffraction pat-
terns for massive fermion scattering by black holes are
currently unavailable. However, in the case of the exis-
tence of truly massless fermions (yet to be detected) we
are no longer bound by the mass of the fermion (which
as we saw constrains also the possible mass of the black
hole), which means that glory and spiral scattering can
in principle be observed for the scattering of massless
fermions (having appropriate energies) by real astro-
physical black holes.

I would like to thank Prof. I.I. Cotăescu for very
useful discussions related to this subject, that helped to
improve the manuscript and for suggesting the inclusion
of Appendix A. I am also grateful to C. Crucean for dis-
cussions and for reading the manuscript. Last but not
least, I would like to express my gratitude to the anony-
mous Referee for his/her comments and for suggesting to
search for situations with different charge and frequency
that present similar scattering patterns.

Appendix A

Neutrino limit to the Dirac field

The aim of this Appendix is to show that the scatter-
ing of the Standard Model neutrino (which is a left-handed
massless Dirac fermion) by black holes is contained in our
results presented here regarding the scattering of massless
Dirac fermions.

The following combination of the (f+
κ ,f−

κ ) radial wave
functions

f
L
κ =

1√
2

(

f
+
κ −if−

−κ

)

f
R
κ =

1√
2

(

f
+
κ +if−

−κ

)

, (A1)

corresponds to the radial wave functions for a left-handed and
right-handed fermion respectively.

From Eqs. (13), (15) and (f+,f−)T =M(f̂+,f̂−) one gets

f
+
κ =i

√
ε
(

f̂
−

κ −f̂
+
κ

)

=i
√

ε
1

x

[

s−iε

κ
C

(κ)
1 Mρ+,s(2iεx

2)−C
(κ)
1 Mρ−,s(2iεx

2)

]

,

(A2)

f
−

−κ=
√

ε
(

f̂
−

−κ+f̂
+
−κ

)

=
√

ε
1

x

[

s−iε

−κ
C

(−κ)
1 Mρ+,s(2iεx

2)+C
(−κ)
1 Mρ−,s(2iεx

2)

]

,

(A3)

where we used the condition C2 =0 as already mentioned in
the main text for obtaining the phase shifts (17).

Now by imposing the condition fR
κ =0 and having in mind

Eq. (16), together with the fact that Mρ+,s and Mρ−,s are
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linearly independent, we obtain in the end the following re-
lation

C
(κ)
1 =C

(−κ)
1 . (A4)

Now calculating fL
κ using Eq. (A4), we obtain in the end

f
L
κ =

√
2f

+
κ . (A5)

The last equation tells us that by applying the partial
wave analysis to the left-handed neutrino fL

κ we will get the
same phase shifts (17) as obtained by applying the partial
wave analysis to the fermion spinor f+

κ .
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68 I. I. Cotăescu, Phys. Rev. D ,60: 124006-010 (1999); Phys.
Rev. D, 65: 084008 (2002)

69 C. A. Sporea, Mod. Phys. Lett. A, 30: 1550145 (2015)
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