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Parameter design considerations for an oscillator IR-FEL *
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Abstract: An infrared oscillator FEL user facility will be built at the National Synchrotron Radiation Laboratory

at in Hefei, China. In this paper, the parameter design of the oscillator FEL is discussed, and some original relevant

approaches and expressions are presented. Analytic formulae are used to estimate the optical field gain and saturation

power for the preliminary design. By considering both physical and technical constraints, the relation of the deflection

parameter K to the undulator period is analyzed. This helps us to determine the ranges of the magnetic pole gap,

the electron energy and the radiation wavelength. The relations and design of the optical resonator parameters

are analyzed. Using dimensionless quantities, the interdependences between the radii of curvature of the resonator

mirror and the various parameters of the optical resonator are clearly demonstrated. The effect of the parallel-plate

waveguide is analyzed for the far-infrared oscillator FEL. The condition of the necessity of using a waveguide and

the modified filling factor in the case of the waveguide are given, respectively.
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1 Introduction

An infrared free electron laser (IR-FEL) user facility
will be built at the National Synchrotron Radiation Lab-
oratory (NSRL) of the University of Science and Tech-
nology of China (USTC), and will be dedicated to fun-
damental research in energy chemistry. The facility in-
cludes two FEL oscillators driven by a linac. The mid-
infrared oscillator will generate a laser with a wavelength
range of 2.5–50 µm, and the far-infrared oscillator will
work in the wavelength range of 40–200 µm.

Though several very successful IR-FEL user facilities
have already been developed worldwide (for example, see
Refs. [1–3]), the different requirements from users and
the broad wavelength range still bring us great challenges
in the design of this facility. One main goal of the de-
sign and optimization for oscillator FELs is to achieve
the maximum output power by maximizing the gain and
minimizing the passive loss of the optical cavity for the
entire operating wavelength range. Many parameters af-
fect the performance of a FEL. They include parameters
of the electron beam, of the undulator and of the optical
resonator. These parameters impinge on one another, so
a comprehensive consideration and optimization must be
undertaken.

Compared with a single-pass high gain FEL, oscil-
lator FELs work in multi-pass low gain mode, usually
at longer wavelengths. Though the requirements of the

electron beam parameters for an oscillator FEL are not
as stringent as for a high gain FEL, it requires high
repetition rate electron beam and a high precision op-
tical cavity. Moreover the physical effects therein are
more serious and complicated than the high gain FEL
case. These effects include the diffraction effect [1,4],
the pulse slippage effect [5], the effect of optical field
multi-modes [6–9] and so on. In addition, the non-ideal
electron beam makes it more difficult to accurately an-
alyze and simulate the oscillator FEL performance, and
the accumulation error effect in the multi-pass gain sim-
ulation (typically several hundred passes) also increases
the inaccuracy of the simulation. All these place greater
demands on the analysis and simulation in the design
and optimization of oscillator FELs. In this paper, we
give a general consideration for the parameter design of
the facility. First we give a description of the optical gain
and the power of the oscillator FEL, then we analyze the
design and optimization of undulator parameters; next
we analyze the relations and choice of the optical res-
onator parameters; and finally we discuss the issues of
the waveguide.

2 Optical gain and power of the oscilla-

tor FEL

Usually oscillator FELs work in the low gain region
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(the interaction length is shorter than three gain lengths
[10]), and the initial gain is the small signal gain:
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ku = 2π/λu, λu is the undulator period; K is the di-
mensionless vector potential of the undulator magnetic
field; L = Nλu is the undulator length; Ip is the peak
current of the electron beam; IA = 17 kA is the Alfven
current; σe and γ are the RMS transverse size and the
dimensionless energy of the electron beam, respectively;
fc is the undulator coupling factor - for a planar undu-
lator it is the difference between two Bessel functions,
fc = [J,J ] = J0(ξ)−J1(ξ) with ξ = K2/(4+2K2), while
for a helical undulator fc = 1; x = φ′

0L; and the angular
bracket represents the average over the electron’s initial
phase velocities (i.e. the tuning parameter) φ′

0, which is
proportional to the electron’s initial energy. For a given
initial energy distribution f(φ′

0) of the electron beam,
the small signal gain can be calculated by the following
asymptotic formula [11]
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where φ(t) is a characteristic function of the probability
distribution f(x). Usually the calculation to n = 4 is
sufficient.

As the optical field intensity increases, the gain de-
creases. When the gain is equal to the total loss in the
optical resonator, the net gain is equal to zero, then the
system reaches equilibrium and the optical field reaches
its maximum, namely saturation. For the given initial
small signal gain gss and the total loss ratio in the optical
resonator α, which includes the output coupling fraction
and the passive loss (see Section 4), we give the calcula-
tion expression of the saturation power in the resonator
[12, 13] as below

Ps =
1−α−e−gss

α
Pc, (3)

where Pc is the optical power when the gain is down to
about half of the initial small signal gain,

Pc =
gss

β
ρPe. (4)

Pe is electron beam power and
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For a mono-energy electron beam the angular bracket
parts of gss and β are shown in Fig. 1.

Fig. 1. For a mono-energy electron beam, the de-
pendence of gss and β on the tuning parameter
(Eqs.(1) and (5), t= L/

√
3Lg).

The macro-pulse length of the electrons should be
longer than the saturation time. It can be estimated as
[12, 13]

Te > M
2Lc

c
≈ 4Lc ln(Ps/P0)

c(gss−α−gssα)
, (6)

where Lc is the resonator length, M is the number of
round trips of the optical pulse in the resonator needed
to reach saturation, and P0 is the initial emission power,
i.e. the spontaneous emission power [14]:

P0 = (2kuρL)2
1

Ne,s

ρPe, (7)

where Nes is the number of electrons per slippage dis-
tance.

3 Undulator parameter choice

The main undulator parameters include the magnetic
field intensity and period. When the undulator is built,
usually the period is fixed and the magnetic field inten-
sity can be changed by changing the gap of the magnetic
pole. The choice of the magnetic field intensity and pe-
riod is constrained by both physics and technique.

In physics, the undulator period and deflection pa-
rameter K must satisfy the resonant relation

λs =
λu

2γ2n

(

1+
K2

2

)

. (8)

Simultaneously, K itself is a function of the undulator
period, K = 0.934λu(cm)Bu(T). Most often the appro-
priate value of K is in the range of about 1 to 3. If K is
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too small the radiation power will be too weak, while for
large K, the harmonic component of the radiation will
be too much. For a given wavelength of the radiation
and period of the undulator, it has the FEL parameter
ρ ∝ (K[J,J ])2/3/(2+K2)1/2. Therefore we know that ρ
has a maximum value, namely the gain has a maximum
(Eq. (1)), when the undulator parameter K=1.556 (Fig.
2). (The optimal value of 1.2 has been given, but ac-
tually it is optimal only for the ρ with fixed radiation
wavelength and electron energy. For the gain, the small
signal gain of the low gain is proportional to (ρ/λu)

3,
and the gain length of the high gain is proportional to
(ρ/λu)

−1, while for fixed radiation wavelength and elec-
tron energy, the undulator period λu varis with K, so in
this case, there is no optimal value of K for the gain, the
larger the better.)

Fig. 2. The variation of FEL parameter ρ with un-
dulator parameter K for a given radiation wave-
length and undulator period.

Usually the tuning of FEL wavelength is realized by
changing the intensity of the undulator magnetic field or
the energy of the electron, but the former method is used
more often. From the above, the value range of K should
be taken around 1.556. The variation of the wavelength
as the intensity of the undulator magnetic field changes
is shown in Fig. 3. For the range of K =1–3, the wave-
length increased by a factor of three. For our project, the
tuning range of the wavelength is broad (two orders of
magnitude), and adjustments of both the magnetic field
and the electron energy are adopted.

In technique, the limitation of the magnetic field
strength is correlated with the undulator period. In prin-
ciple the undulator period should be as short as possi-
ble, so that it can have more periods in a given length.
Owing to the magnetic field strength and the ratio of
the magnet gap to undulator period having the relation
Bm ∝ 1/ch(πg/λu), along with the decrease of the un-
dulator period the undulator magnetic gap should also
be decreased to ensure the magnetic field strength does

not decrease. But the minimum gap of the undulator
magnetic pole is constrained by the beam dynamic aper-
ture and the vacuum chamber size, and the diffraction
loss also must be considered for the narrower magnetic
gap. Even more, with decreasing undulator period, in
order to ensure the proper value of K, the magnetic field
strength should not only not be decreased, but should
be increased. For an undulator with a given period,
the maximum achievable magnetic field strength is de-
termined by the minimum gap of the undulator magnetic
pole.

Fig. 3. The variation of the wavelength with the
deflection parameter K, (λ0 =λu/2γ2).

Figure 4 gives the dependence of the undulator pa-
rameter K on the magnetic gap and period for both a
hybrid permanent magnet undulator and a pure perma-
nent magnet undulator. Their relation can be described
by the empirical formula [15]

B0 = ae−
g

λu
(b−c g

λu
), (9)

where a,b, and c are constants related to the remnant
field strength of the permanent magnet. For a hybrid
undulator these are:

Fig. 4. The dependence of the undulator parame-
ter K on the magnet gap and period.
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a = 0.54Br+2.778

b =−1.95Br+7.225

c =−1.3Br+2.97

0.07 6g/λu 6 0.7

In Figure 5 we plot the relation of the deflection pa-
rameter K to the undulator period in both physics and
technique. From the figure, for a given undulator period
the variation range of K can be given as the magnetic
field gap varies, and consequently the range of the radia-
tion wavelength can be determined for the given electron
energy or vice versa (Fig. 6). For example, if λu = 3.8
cm, gmin = 16 mm, the value range of K is from about 2
to about 0.3 (this is around the optimal value 1.556, as
indicated by the arrow in Fig. 5). Then for the short-
est wavelength, 2.5 µm in our project, the corresponding
electron energy should be at least 45 MeV; while for the
longest wavelength, 200 µm in this project, the corre-
sponding electron energy is about 8 MeV (shown by the
arrows in Fig. 6).

The above analysis in this section can also be applied
to the high gain FEL case.

Fig. 5. The relations of the deflection parameter
K to the undulator period in both physics (solid
lines, Eq. (8) and technique (dotted lines, Eq.
(9)).

Fig. 6. The relation of the radiation wavelength
and the electron energy for different given undu-
lator parameters.

In principle, the longer the length of the undulator,
the larger the FEL gain is (for an undulator length longer
than three gain lengths, the initial gain will no longer be
regarded as the small signal gain.). It does not follow,
however, that the saturation power also increases with
undulator length (from equation 3, we can also see this
point). Besides, the diffraction effect of the optical beam
and the slippage effect between the light pulse and the
electron pulse will become serious with the increase of
the undulator length, which will make the gain degrade
and must be considered, especially for FELs working at
longer wavelengths such as the far IR and THz bands.

From the requirement that the gain bandwidth due
to the field error and the angular deflection should be
smaller than the natural intrinsic bandwidth, the re-
quirements for the peak field and the first integral of
the field can be given respectively by:

∆Bm
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2
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(10)
For the second integral of the field, we require the trans-
verse offset of electrons in the undulator to be smaller
than the undulating amplitude of the electrons. We give
the requirement for RMS second integral of the field (ex-
cluding the end parts) as

σII <
B̄m

4k2
u

. (11)

The effect of the phase error on the small signal gain
is the same as that on the spontaneous radiation [16, 17]:

R∼=e−σ2

φ . (12)

The most important of the requirements is that for
the second field integral (Eq. (11)).

4 Optical resonator

Optical resonators provide optical positive feedback,
and establish and maintain the light oscillation. The
parameters of the resonator govern the laser oscillation
modes and the characteristics of the output laser beam.
Careful design of the resonator parameters is needed to
achieve a stable output laser beam with high power, par-
ticular pulse structure, and broadband tuning.

The length of the resonator is determined mainly by
the synchronization condition between the round trip
time of the optical pulse in the resonator and the electron
pulse spacing. At the same time, the optical pulse num-
ber in the resonator and the practical installation space
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should be taken into consideration. The longer the res-
onator length, the more optical pulses there can be in the
resonator, which can give a larger average power. The
longer resonator also requires a longer electron macro-
pulse to reach saturation (Eq. (6)). For the practical
installation space, apart from the undulator, the space
needs to include the bending and focusing magnets, the
measurement and diagnostic equipment and so on.

The characteristic length of the diffraction effect is
the Rayleigh length ZR, which is determined by the res-
onator length and the radii of curvature of the resonator
mirror. Usually the dominant transverse mode in the
resonator is the fundamental mode, the Gaussian mode.
For a Gaussian beam the spot size corresponding to a
field amplitude of 1/e of the maximum at distance Z
from the light waist is

ω = ω0

√

1+Z2
/Z2

R
, (13)

where ω0 =
√

ZRλs/π is the light waist. Besides the
position, the size of the light spot also varies with the
wavelength (Fig.7).

Fig. 7. The variation of the light spot size with the
wavelength at a fixed position.

For an oscillator FEL, the optical beam and the elec-
tron beam should overlap to the fullest extent. Usually
the cross-section of the optical beam in the undulator is
larger than that of the electron beam. Unlike a conven-
tional laser, the diffraction loss limit for FELs is mainly
due to the narrower magnetic gap of the undulator. The
relation of the undulator length and the Rayleigh length
should be optimized.

The effect of the diffraction on the gain can be taken
into account in 1D theory by introducing the filling fac-
tor:

F=

1

1+ω2/4σ2
e

, (14)

where ω is the radius of the optical beam, the average is
over the length of the undulator, and σe is the RMS ra-
dius of the electron beam (an electron beam with axisym-
metric and constant envelope is assumed). For Gaus-
sian light with the waist at the middle of the undulator,
ω2 = ω2

0(1+L2/12Z2
R).

If we require that the average cross-section of the op-
tical beam in the undulator has a minimum value, then
the corresponding filling factor reaches its maximum, it
has [18]

ZR = L/2
√

3, ω2
0 = L/

√
3ks, Fmax =

1

1+ω2
0/2σ2

e

.

(15)
If we require the maximum optical beam radius in

the undulator ωM to be minimized, then it has (the light
waist is at the middle of the undulator)

ZR = L/2, ω2
0 = L/ks, ωMmin =

√
2ω0. (16)

Figure 8 illustrates the envelopes of the optical beam
in the undulator for the two conditions. Usually ZR =
(1/2−1/3)L is taken.

Fig. 8. The envelopes of the optical beam in the
undulator for the two choices of Rayleigh length
(z = 0 at the middle of the undulator).

For a given resonator length Lc, the optical beam pro-
file in the resonator, and thus the Rayleigh length, the
diameter and the position of the optical beam waist, can
be determined by choosing the radii of curvature of the
resonator mirror. Different radii of curvature give differ-
ent types of resonator. Typical resonator structures are
the confocal resonator and the concentric resonator.

A confocal resonator has a higher tolerance to mis-
alignment of the resonator mirrors. The diffraction losses
are not large, but the power density on the mirrors of
the resonator is high due to the small spot radius. This
means the mirrors can easily be damaged. Also, because
for a larger waist radius the filling factor is small, that
causes a gain decrease.

For a concentric resonator, the waist radius is smaller,
providing a larger filling factor, while the larger mirror
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spot radius means the resonator mirrors will not easily
be damaged. However, its diffraction loss is larger and
the tolerance to misalignment of the resonator mirror is
very low.

The angular tolerance requirement for the mirrors is
given by Brau for the case of a symmetric cavity [19]:

θm =

√

2λs

πLe

(1−g)1/4(1+g)3/4, (17)

where g is the stability parameter of the cavity. By pa-
rameter transformation we rewrite this angular tolerance
requirement as a more simple form

θm = θf(1+g), (18)

where θf = λs/πω0 is the divergence angular of the optical
field in the far-field region.

The Rayleigh length, the resonator stability param-
eter, the angular misalignment tolerance of the mirrors
and the radius ratio of the light waist to the light spot
on the mirror ω0/ωm, are all dependent on the radii of
curvature of the mirror. Using dimensionless qualities
we plot all these relations together in Fig. 9. The larger
radii of curvature correspond to longer Rayleigh length
and larger tolerance to angular misalignment, but also
to a smaller light spot on the mirrors and consequently
higher power density on the mirrors. There is a trade-off
between the smaller diffraction loss, the larger tolerance
to the angular misalignment and the lower power den-
sity on the mirrors. Usually an optical resonator close
to a concentric resonator is adopted for oscillator FELs.
For a near-concentric resonator, g ≈ −1 + x, x � 1, so
it has θm = θfx � θf . For our mid-infrared oscillator,
we take the ratio of the radii of curvature of the mir-
ror to the resonator length as R/Lc =2.756/5.04=0.547.
Then from Fig. 9, we have ZR = 0.15Lc = 0.77 = L/3,
ω0/ωm = 1/3.41, θm/θf = 0.172, g =−0.8278.

Fig. 9. The relations of the resonator parameters
to the radii of curvature of the mirror (R)(ωm is
the light spot radius on the mirrors).

For a given intra-cavity optical power of oscillator
FEL, a larger out-coupling fraction gives a larger fraction
of the out-coupled power. A larger out-coupling fraction
means smaller net gain, however, which leads to the op-
tical field being saturated earlier, i.e. to lower saturation
power. Therefore there exists an optimum output cou-
pling fraction for maximum out-coupled power. We give
the optimum out-coupling fraction [13]

αoc,m =

√

(1−e−gss)αlo−αlo

1−αlo

, (19)

where we denote the output coupling fraction and the
passive loss (all other losses except the output coupling
fraction, including the diffraction loss, the absorption of
the mirrors and so on) of the cavity as αoc and αlo, re-
spectively, and for the total loss in the optical cavity,
1−α = (1−αlo)(1−αoc). The dependence of the op-
timum out-coupling fraction on the passive loss of the
cavity for different small signal gains is presented in Fig.
10.

Fig. 10. The variation of optimum out-coupling
fraction with passive cavity loss for different ini-
tial gain.

The corresponding maximum output power is [13]

Pout,m =
(√

1−e−gss −√
αlo

)2

Pc. (20)

5 Waveguide

For a FIR-FEL, due to the relatively long wavelength,
the diffraction effect becomes severe, which results in a
reduction of the FEL gain and even to the FEL being
unable to start oscillation. To overcome the diffraction
losses, the waveguide is adapted [20–23]. The waveg-
uide also gives rise to some new effects on the FEL per-
formance. The most noticeable difference between the
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waveguide FEL and its free-space counterpart is the fre-
quency dependence of the gain. With the waveguide the
pulse slippage effect can also be reduced to some degree.

We consider a parallel-plate waveguide, which con-
centrates wave power along the vertical direction only,
while along the horizontal direction it is similar to free-
space. Thus, in the vertical plane the electric field dis-
tribution is cosine-like with zeroes at the walls, and the
corresponding intensity of the light is (the fundamental
mode)

I ∝ cos2
(

π

b
r
)

, r∈ [0, b/2], (21)

where b is the vertical aperture of the waveguide. In Fig.
11, the radial distributions of the laser in the waveguide
are compared with those of the Gaussian beam in free
space (I ∝ e−2r2/ω2

) for different transverse profiles. We
take the condition that the laser modes in the waveg-
uide and in free space have the same transverse size
(FWHM) as the critical point for needing a waveguide
or not, namely b/2=2.35ω/2. (In comparison with Ref.
[24], where the threshold value was taken at the FWHM
of the Gaussian laser mode being equal to the vertical
aperture of the waveguide, 2.35ω/2=b). Hence we give
(for the case of the optical waist at the middle of the
undulator),

b 6 2.354ωM = 1.328
√

ZRλs (1+L2/4Z2
R), (22)

where ωM is the maximum transverse profile of the op-
tical beam in the undulator; it is at the extremity of
the undulator (z = L/2 in Eq. (13)), and related to the
wavelength.

Fig. 11. The different transverse profiles of the

optical mode in free space I ∝ e−2(r/ω)2 com-
pared with that in the waveguide (the dotted line
I ∝ cos2(yπ/2)).

For the Rayleigh length ZR ∼L/2, and from Eq. (22)
b 6≈

√
2Lλs or

b

L
6

√

2λs

L
. (23)

Notice that the right side of the above inequality is the
undulator radiation angle, and the physics meaning of
Eq. (23) is obvious.

From Eq. (22), the cut-off wavelength is

λsc =
1.7636b2

ZR(1+L2/4Z2
R)

. (24)

We plot the relation of the cut-off wavelength to the
aperture of the waveguide in Fig. 12. For our far-infrared
oscillator the wavelength reaches 200 µm in the long
wavelength region, and the vertical aperture b = 18 mm.
If the undulator length L = 2.4 m, then from Fig. 12
(the dashed line), we can know that a waveguide should
be used.

Fig. 12. The relation of the cut-off wavelength to
the aperture of the waveguide.

With a parallel-plate waveguide the filling factor (Eq.
(14)) now can be re-written as

F=

1
√

1+σ2
x/σ2

e

√

1+σ2
y,eff/σ2

e

, (25)

where σy,eff = 0.2124b is the effective RMS transverse
size of the laser mode in the waveguide (Eq. (21)), and
the average is over the length of the undulator. For a
parallel-plate waveguide, in the horizontal direction it is
the Gaussian free-space mode

√

1+σ2
x/σ2

e =
1

2

{√
1+t2+v2t2+

1+t2

vt
Arsh

(

vt√
1+ t2

)}

.

(26)
Here v = L/2ZR, t = ω0/2σe.

Through waveguide parameter selection one may
achieve zero slippage and single broad peak gain [23].
For a rectangular waveguide with a gap b, the condition
is

b≈
√

λsλu/2. (27)

If λs = 200 µm, λu = 5 cm, then Eq. (27) gives b ∼1.58
mm, which is rather too small. Detailed discussions of
the waveguide induced effect on slippage were given in
Ref. [23].
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6 Summary

The issues of parameter design for an oscillator FEL
have been discussed. The estimation formulae of the
gain and saturation power in the resonator have been
given for preliminary design. They depend on the de-
tuning parameters of electron beam, the total loss ratio
in the optical resonator, and the undulator parameters.
The design and optimization of the undulator parameters
have been analyzed. For the given radiation wavelength
and the undulator period we give the optimal deflection
parameter K to be 1.556. Considering both physics and
technical constraints, we analyzed the relation of the de-
flection parameter K to the undulator period. Then,
for the given undulator period, the variation range of K
with the magnetic field gap can be determined quickly,
and consequently, the range of the radiation wavelength
can be determined for the given electron energy, or vice
versa. We also put forward the requirement for the sec-
ond integral of the undulator field. We analyzed the rela-
tions and design of the various parameters of the optical

resonator. Using dimensionless quantities, we plotted
the relationship of the radii of curvature of the resonator
mirror and the various optical resonator parameters to-
gether, such as the Rayleigh length, the resonator sta-
bility parameter, the angular misalignment tolerance of
the mirrors and the radius ratio of the light waist to the
light spot on the mirror. Thus we provided a clear and
visual demonstration of their interdependence for the de-
sign and optimization of the resonator. Also a simple
relation was provided for the angular tolerance require-
ment of the mirrors. For an oscillator FEL working at
longer wavelengths, we analyzed the effect of the parallel-
plate waveguide. We have given the conditions of the
undulator magnetic gap and the optical wavelength for
the necessity of using a waveguide, and have also given
the modified filling factor in the case of the waveguide.
These analyses provide a fundamental study for further
more detailed simulation and more accurate optimiza-
tion. They also will be helpful to gain deeper insights
into FEL physics.
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