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D̄0D0∗ (D0D̄0∗) system in QCD-improved many body potential *
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Abstract: For a system of current interest (composed of charm, anticharm and a pair of light quarks), we show

trends in phenomenological implications of QCD-based improvements to a simple quark model treatment. We employ

a resonating group method to render this difficult four-body problem manageable. We use a quadratic confinement

so as to be able to improve beyond the Born approximation. We report the position of the pole corresponding to the

D̄0D0∗ molecule for the best fit of a model parameter to the relevant QCD simulations. We point out the interesting

possibility that the pole can be shifted to 3872 MeV by introducing another parameter I0 that changes the strength

of the interaction in this one component of X(3872). The revised value of this second parameter can guide future

trends in modeling of the full exotic meson X(3872). We also report the changes with I0 in the S-wave spin averaged

cross sections for D̄0D0∗ −→ωJ/ψ and D̄0D0∗ −→ ρJ/ψ. These cross sections are important regarding the study of

QGP (quark gluon plasma).
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1 Introduction

Considering the difficulties in solving quantum chro-
modynamcis (QCD) for the relevant energies, hadron
phenomenology and hadron-hadron scattering is stud-
ied mostly through models or effective Lagrangian den-
sities. But as far as possible, continuum hadronic mod-
els should agree with lattice simulations of QCD and
give phenomenological implications which have a good
comparison with the corresponding hard experimental
results. For multiquark systems, a common approach,
which has a fairly good phenomenological record, is the
sum of pair-wise interaction model [1–13]. The need for
improvement in it is indicated even phenomenologically
by noting that this model predicts color van der Waals
interaction of the inverse-power type between separated
hadrons, for which there is no experimental evidence. At
the quark level, good lattice-based improvements [14–17]
to this sum of two-body potential model are available
which modify it at large distances. These improvements
introduced a space dependent form factor f (appearing
in Eqs. (9), (10) and (11) below) in off-diagonal elements
in the overlap, potential and kinetic energy matrices of
the model. The additional parameter in f minimizes the

difference between the two quark two antiquark bind-
ing in the improved model to the binding resulting from
relevant lattice-generated QCD simulations by UKQCD
[18–21]. The exponential form of f keeps the model in
agreement with the pair-wise interaction model in the
small distance limit while getting a fairly good agree-
ment to the QCD simulations and solving the van der

Waals problem.

It is necessary to find testable implications of

these improvements at the meson level in form of

multiquark energies (binding) and meson-meson cross-

sections. Without these improvements, the D̄0D0∗ and

its coupling to ωJ/ψ or ρJ/ψ has been studied [7, 8, 22].

Refs. [7, 8] report the resulting ρJ/ψ to D̄0D0∗ cross sec-

tions, along with many others. Ref. [22] reports meson-

meson potential and eigenvalues for DD̄∗ and BB̄∗ four-

quark states and find molecular states in the resulting
combinations. We are now calculating revised implica-
tions for the D̄0D0∗ system. These implications address

some experimental issues of wide interest, for example

understanding exotic mesons [23–25]. An important such

state is the meson X(3872) which is now generally consid-

ered [26–32] as a mixture of D̄0D0∗, D+D−∗ and cc̄. Any
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effort to understand it, thus, should understand quan-
tities depending upon its components. A direct lattice
QCD study of it would have to calculate many Wilson
loops before arriving at any conclusion. A more man-
ageable route could be to make separate models of its
components, find out their consequences and then com-
bine the models to understand X(3872). Our work is the
first step in this scheme; we take up the D̄0D0∗ system
whose flavor content has an overlap with both isovector
ρJ/ψ and isoscalar ωJ/ψ and we study its coupling to
both channels.

Ref. [33] addresses the possibility that X(3872) is
a molecular bound state of neutral charm mesons and
Refs. [34–38] assume so. Ref. [4] says that D̄0D0∗ to
ωJ/ψ (and ρJ/ψ) interaction is needed to understand
models of X(3872). D̄0D0∗ −→ ω(ρ)J/ψ scattering is
needed to understand the final state interaction in the
X(3872) decaying to J/ψρ or J/ψω through the inter-
mediate D̄0D0∗. Refs. [39, 40] describe the role of this
final state interaction through the effective Lagrangian
approach. We present results that may have implica-
tions for these final state interactions while being closer
to QCD in giving a quark level description. Refs. [41, 42]
use the sub-process D̄0D0∗ −→ D̄0D0∗ for the final state
interaction in the net B−→ D̄0D0∗K process. Our com-
ments also apply to this channel and we show below our
results for D̄0D0∗ −→ D̄0D0∗ scattering as well. In a
recent paper, Braaten and Kang [43] say that “in case
of 1++ quantum numbers of X(3872), effects of scatter-
ing between ωJ/ψ and charm meson pairs could be sig-
nificant.” Moreover, D̄0D0∗ −→ ω(ρ)J/ψ scattering is
needed for studying the effect of final state interactions
between the comovers in relativistic heavy ion collision
experiments [44].

For the D̄0D0∗ system, another improvement beyond
the quark-antiquark pair-wise interaction implemented
is Ref. [4]. This adds a point-wise meson interaction
to the coupling resulting from one gluon exchange and
calculates the resulting D̄0D0∗ to ωJ/ψ scattering am-
plitudes. We, in this paper, present D̄0D0∗ to ωJ/ψ
and ρJ/ψ cross-sections along with an analysis of D̄0D0∗

binding resulting from the f model [14, 15, 17] that bet-
ter fits the available QCD simulations than the one gluon
exchange model. In a previous work [45], we used the
Born approximation to calculate the meson-level conse-
quences of the most developed geometrical form of the f
factor. In the present paper, we use a resonating group
formalism to avoid the Born approximation used in Refs.
[45–48] for meson-meson scattering and thus the reported
results can be compared with the Born approximation
[49]. This is essential to be able judge how good the
approximation is. To get analytic expressions for the re-
sulting scattering amplitudes, now we use a quadratic
confinement and a simpler form of the f factor. We in-

corporate the spin and flavour dependence. A similar
realistic meson-meson treatment for lighter quarks was
published earlier [50]. We now address a system (D̄0D0∗)
of current interest and give a much more thorough anal-
ysis of the meson-meson binding. Moreover, we include
the meson-meson cross-sections that are not in Ref. [50]
at all.

These cross sections can be useful in experimen-
tal studies of quark-gluon plasma (QGP) in relativistic
heavy ion collisions. One of the promising signatures of
QGP in heavy ion collision experiments is the suppres-
sion of J/Ψ caused by color Debye screening. However,
the observed suppression may be affected by the inter-
action of J/Ψ with the comoving hadrons, mainly π and
ρ mesons, after the hadronization of QGP. The effect of
the interactions with the comovers can be significant as
the density of these mesons is very high. Thus an esti-
mate of these cross sections can help in identifying any
contribution of QGP in the observed production rate of
J/Ψ in heavy ion collision experiments.

This paper is organized as follows. In Section 2 we
have specified our q2q̄2 Hamiltonian and written the spin
and flavor wave functions and the form of the position
wave function of our system. The section ends with the
integral equations for the unknown position factors of
our total wave function, as in a resonating group for-
malism. In Section 3, we solve our integral equations
for the amplitudes of transition between two channels of
our multiquark system. In Section 4 we report the best
fit values of the parameters used in our formalism along
with describing how they are fixed. In Section 5, we
present our results for the scattering cross-sections and
bindings and give our conclusions.

2 The Hamiltonian matrix and the wave

functions

We use the adiabatic approximation to first define
the potential for fixed positions of two quarks and two
antiquarks. The model we use (that of Ref. [15], with
position dependence as that of the model Ia in Ref. [14])
improves the kinetic, potential and overlap matrices in
the color basis

|1〉c = |113̄124̄〉c, |2〉c = |114̄123̄〉c. (1)

They fit to the lattice simulations a parameter kf intro-
duced in the off-diagonal position dependent elements of
these matrices, while keeping the small distance limit of
the model agreeing to the pair-wise model. To avoid the
Born approximation, we had to use the simplest form

f = exp

(

−bskf

∑

i<j

r2ij

)

. (2)
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in the off-diagonal elements that is used in the otherwise
more developed model version in Ref. [15].

In the next step of the adiabatic approximation, we
calculate the quark position wave functions. For this,
we start by writing our total state vector as a sum
over k of the product of the gluonic states |k〉g, known
spin and flavor states and the corresponding quark po-
sition wave function Ψ k(r1,r2,r3̄,r4̄). |k〉g is defined as
the QCD eigenstate that approaches the corresponding
colour state |k〉c in the small distance limit. The position
dependence of the overlaps and potential energy matrices
in the {|k〉g} basis are taken from the abovementioned
Refs. [14, 15]. For the kinetic energy matrices we use the
non-relativistic prescriptions used in Ref. [16]; there it is
justified through the effective hadron Hamiltonian [51] in
(space-)lattice QCD. To these we add (after multiplying
the appropriate identity matrices) the sum of the cor-
responding constituent quark masses mi (i = 1,2, 3̄, 4̄),
fixed [52] to meson spectroscopy, to get the total meson-
meson Hamiltonian matrix; this semi-relativistic pre-
scription is already used in Refs. [1, 2, 16, 50]. The
resulting matrices are improvements to the matrices in
the basis of Eq. (1) of the Hamiltonian appearing in Ref.
[1], i.e.

Ĥ =

4
∑

i=1

[

mi +
P̂ 2

i

2mi

]

+
∑

i<j

v(rij)Fi.Fj . (3)

Fi is the set of color matrices (of SU(3)c) for the ith

particle. F has 8 components Fa =
λa

2
for a quark and

for an anti quark Fa = −λ
∗
a

2
, a= 1,2,3, · · · ,8. For using

our analytic formalism beyond the Born approximation
we employed a simple harmonic potential already used
in Refs. [1, 16, 50]

v(rij) = vij =Cr2ij + C̄ with i, j= 1,2, 3̄, 4̄, (4)

rather than more sophisticated forms of Refs. [22, 53, 54].
Our neglect of the hyperfine interaction is less serious in
D̄0D0∗ → ω(ρ)J/ψ processes; Ref. [4] shows that this
amplitude is dominated by the confinement interaction.

This specifies our formula of color interactions be-
tween different quarks. The explicit color dependent fac-
tor in it is Fi.Fj and that is flavor independent, consis-
tent with the color charge on a quark on any flavor being
same. Its quadratic confining coefficient Cr2

ij + C̄ is to
replace the more sophisticated forms of Refs. [22, 53, 54],
in which the coefficient of the confining term, the QCD
string tension, is everywhere taken to be flavor indepen-
dent; the string tension models the energy density of the
gluonic field originating from color charges, and color
charges are the same for each flavor. The confining term
we use is Cr2ij and its coefficient C is accordingly taken to

be flavor independent. This gluonic field energy density
is calculated in the lattice QCD simulations of Ref. [55]
and this work advocates a flavor independent string ten-
sion. The constant term C̄ is added to the flavor de-
pendent sum of constituent quark masses in our actual
formulas for meson masses, for example in Eq. (43) be-
low.

As in the resonating group method, we factorize
Ψk into known and unknown factors to utilize the well
known SHO position wave functions ξk(yk) and ζk(zk)
within each quark antiquark subsystem

|Ψ(r1,r2,r3̄,r4̄;g)〉

=

2
∑

k=1

|k〉g |k〉f |k〉sΨc(Rc)χk(Rk)ξk(yk)ζk(zk). (5)

|k〉f are the flavor states and |k〉s are the spin states.
Here Rc is the c.m. position vector. The inter-cluster
vector Rk and in-cluster vectors yk and zk are shown in
Figs. 1 and 2, which also define the topologies k = 1,2.
For example,

R1 =
(r1 +rr3−rr2−r4)

(1+r)
. (6)

Here r =
mc

m
, with m,mc being the constituent masses

of the light (up or down) and charm quarks respectively.

Fig. 1. Topology 1

Fig. 2. Topology 2

The sizes dk1 and dk2 of the known quark antiquark
clusters are also parameters of our model. dk1 is defined
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by

ξk(yk) =
1

(2πd2
k1)

3

4

exp
(−y2

k

4d2
k1

)

. (7)

dk2 replaces dk1 in ζk(zk). The unknown inter-cluster
factor χk(Rk) is our variational function found by solv-
ing the integral Eq. (8) for it. To get this equation, we
set the overlap of an arbitrary variation |δΨ〉, in |Ψ〉 of
Eq. (5), with (Ĥ−Ec)|Ψ〉 as zero and reading off the co-
efficients of the arbitrary variations χk(Rk) with k= 1,2.
This gives

2
∑

l=1

∫

d3ykd
3zk f 〈k|l〉f s〈k|l〉s

ξk(yk)ζk(zk)g〈k|Ĥ−Ec|l〉gχl(Rl)ξl(yl)ζl(zl) = 0. (8)

The trivial integration over the c.m. position Rc could
be performed to give a finite result (implied in the above
equation) using, say, a box normalization. It is to be
noted that our total meson-meson Hamiltonian is an
identity operator in the flavor and spin basis because it
differs from that in Eq. (3) only through the position de-
pendent f and we are neglecting the spin-spin hyperfine
interaction.

We use g〈k|l〉g, g〈k|V̂ |l〉g and g〈k|K̂|l〉g of Refs.

[15, 16] to get the g〈k|Ĥ −Ec|l〉g required in Eq. (8).
These form the matrices:

N ≡{Nkl}≡{g〈k | l〉g}=







1
1

3
f

1

3
f 1






, (9)

V ≡{Vkl}≡{g〈k | V̂ | l〉g}

=







−4

3
(v13 +v24)

4

9
f(v12 +v34−v13−v24−v14−v23)

4

9
f(v12 +v34−v13−v24−v14−v23) −4

3
(v14 +v23)






(10)

K≡{Kkl}≡ g〈k|K̂| l〉g =N(f)
1

2

k,l

(

4
∑

i=1

−∇2
i

2m

)

N(f)
1

2

k,l.

(11)
For D̄0D0∗ (chosen as channel 1 with k= 1), the total

spin is 1. Angular momentum conservation tells that in
the quark exchanged channels (ωJ/ψ and ρJ/ψ corre-
sponding to k = 2) the total spin should be 1. These
spin states are denoted by

|1〉s = |P13V24〉 (12)

|2〉s = |V14V23〉, (13)

where P represents a pseudo-scalar and V represents
a vector meson. We utilize the rotational symmetry
of our problem to write each of these S=1 states as
1√
3

(|1,1〉+ |1,0〉+ |1,−1〉) with the second label as the

Sz quantum number. We then use the completeness of
the meson and then quark spins, along with the required
Clebsch-Gordan coefficients, to arrive at the following for

s〈k|l〉s in Eq.(8)

s〈1|2〉s =s 〈2|1〉s =
1√
2
. (14)

The flavor content of our channel-1 is unique

|1〉f = |c̄u〉|cū〉. (15)

For the second channel, it depends on our choice of

mesons in it:

|2〉f =









1√
2
|uū+dd̄〉|cc̄〉 for ωJ/ψ mesons

1√
2
|uū−dd̄〉|cc̄〉 for ρJ/ψ mesons









.

(16)
This gives in Eq. (8)

f 〈1|2〉f =
1√
2

(17)

for both ωJ/ψ and ρJ/ψ in channel 2.

3 Solving the integral equations

When Eqs. (9)–(11) and Eqs. (14), (17) are substi-
tuted in Eq. (8), we get the following equation

∫

d3R′
k

[

Kkk(Rk,R
′
k)+Vkk(Rk,R

′
k)

+

(

4
∑

i=1

mi−Ec

)

Nkk(Rk,R
′
k)

]

χk(R
′
k)

+

∫

l6=k

d3Rl

[

Kkl(Rk,Rl)+Vkl(Rk,Rl)

+

(

4
∑

i=1

mi−Ec

)

Nkl(Rk,Rl)

]

χl(Rl) = 0, (18)

with the kernels Kkl(Rk,R
′
l), Vkl(Rk,R

′
l) and
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Nkl(Rk,R
′
l) defined, in the notation of Eq. (8), by

∫

d3ykd
3zkξk(yk)ζk(zk)Kklχl(Rl)ξl(yl)ζl(zl)

=
2

δkl +1

∫

d3R′
lKkl(Rk,R

′
l)χl(R

′
l) (19)

∫

d3ykd
3zkξk(yk)ζk(zk)Vkl χl(Rl)ξl(yl)ζl(zl)

=
2

δkl +1

∫

d3R′
lVkl(Rk,R

′
l)χl(R

′
l) (20)

∫

d3ykd3zkξk(yk)ζk(zk)Nkl χl(Rl)ξl(yl)ζl(zl)

=
2

δkl +1

∫

d3R′
lNkl(Rk,R

′
l)χl(R

′
l). (21)

The factor
2

δkl +1
takes care of the off-diagonal spin and

flavor overlap factors, both =
1√
2
. The spatial integra-

tions on the left hand side of Eqs. (19–21) and result-
ing kinetic energy, interaction and normalization kernels
are reported in Appendix A. A comparison of kernels
themselves can have a dynamical result; Ref. [56] tells
that if the interaction kernel is proportional to the nor-
malization kernel, the interaction does not contribute to
the interaction between mesons. Eqs. (A2) and (A8)
in Appendix A show that such is the case in our cal-
culations for a single channel completely described by
the diagonal terms in kernels in these equations. For
quadratic confinement in the one channel approximation
Ref. [56] also gets the same result for the interaction be-
tween the mesons. But with an improved model for the
two channel meson-meson interaction our full results are
obtained by substituting diagonal as well as off-diagonal
terms in Eq. (18) and in our case the interaction ker-
nel is not proportional to the normal kernel and hence
the quadratic confinement contributes to the interaction
between mesons. This is a non-trivial result that can
be compared with the baryon-baryon interaction where
Refs. [57, 58] report the quark-exchange kernel gener-
ated by purely quadratic confinement being proportional
to the norm kernel and thus in this case the quadratic
confinement does not contribute to (the baryon baryon)
interaction. If confinement contributes to the meson-
meson interaction, it may worsen the van der Waals force
problem between isolated mesons that results by a sum
of the two-body potential, but this is against the em-
pirical evidence. But, as mentioned in the Introduction,
we are finding meson level dynamical implications of the
quark potential model improvements [14, 15, 17] that
use multi-quark interactions in form of the f factor to
avoid this problem; many works, including Ref. [59],

closely related to Ref. [57], had earlier suggested that a
many-body interaction is needed to avoid this long range
interaction between mesons.

Using all the kernels, we get two integral equations
for k= 1,2; we write here one of them:

[

3

4
(ω21 +ω22)−

s2
2m

∇2
R2

− 8

3
C̄−4C[d2

21 +d2
22]

+2m(r+1)−Ec

]

χ2(R2)

+l0

∫

d3R1

[

− 1

2m

1

6

[

r21R
2
1 +r22R

2
2 +r20

]

+
1

2

[

n1R
2
1 +n0

]

− 1

6

(

Ec +
8

3
C̄−2m(r+1)

)

]

exp(−l1R2
1− l2R2

2)χ1(R1) = 0. (22)

Here s2, ω
,s, l,s, n,s and r,s depend upon the constituent

quark masses, sizes of mesons, the parameter kf and
bs; see Appendix. It is clear from this equation that
off-diagonal parts vanish for large values of R1 and R2.
With no interaction in this limit between the two mesons,
the total center of mass energy in the large separation
limit will be the sum of kinetic energies of the relative
motion of mesons and masses of the two mesons. This
gives an alternative mesonic form for the diagonal terms
surviving at large distance (no interaction limit), which
can be utilized to write our integral equations as

[

Mx +MJ/ψ−
1

2µxJ/ψ

∇2
R2

−Ec

]

χ2(R2)

+l0

∫

d3R1

[

− 1

2m

1

6

[

r21R
2
1 +r22R

2
2 +r20

]

+
1

2

[

n1R
2
1 +n0

]

− 1

6

(

Ec +
8

3
C̄−2m(r+1)

)

]

exp(−l1R2
1− l2R2

2)χ1(R1) = 0, (23)

with x = ω,ρ, and a similar one with the diagonal

term as

[

MD +MD̄0∗ − 1

2µD̄0D̄0∗

∇2
R1

−Ec

]

. By taking

the Fourier transform of Eq. (23), we get

[

Mx +MJ/ψ+
1

2µxJ/ψ

P 2
2 −Ec

]

χ2(P2)

− 1

2m

r22
6
A1(l1)Fb(P2, l2)

+
[(

− 1

2m

r20
6

+
n0

2
− E′

c

6

)

A1(l1)

+
(

− 1

2m

r21
6

+
n1

2

)

B1(l1)
]

Fa(P2, l2) = 0. (24)
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where E′
c =Ec +

8

3
C̄−2m(r+1). In these equations

Ak(u) = l0

∫

d3Rkexp[−uR2
k]χk(Rk) (25)

Bk(u) = l0

∫

d3Rkexp[−uR2
k]R

2
kχk(Rk) (26)

Fa(Pk,u)≡
∫

d3Rk

(2π)
3

2

exp[iPk.Rk]exp[−uR2
k]

=
1

(2u)
3

2

exp

[

− P 2
k

4u

]

(27)

Fb(Pk,u)≡
∫

d3Rk

(2π)
3

2

exp[iPk.Rk]R2
kexp[−uR2

k]

=Fa(Pk,u)

[

1

2u

][

3− P 2
k

2u

]

. (28)

For the incoming waves in the first channel, our two in-
tegral equations (Eq. (24) and the other one; we now

write both) can be formally solved [16] as (see Appendix
B for details)

χ1(p1)=
δ(p1−pc(1))

p2
c(1)

− 1

∆1(p1)

[

W (1)
1 A2(l2)+W

(1)
2 B2(l2)

]

(29)

χ2(p2) =− 1

∆2(p2)

[

W (2)
1 A1(l1)+W

(2)
2 B1(l1)

]

. (30)

Here

∆1(p1) =
p2

1

2µD0D̄0∗

+MD0 +MD̄0∗ −Ec− iε (31)

for an infinitesimal ε. Similarly,

∆2(p2) =
p2

2

2µxJ/ψ

+Mx+MJ/ψ−Ec− iε (32)

pc(1) =
√

2µD0D̄0∗(Ec−MD0 −MD̄0∗) (33)

pc(2) =
√

2µxJ/ψ(Ec−Mx−MJ/ψ). (34)

W (1)
1 =

[

− 1

2m

r11
6

+
n1

2

]

Fb(pc(1), l1)

+
[

− 1

2m

r10
6

+
n0

2
−E′

c

6

]

Fa(pc(1), l1) (35)

W (1)
2 =− 1

2m

r12
6
Fa(pc(1), l1) (36)

W (2)
1 =− 1

2m

r22
6
Fb(pc(2), l2)

+
[

− 1

2m

r20
6

+
n0

2
− E′

c

6

]

Fa(pc(2), l2) (37)

W (2)
2 =

[

− 1

2m

r21
6

+
n1

2

]

Fa(pc(2), l2). (38)

From Eqs. (29) and (30) we can read off the T -matrix
elements T11 and T21 [16] as co-efficients of Green’s func-

tion operators − 1

∆1(p1)
and − 1

∆2(p2)
respectively. So,

we have

T11 = 2µD0D̄0∗

π

2
pc(1)

[

W (1)
1 A2(l2)+W

(1)
2 B2(l2)

]

(39)

T21 = 2µxJψ

π

2
pc(1)

√

v2

v1

[

W (2)
1 A1(l1)+W

(2)
2 B1(l1)

]

, (40)

where v1 = pc(1)/µD0D̄0∗ and v2 = pc(2)/µxJψ. Similarly
T22 and T12 can be found for the incoming waves in the
2nd channel, with the V2 in Appendix B changed accord-
ingly. These are

T22 = 2µxJψ

π

2
pc(2)

[

W (2)
1 A1(l1)+W

(2)
2 B1(l1)

]

(41)

T12 = 2µD0D̄0∗

π

2
pc(2)

√

v1

v2

[

W (1)
1 A2(l2)+W

(1)
2 B2(l2)

]

. (42)

4 Parameter fixing

At the quark level we adopt the model of Refs.
[14, 15], that includes the parameters kf and bs in the
gluonic field overlap factor f . We take the value of
kf = 0.075 [15] and bs as 0.18 GeV 2 [55]. Our own con-
tribution is in using the meson wave functions to find the
hadron level implications for our chosen channels. These
are eigenfunctions of potential of Eq. (4) which has pa-
rameters C and C̄ , whose numerical values we find by
equating relevant terms in the large distance limit of Eq.
(22) to the J/ψ meson mass; see Eq. (23). This gives

MJ/ψ=
3

4
ω22−

4

3
C̄−4Cd2

22 +2mc. (43)

Comparing Eqs. (10) and (4) with the standard form of
potential of a simple harmonic oscillator gives −4C/3=
µcc̄ω

2
22/2. Using this and ω22 = 1/mcd

2
22, we can elimi-

nate C and the size d22 in favor of ω22 to get

MJ/ψ=
3

2
ω22−

4

3
C̄+2mc. (44)
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This equation tells that in our model the dynamics
of quarks, incorporating the effects of the gluonic field in
the form of the potential, causes the mass of the quark
antiquark cluster (a meson) to be a few percent different
to the mere sum 2mc of quark masses. Our choice in Eq.
(4) of using a simple harmonic oscillator potential with
a known total energy allows us to write kinetic energy
as known total energy minus potential energy. Thus the
origin of clustering, or charm-anticharm quark binding,
is in the parameters C and C̄ of the potential in Eq. (4).

The factor −4

3
in Eq. (44) multiplying C̄ is a color factor

which is the color expectation value of the Fi ·Fj opera-
tor in Eq. (3). We have defined C by −4C/3 =µcc̄ω

2
22/2

with positive ω22, making C to be negative. Below we
replace C by ω22 as our model parameter.

There is no spin dependence in this modeled origin
of the quark-antiquark clustering or binding; our neglect
of the hyperfine interaction is responsible for this spin-
independence. Thus, we do not make separate mod-
els of two different spin states of otherwise one quark-
antiquark clustering of, say, a specified angular momen-
tum between a quark and an antiquark. Specifically, this
means that we are not able to model the mass difference
of J/ψ(1S) and ηc which have the same quark antiquark
angular momentum L= 0 and differ only in spin depen-
dence. Thus we fit our remaining parameters ω22 and C̄,
mentioned in the above paragraph, to the spin averaged
masses of charmonium in the state 1S and the state 2S.
This replaces Eq. (44) by

3MJ/ψ(1S)+Mηc
(1S)

4
=

3

2
ω22−

4

3
C̄+2mc. (45)

For a comparison, Ref. [60] uses the spin averaged b̄b
spectrum in its Fig. 1. An explicit formula for spin av-
eraged mass can be seen as Eq. (3.1) of Ref. [61].

For the 2S state, 3/2 is replaced by 7/2 because of
the 3-d S.H.O. Enlm = ω22(4n+ 2l+ 3)/2 [62], for this
n= 1 and l= 0. The corresponding equation is

3Mψ(2S)+Mηc(2S)

4
=

7

2
ω22−

4

3
C̄+2mc. (46)

Setting the values of masses MJ/ψ(1S) = 3.0969 GeV,
Mηc(1S) = 2.9803 GeV, Mψ(2S) = 3.6861 GeV and
Mηc(2S) = 3.6370 GeV from (PDG) Ref. [63] in Eqs.
(45) and (46) and solving them simultaneously, we get
C̄ = 0.2592 GeV and ω22 = 0.3030 GeV for a charm-
anticharm cluster. We use the constituent quark masses
values mc = 1.4794 GeV and m = 0.33 GeV (for light
quarks) from Ref. [52]. For the angular frequencies ω′s
and hence sizes of heavy-light and light-light clusters, we
used the S.H.O. property that size squared is inversely
proportional to the square root of the relevant reduced
mass (that is of the quark and antiquark in the meson).

5 Results and conclusion

According to Eqs. (39), (40), (41) and (42), the T -
matrix elements are given in terms of the elements of
V1 and V2 column matrices which satisfy the inhomoge-
neous equation Eq. (B7). These solutions of Eq. (B7)
are finite if detW 6= 0. Using the numerical values of
our parameters, we calculate the T matrix elements as a
function of energy, which in turn give the spin averaged
cross-sections using the following relation [64]

σii′ =
4π

p2
c(i

′)

∑

J

(2J+1)

(2s1 +1)(2s2 +1)
|Tii′ |2, (47)

where J is the total angular momentum of the mesons
and s1 and s2 are the spin of the two incoming mesons.
(For the definition of p2

c(i
′), see Eqs. (33) and (34)

above.) Here i, i′ = 1,2 label our channels. In Fig. 3
we show the spin averaged cross sections versus Tc =
Ec −MD̄0 −MD0∗ for the process D̄0D0∗ −→ D̄0D0∗ and
Tc =Ec−Mω−MJ/ψ for the processes D̄0D0∗ −→ωJ/ψ,
ωJ/ψ −→ D̄0D0∗ and ωJ/ψ −→ ωJ/ψ for the QCD-
based model that we are using, which means the param-
eter kf is taken as 0.075. The cross sections are smooth
(without any peak), relatively small and decrease very
rapidly with Tc. In Fig. 4 the cross sections of the same
processes are given for the sum of two-body potential
model, that is setting the value of the parameter kf as
zero. The cross sections in this case are smooth, rela-
tively large and again decrease rapidly with Tc. To find
the cross sections of the processes given in Figs. 3 and 4,
we assume that channels 1 and 2 are D̄0D0∗ and ωJ/ψ
respectively. However, if channel 2 is taken as ρJ/ψ
then we can obtain the cross sections of the processes
D̄0D0∗ −→ D̄0D0∗, D̄0D0∗ −→ ρJ/ψ, ρJ/ψ−→ D̄0D0∗ and
ρJ/ψ −→ ρJ/ψ. Here Tc = Ec −Mρ−MJ/ψ for all the
processes excluding the process D̄0D0∗ −→ D̄0D0∗, where
we have taken Tc =Ec−MD̄0−MD0∗ . The plots of these
cross sections are given in Figs. 5 and 6 for kf = 0.075
and 0 respectively. We again find that the cross sections
are suppressed when the Gaussian f factor is included.
The first process D̄0D0∗ −→ D̄0D0∗, which is common in
both sets of processes, was found to have the same cross
section whereas the values of cross sections of other pro-
cesses are somewhat different.

At detW = 0 the solution of Eq. (B7) diverges, which
corresponds to a pole of scattering amplitude and repre-
sents a bound state (resonance) with respect to a given
process if its energy is less (greater) than the process
threshold which is equal to the total rest mass of the fi-
nal (inital) particles in case of endothermic (exothermic)
processes respectively. In order to calculate the energy
where the pole exists for our q2q̄2 system we simply have
to solve detW = 0 for the energy variable. We find that
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detW 6= 0 for all Tc > 0 when kf = 0 and kf = 0.075.
These results are consistent with the plots in Figs. 3–6
of the cross sections in which no resonating peak appears
for these values of kf .

Fig. 3. Total spin averaged cross sections for Gaus-
sian form of f with kf = 0.075 versus Tc when
channel 2 is taken as ωJ/ψ.

Fig. 4. Total spin averaged cross sections for kf =0
versus Tc when channel 2 is taken as ωJ/ψ.

Fig. 5. Total spin averaged cross sections for Gaus-
sian form of f with kf = 0.075 versus Tc when
channel 2 is taken as ρJ/ψ.

Fig. 6. Total spin averaged cross sections for kf = 0
versus Tc when channel 2 is taken as ρJ/ψ.

As Refs. [33–38] have pointed out that D̄0D0∗ may
form a bound state, it is worth examining if by changing
the strength of our interaction we can get a meson-meson
bound state or resonance. To do this analysis we intro-
duce a parameter I0 as in Ref. [50], changing the net
strength of our meson-meson interaction. Physically,
this parameter I0 tells how far we are from getting a
bound state at 3872 MeV if we study only one compo-
nent D̄0D0∗ of the full exotic meson X(3872) along with
using other approximations. Any deviation of I0 from
1 suggests how much can we improve modeling of this
exotic meson. We implemented this re-scaling of the in-
teraction strength by multiplying the off-diagonal terms
of our potential, kinetic energy, and normalization ma-
trices by l0. For this, we multiplied l0 from Eq. (22) and
the other coupled integral equation by I0. A value of I0
away from 1 (for all the above results) changes the energy
where condition detW = 0 is satisfied. The energy of the
bound state generally depends on the strength parame-
ter I0 of the interaction in two possible ways [65]; either
the energy of the bound state increases or decreases with
the strength parameter. In the former case it is usually
called a virtual state whereas in the latter case we call it
a proper bound state. In Fig. 7 we show the dependence
of the c.m. energy at pole on the strength parameter I0,
subject to the constraint detW = 0, by different curves
for kf = 0, 0.05, 0.075, and 0.1 respectively. While solv-
ing detW = 0 we note that the solution can be obtained
conveniently if we put the value of Ec and other kine-
matical variables and solve it for I0 rather than solving
it for Ec. In this way we find that the resultant equation
is quadratic in I0, which means we may have two values
of I0 corresponding to one value of Ec. However, we
find that one of the two roots is always complex and
the real root is found to be a continuous function of
Ec, as indicated by the continuous curves in Fig. 7, in
which solid and dashed segments correspond to the first
and second real root respectively. These curves show
that corresponding to each kf , the resonance energy Ec
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Fig. 7. Total centre of mass energy at pole versus
strength parameter I0, for different values of kf ,
for the 2nd channel being ωJ/Ψ .

Fig. 8. Total centre of mass energy at pole versus
strength parameter I0, for different values of kf ,
for the 2nd channel being ρJ/Ψ .

Table 1. Critical I0 for different values of kf .

channel 2 (ωJ/ψ) channel 2 (ρJ/ψ)

kf critical I0 critical I0

0 1.3863 1.3487

0.05 2.3253 2.2610

0.075 2.8950 2.8164

0.1 3.5357 3.4422

increases with I0 provided that I0 is greater than a criti-
cal value, which depends on the value of kf . For example
for kf = 0.075 the critical I0 = 2.89 for the 2nd channel
being ωJ/ψ. It means that the pole of the scattering
amplitude does not exist at I0 < 2.89 when the f factor

is included at kf = 0.075. Similarly for kf = 0 the critical
I0 = 1.38. This explains why no resonating peak appears
in the plots of the cross sections when I0 is taken as 1,
irrespective of the value of kf . The curves given in Fig.
7 are produced by assuming that channels 1 and 2 are
D̄0D0∗ and ωJ/ψ respectively. We find similar results
when channel 2 is taken as ρJ/ψ, as shown in Fig. 8. In
Table 1 we give the critical values of I0 corresponding to
different values of kf for the two choices of channel 2. It
is also noted that the minimum Ec at which detW = 0
is 3.881 and 3.872 GeV for channel 2 being ωJ/ψ and
ρJ/ψ respectively, irrespective of the value of kf . These
values are slightly greater than or equal to mD0 +mD∗0

(3.872 GeV), mω +mJ/ψ (3.88 GeV), and mρ +mJ/ψ

(3.872 GeV). This implies that in our case the pole of the
scattering amplitude corresponds to a resonance in the
system. Thus, we conclude that the cc̄uū system can-
not resonate whether we assume the sum of two-body
approach (i.e., kf = 0) or include QCD effects in terms
of gluonic field overlap factor f at I0 = 1. However, the
resonance may be produced if the interaction strength I0
is increased by at least a factor of 1.38 (1.35) and 2.89
(2.82) for kf = 0 and 0.075 respectively when channel
2 is ωJ/ψ (ρJ/ψ). It is tempting to associate the res-
onance in q2q̄2 with the D̄0D0∗ component of X(3872).
The result that this resonance appears only when interac-
tion strength parameter I0 is greater than a critical value
may be related to the use of various approximations used
in this work, including ignoring the annihilation effects
of light quark flavors and using quadratic confinement.
As for the full X(3872), our neglect of its cc̄ component
[26–32] may also be responsible for deviation of the pa-
rameter I0 away from 1. If future improvements beyond
our approximations are equivalent to an effective I0 that
is less than one, our work would imply that D̄0D0∗ does
not form a bound state and hence there can not be a role
for the D̄0D0∗ molecule in the structure of X(3872). If
the resulting effective I0 is increased beyond the critical
values mentioned in Table 1, the D̄0D0∗ bound state may
represent X(3872).

6 Conflicts of interest
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Appendix A

Here we show how we perform the spatial integrations on
the left hand side of Eqs. (19–21) to read our kernels. From
Figs. (1) and (2) we see that y1,z1, R1 and y2,z2, R2 form

two linearly independent sets. Thus for the diagonal terms
k = l in Eq. (8), χl(Rl) can be taken outside the integra-
tion on the RHS of Eq. (21). Thus, normalization of ξk(yk),
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defined in Eq. (7) and a similar ζk(zk), gives
∫

d3
R

′
kNkk(Rk,R′

k)χk(R′
k) =χk(Rk) or (A1)

Nkk(Rk,R′
k) = δ(Rk,R′

k). (A2)

For kinetic energy, in Eq. (11) we can write for k = 1 or k = 2




4
∑

i=1

− ∇2
i

2mi



=− 1

2m
[sk∇2

Rk
+qk∇2

yk
+ tk∇2

zk
], (A3)

with m the constituent mass of the light quark, up or down
and

s1 =
2

r+1
, q1 = t1 =

r+1

r
, s2 =

r+1

2r
, q2 =2, t2 =

2

r
.

(A4)
By using Eq. (A3) in Eq. (19) and doing the required space
differentiations and integrations, we get

Kkk(Rk,R′
k) = δ(Rk,R′

k)

[

3

4
(ωk1 +ωk2)−

sk

2m
∇2

Rk

]

with

(A5)

ωk1 =
qk

2md2
k1

and ωk2 =
tk

2md2
k2

. (A6)

For the potential energy matrix, by using Eqs. (4) and (10)
we get

Vkk =−4

3

[

2C̄ +Cy
2
k +Cz

2
k

]

. (A7)

Using this in Eq. (20) and doing the required integrations,
we get

Vkk(Rk,R′
k) = δ(Rk,R′

k)
[

− 8

3
C̄−4C[d2

k1 +d2
k2]
]

. (A8)

Now for the off-diagonal elements we have to replace y1 and
z1 by R2 and g1, where

g1 = y1 +z1. (A9)

Only g1 is integrated. The rest is a function of R2 and R1

(constant in this integration). Similarly we replace y2 and z2

by R1 and g2, where

g2 =y2 +rz2. (A10)

Only g2 is integrated. The rest is a function of R1 and R2

(constant in this integration). We get from Eqs. (9), (2), (21)
after doing all the integrations other than Rl

N12(R1,R2)=N21(R2,R1)=
l0

3
√

2
exp(−l1R

2
1−l2R

2
2).(A11)

Here

l0 =(r+1)
9

4 r
−15

8 2
3

4 (παd2)
−3

2 (A12)

l1 =
1

4d2

(r+1

2

)2[

γ− β2

α

]

(A13)

l2 = 4k̄+
1

2d2

√

2r

r+1
(A14)

where k̄ = kfbs,

α =8k̄d2
[r2 +1

r2

]

+1+r
−3

2

[

(r+1)2
√

2(r+1)
+1

]

(A15)

β =8k̄d2
[r2−1

r2

]

+1+r
−3

2

[

r2−1
√

2(r+1)
−1

]

(A16)

γ = 8k̄d2
[r2 +1

r2

]

+1+r
−3

2

[

(r−1)2
√

2(r+1)
+1

]

. (A17)

Now for the off-diagonal kinetic energy kernel, Eq. (11)
gives

Kkl =
1

3

√

f





4
∑

i=1

− ∇2
i

2mi





√

f. (A18)

Substituting in Eq. (19) and using Eq. (A9) and Eq. (A10),
we get

K12(R1,R2)=− l0
2m

1

3
√

2

[

r11R
2
1 +r12R

2
2 +r10

]

exp(−l1R
2
1− l2R

2
2) (A19)

K21(R2,R1)=− l0
2m

1

3
√

2

[

r21R
2
1 +r22R

2
2 +r20

]

exp(−l1R
2
1− l2R

2
2) (A20)

where

r11 =
(r+1

2

)4
[

8(r−1)2

(r+1)3

{

(r−1

r+1

)( 8k̄

(r−1)2
+

1+
√

r

(r−1)2d2

)

−
(β

α
− r−1

r+1

)(2k̄

r
+

1

2d2
√

r(1+
√

r)

)

}2

+
32r

(r+1)3

{

(r−1

r+1

)(2k̄

r
+

1

2d2
√

r(1+
√

r)

)

−
(β

α
− r−1

r+1

)(

k̄
r2 +1

r2
+

r−3/2 +1

4d2

)

}2]

(A21)

r10 =−3

2

(

r+1

2

)2
{

8
(r−1)2

(r+1)3

(

8k̄

(r−1)2
+

1+
√

r

(r−1)2d2

)

+
32r

(r+1)3

(

k̄(r2 +1)

r2
+

r
−3

2 +1

4d2

)}

+
3

2

d2

α
(r+1)2

{

8(r−1)2

(r+1)3

(

2k̄

r
+

1

2d2
√

r (1+
√

r)

)2

+
32r

(r+1)3

(

k̄(r2 +1)

r2
+

r
−3

2 +1

4d2

)2}

−6(r+1)

2r

(

2k̄+
1

2d2

√

2r

r+1

)

(A22)
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r12 =4

(

r+1

2r

)

(

2k̄+
1

2d2

√

2r

r+1

)2

(A23)

r22 = r12 (A24)

r20 =
8

(r+1)2

(r+1

2

)2 24d2

α

{

(

k̄+
1

4d2

)2

+r
( k̄

r2
+

r−
3

2

4d2

)2
}

−6
8

(r+1)2

(r+1

2

)2

{

(

k̄+
1

4d2

)

+r
( k̄

r2
+

r−
3

2

4d2

)

}

−6
r+1

2r

{

2k̄+
1

2d2

√

2r

r+1

}

(A25)

and

r21 =2(r+1)2
{

(

1− β

α

)2(

k̄+
1

4d2

)2

+r
(

1+
β

α

)2( k̄

r2
+

r
−3

2

4d2

)2
}

. (A26)

Lastly, for the potential energy kernel with k 6= l, using Eqs.
(4) and (10) in Eq. (20), changing variables and doing all the
integrations, we get

V12(R1,R2) =V21(R2,R1)

= l0
[

n1R
2
1 +n0

]

exp(−l1R
2
1− l2R

2
2), (A27)

with

n0 =−8

3
C

(

r+1

r

)2
d2

α
(A28)

n1 =−4

9
C

{

(r+1)4

4r2

}

(

β

α
− r−1

r+1

)2

. (A29)

Putting the expressions from Eqs. (A5), (A8), (A2), (A19),
(A27) and (A11) in Eq. (18), we get the first integral equa-
tion for k=1 and by putting the expressions from Eqs. (A5),
(A8), (A2), (A20), (A27) and (A11) in (18), we get the sec-
ond integral equation for k =2, that we have shown as Eq.
(22).

Appendix B

Because of the spherical symmetry of the S-wave (l = 0),
Pi is replaced with pi (magnitude) with i = 1,2. Using the
Parseval relation, Eqs. (25) and (26) give

Ak(u) = 4πl0

∫

dpkp2
kFa(pk,u)χk(pk) (B1)

Bk(u) =4πl0

∫

dpkp2
kFb(pk,u)χk(pk). (B2)

Multiplying Eq. (29) by 4πp2
1Fa(p1, l1) and integrating

w.r.t. p1 and using Eq. (B1) we get

A1(l1)

l0
=4πFa(pc(1), l1)−A2(l2)W

(1)
11 −B2(l2)W

(1)
12 (B3)

Similarly, multiplying Eq. (29) by 4πp2
1Fb(p1, l1) and inte-

grating w.r.t. p1 and using Eq. (B2), we get

B1(l1)

l0
= 4πFb(pc(1), l1)−A2(l2)W

(1)
21 −B2(l2)W

(1)
22 (B4)

In the same way, multiplying Eq. (30) by 4πp2
2Fa(p2, l2) and

4πp2
2Fb(p2, l2) and integrating w.r.t. p2 and using Eqs. (B1)

and (B2), we get

A2(l2)

l0
=−A1(l1)W

(2)
11 −B1(l1)W

(2)
12 (B5)

B2(l2)

l0
=−A1(l1)W

(2)
21 −B1(l1)W

(2)
22 (B6)

where the W’s in the above equations depend on the l,s,n,s,
r,s, Ec, C̄ and the constituent quark mass of light quarks.

Equations (B3), (B4), (B5) and (B6) can be written in ma-
trix form as follows

WV1 = V2 (B7)

with

W =











l−1
0 0 W

(1)
11 W

(1)
12

0 l−1
0 W

(1)
21 W

(1)
22

W
(2)
11 W

(2)
12 l−1

0 0

W
(2)
21 W

(2)
22 0 l−1

0











(B8)

V1 =











A1(l1)

B1(l1)

A2(l2)

B2(l2)











(B9)

V2 = 4π











Fa(pc(1), l1)

Fb(pc(1), l1)

0

0











. (B10)

From Eq. (B7)), we can have

V1 = W−1V2 (B11)

which gives the values of A1(l1),B1(l1),A2(l2) and B2(l2)
needed in Eqs. (39) and (40).
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