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Abstract: We propose a novel type of interpolating field operator, which manifests the hybrid-like configuration

that the charm quark-antiquark pair recoils against gluonic degrees of freedom. A heavy vector charmonium-like state

with a mass of 4.33(2)GeV is disentangled from the conventional charmonium states in the quenched approximation.

This state has affinity for the hybrid-like operators but couples less to the relevant quark bilinear operator. We also

try to extract its leptonic decay constant and give a tentative upper limit that it is less than one tenth of that of

J/ψ, which corresponds to a leptonic decay width about dozens of eV. The connection of this state with X(4260) is

also discussed.
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1 Introduction

X(4260) has been observed by many experiments as a
ππJ/ψ resonance structure in the initial state radiation
(ISR) process e+e− → γISRJ/ψππ [1–3]. Its resonance
parameters are determined now to be MX = 4251(9)
MeV and ΓX = 120(12) MeV [4]. Based on its pro-
duction mode, X(4260) must have the quantum num-
ber JPC = 1−−. In addition, the ratio of X(4260) →
π+π−J/ψ and X(4260) → π0π0J/ψ events observed by
the CLEO collaboration is consistent with X(4260) be-
ing an isoscalar. In other words, X(4260) has the same
quantum number as that of the vector charmonia J/ψ,
ψ′, etc. However, in contrast to the ψ states, X(4260)
has not yet been observed directly in e+e− annihila-
tion. On the other hand, its mass is well above the DD̄
threshold, but it has been observed only in the J/ψπ+π−

system instead of the DD̄ ones. These facts may im-
ply that X(4260) has a large branching fraction for the
J/ψπ+π− decay mode. Thus, the small combined width
Γ (X → e+e−)Br(X → J/ψππ) = 9.2±1.0eV can be un-
derstood as X(4260) having a very small e+e− width.

These features motivate conjectures that X(4260) might
be an exotic state, for example, a hybrid charmonium [5–
7]. More theoretical information for X(4260) is needed
in order to unravel its nature, among which the leptonic
decay width of X(4260) is an important quantity.

As far as hybrid charmonium is concerned, extensive
lattice QCD studies have been devoted to the JPC = 1−+

channel. In the constituent quark model picture, this
quantum number cannot appear in the qq̄ system, there-
fore it is usually conjectured that additional degrees
of freedom should be involved and the minimum con-
figuration can be qq̄g where g is a constituent gluon.
The corresponding qq̄g interpolation fields are used in
lattice calculations which predict the mass of the 1−+

charmonium-like state to be around 4.3 GeV [8–17]. Sim-
ilar studies have been also extended to investigate possi-
ble hybrids with the conventional quantum number, but
the challenging task is to distinguish these states from
conventional mesons. The state-of-the-art approach for
this goal is the variational method based on large enough
operator sets built through sophisticated methods. In
the vector channel, there is a state observed with a
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mass round 4.4 GeV [14], which couples weakly to the
quark bilinear operator but seems closely coupled with
quark-antiquark-gluon operators.

Generally speaking, the appearance of an interpo-
lating field operator does not necessarily reflect the in-
ner structure of a hadron state. However, for heavy
quark systems where the non-relativistic picture may be
available to some extent, the coupling of the operator
to a specific state may bear some useful information
about its status. Taking a mesonic hybrid, for exam-
ple, even though it is an ambiguous concept from the
point of view of quantum chromodynamics (QCD), it is
always thought of as a hadron state made up of a quark-
antiquark pair plus a constituent gluonic component in
the constituent quark model picture. Of course one can
also relax the definition of a hybrid to an exotic object
which has an additional degree of freedom apart from
the constituent quarks. This kind of additional degree of
freedom can be a fluctuating flux tube in the flux tube
model, the color bag of the MIT bag model, etc. There
is also a recent study on quarkonium hybrids using non-
relativistic effective field theory [18]. The essence of the
exotic nature of a meson state is that the constituent qq̄
pair acquires a center-of-mass motion by recoiling against
the additional degrees of freedom, which is distinct from
the conventional hadron states. This is our starting point
to build a novel type of hybrid-like operator. We split the
charm quark-antiquark pair component and the gluon
field in the qq̄g operator into two parts with different
spatial separations. In momentum space, this manifests
the center-of-mass motion of qq̄ pair in the rest frame
of the state. We calculate the correlation functions of
these operators, from which we try to extract the possi-
ble exotic charmonium state. Since the operators with
different spatial separations provide different correlation
functions, we fit them simultaneously along with the cor-
relation function involving the electromagnetic current to
obtain the decay constants of the states which contribute
significantly.

This paper is organized as follows. Section 2 con-
tains a description of the construction of the new lattice
interpolation operators for the hybrid-like vector meson.
The lattice parameters and the numerical techniques are
presented in Section 3. We discuss our results and their
connections with X(4260) in Section 4. The conclusions
and a summary can be found in Section 5.

2 New interpolation field for exotic vec-

tor charmonium

We focus on the exotic vector charmonium (JPC =
1−−) by assuming a hybrid-like configuration cc̄g. A
simple and straightforward local operator possibly re-
flecting this constituent configuration is O(H)

i (x) =

c̄a(x)γ5c
b(x)Bab

i (x), where a,b are color indices, i the

spatial index, and Bab
i (x) =

1

2
εijkF ab

jk the chromomag-

netic field tensor. This kind of operator can be com-
pared with the commonly used quark bilinear operator
for the vector O(M)

i = c̄γic(x). In order to find the non-
relativistic form of these interpolation operators, we use
the Foldy-Wouthuysen-Tani transformation [19] to de-
compose the charm quark and antiquark fields (Dirac
spinor) in terms of the Pauli spinors φ/φ† which an-
nihilates/creates a charm quark, and χ/χ† which cre-
ates/annihilates a charm antiquark. The explicit expres-
sions of the operators O(H)

i (x) and O(M)
i to the lowest

order of the nonrelativistic approximation can be writ-
ten as

O(H)
i ≡ c̄aγ5c

bBab
i →χa†φbBab

i +O

(

1

mc

)

,

O(M)
i ≡ c̄aγic

a →χa†σiφ
a +O

(

1

mc

)

, (1)

where one can see that the block χa†φb of the O
(H)
i opera-

tor is a spin singlet and color octet, while that of O(M)
i is

a spin triplet and color singlet. Intuitively O(H)
i couples

more to a state of spin singlet charm quark-antiquark
pair and less to a state of spin triplet c̄c component ow-
ing to the heavy quark mass suppression for the spin
flipping of a heavy quark, and vice versa for O(M)

i . In
order to resemble the center-of-mass motion of the cc̄ re-
coiling against an additional degree of freedom, we split
the operator O(H)

i into two spatial parts, c̄aγ5c
b and Bab

i ,
separated by an explicit spatial displacement r. In a
fixed gauge (the Coulomb gauge in this work), we get a
set of spatially extended operators,

O
(H)
i (x, t;r) = (c̄aγ5c

b)(x, t)Bab
i (x+r, t). (2)

It is expected that the coupling of this type of operator
to the conventional charmonia (without the center-of-
mass motion of charm quark-antiquark pair in the non-
relativistic picture) would be suppressed, while the cou-
pling to the exotic state can be enhanced.

3 Numerical details

We use the tadpole-improved gauge action [20–22]
to generate gauge configurations on anisotropic lattices
with the temporal lattice spacing much finer than the
spatial one. The aspect ratio takes ξ = as/at = 5, where
as and at are the spatial and temporal lattice spacing,
respectively. Two lattices L3 × T = 83 × 96(β = 2.4)
and 123 × 144(β = 2.8) with different lattice spacings
are used to check the discretization artifacts and the
relevant input parameters are listed in Table 1, where
as values are determined from r−1

0 = 410(20) MeV.
We use the tadpole-improved clover action to calcu-
late the quark propagators. The relevant parameters
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in the fermion action are tuned carefully by requiring
that the physical dispersion relations of vector and pseu-
doscalar mesons are correctly reproduced at each bare
quark mass [23, 24]. The bare charm quark masses at dif-
ferent β are determined from the physical mass of J/ψ,
mJ/ψ = 3.097 GeV. The spatial extension of both lat-
tices is ∼ 1.7 fm, which is tested to be large enough for
charmonium states. The ground state masses of 1S and
1P charmonia calculated on these two lattices (see Fig. 2
and Table II of Ref. [25] for the details) show that the
finite as effects are small. Since the spatial extended
interpolation operators O(H)

i discussed above are gauge
variant, we carry out the calculation of the quark propa-
gators and correlation functions after transforming each
configuration to the Coulomb gauge.

Table 1. The input parameters for the calculation.
Values of the coupling β, anisotropy ξ, the lattice
size, and the number of measurements are listed.
as/r0 is determined by the static potential, the
first error of as is the statistical error and the sec-
ond one comes from the uncertainty of the scale
parameter r−1

0 =410(20) MeV.

β ξ as Las/fm L3×T Nconf

2.4 5 0.222(2)(11) ∼ 1.78 83×96 1000

2.8 5 0.138(1)(7) ∼ 1.66 123×144 1000

3.1 Data analysis strategy

Our first task is to verify the existence of the exotic
vector charmonium. We use the following source opera-
tor to calculate the correlation functions,

O(W )
i (τ) =

∑

y,z

c̄a(y, τ)γ5B
ab
i (z, τ)cb(z, τ), (3)

where τ refers to the source time slice. For the sink op-
erator O(H)

i , the two-point functions we calculate are

C(H)(r, t;τ)=
1

3

∑

x,i

〈0|O(H)
i (x, t;r)O(W )†

i (τ)|0〉

=
1

3

∑

x,y,z,i

Tr
〈

S†
F (x, t;y, τ)Bi(x+r, t)

×SF (x, t;z, τ)B†
i (z, τ)

〉

, (4)

where SF (x,y) stands for the charm quark propagator.
Accordingly, there are two types of wall-source quark
propagators to be calculated. One of them uses the
usual wall source by setting the source element to unity
at each spatial site of the source time slice. The other
one uses the source by multiplying the chromomagnetic
field tensor Bi(z, τ) to each site of the plain wall source.
In order to increase the statistics additionally, for each
configuration we calculate T charm quark propagators

SF (~x,t;~0, τ) by setting the corresponding source vectors
on each time slice τ . This permits us to average over
the temporal direction when calculating the two-point
functions.

In practice, the two-point functions C(H)(r, t;τ) with
the same r = |r| are averaged, such that the quantum
number is kept to be exactly JPC = 1−−. After averaging
over the time direction, the practical two-point functions
we calculate are

C(H)(r, t)=
1

TNr

∑

|r|=r

T
∑

τ=1

C(H)(r, t+τ ;τ)

=
∑

i

Φi(r)e
−mit, (5)

where Nr is the degenerate degree of r = |r|. In
the data analysis stage, we perform a simultaneous
multi-exponential fit to C(H)(r, t)’s by using a correlated
minimal-χ2 fit method with the jackknife covariance ma-
trix (we use three mass terms throughout this work).

Fig. 1. (color online) Upper panel: Masses of the
three lowest states fitted to C(M)(r, t) with dif-
ferent tmin (β = 2.4). We average the masses
in this range with each value weighted by its
error and get the values m1 = 3.097(1) GeV,
m2 = 3.679(19) GeV, and m3 = 4.007(57) GeV,
respectively. Lower panel: Φ′

i(r/a)’s (normalized
as Φ′

i(0) = 1) of the lowest three states. It is
clearly seen that the nodal behaviors are very dif-
ferent for different states.

3.2 Masses and Bethe-Salpeter amplitudes of

conventional vector charmonia

In order to test the reliability of the fitting strategy
mentioned above, we first carry out a similar analysis to
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the correlation functions C(M)(r, t) of the spatially ex-
tended version of operator O(M) on the β = 2.4 lattice.
The procedure is detailed as follows. The spatially ex-
tended version of O(M) is defined as

O(M)
i (x, t;r) = c̄(x, τ)γic(x+r, τ), (6)

whose correlation function with the corresponding wall
source operator

O
′(W )
i (τ) =

∑

y,z

c̄(y, τ)γic(z, τ), (7)

say, C
′(M)(r, t+ τ ;τ), is defined similarly as in Eq. (4).

After averaging over the temporal direction, we have

C
′(M)(r, t)=

1

TNr

∑

|r|=r

T
∑

τ=1

C
′(M)(r, t+τ ;τ)

=
∑

i

Φ′
i(r)e

−mit (8)

where Φ′
i(r) is the r-dependent spectral weight of the i-th

state.
In the fitting procedure, we fix a maximal t (denoted

by tmax) and vary the lower bound tmin of the fit window,
and find that the masses of the lowest three states keep
constant to some extent for a series of tmin, as shown in
the upper panel of Figure 1. We average the masses in
this range with each value weighted by its error and get
the values m1 = 3.097(1) GeV, m2 = 3.679(19) GeV, and
m3 = 4.007(57) GeV, respectively. These three states
may correspond to J/ψ, ψ′(3686), and ψ(4040) and we
can almost reproduce their experimental spectrum. We
also plot the Φ′

i(r/as)’s (normalized as Φ′
i(0) = 1) in

the bottom panel of Fig. 1, where one can find that
there is no radial node for Φ′

1(r/a), one radial node for
Φ′

2(r/as), and two radial nodes for Φ′
3(r/as). Given the

quark model assignments n3S1 state for J/ψ, ψ(3686),
and ψ(4040) with n = 1,2,3, respectively, this is actually
not surprising, since Φ′

i(r) is proportional to the Coulomb
Bethe-Salpeter amplitude of the i-th S-wave charmo-
nium, which, at the leading order of the non-relativistic
approximation, corresponds to the radial wave functions
in the quark model [26, 27].

3.3 Existence of an exotic vector charmonia and

its mass

From the above one can see that our data analysis
strategy is robust for the conventional vector charmo-
nium states, therefore we perform a similar study for the
correlation functions described in Eq. (4) and (5).

Figure 2 shows the plots of Φi(r) with respect to r
(in physical units) through a three-mass-term fit (the
upper panel is for β = 2.4 at tmin = 12at, and the lower
panel for β = 2.8), whose masses are fitted to be 3.100(7)

GeV, 3.58(9) GeV, and 4.6(2) GeV for β = 2.4, and
3.090(6) GeV, 3.54(5) GeV, and 4.6(1) GeV for β = 2.8 at
tmin = 16at. Φ1(r) and Φ2(r) damp more rapidly and are
close to zero near r∼ 0.3 fm while Φ3(r) is still relatively
large. The lowest two states very possibly correspond to
the conventional vector charmonia J/ψ and ψ′ according
to their masses. In contrast, the third state, with a much
higher mass, still dominates the two point functions with
r larger than 0.3 fm. This may signal the exotic nature of
this state that is reflected by the spatially extended sink
operator O(H)

i . Of course, the higher conventional vec-
tor charmonia, such as ψ(4040) and ψ(4415), should also
contribute to the two-point function C(H)(r, t), however
in our data analysis procedure, C(H)(r, t) cannot accom-
modate more statistically meaningful states. The pres-
ence of the higher conventional charmonia may result in
a small shift of the masses of the fitted states. For ex-
ample, the mass of the second state deviates from that
of the would-be ψ′ state.

Fig. 2. (color online) Plots of Φi(r) with respect
to r (in physical units) for the three lowest states
(the upper panel is for the β = 2.4 case, and the
lower panel for β = 2.8).

It is seen from Fig. 2 that the r-behaviors of the first
(J/ψ) and the second state (ψ′) are similar up to an
overall factor. If this is the case for all the conventional
charmonium states, since the r behavior may depict the
center-of-mass motion of the cc̄ component and the con-
ventional charmonia are free of this in the nonrelativis-
tic approximation, we can conjecture that the spectral
weights of the i-th conventional charmonia Φi(r) can be
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factorized into Φ(r)Wi where Φ(r) is approximately uni-
form and insensitive to the different conventional char-
monia, such that the two-point functions C(H)(r, t) with
different r can be linearly combined to eliminate the con-
tribution from the conventional charmonium states. In
practice, we linearly combine the correlation functions
C(H)(r, t) at two specific r1 and r2 as

C(ω,t) = C(H)(r1, t)−ωC(H)(r2, t), (9)

where ω is a tunable parameter. For each lattice, an
optimal ω can be obtained by the requirement that the
effective mass plateau of C(ω,t) is as long as possible.
To be specific, for β = 2.4, we use r1 = 0 and r2 = as and
set ω = 2.576, which is very close to the central value of
the ratio Φ1(0)/Φ1(as) = 2.583 through the three-mass
fit illustrated in Fig. 2. Using this omega and the fit re-
sults in Fig. 2, the spectral weights of the three states in
C(ω,t) are roughly 0.002, −0.1, and −1.1, respectively.
This implies that the relative contribution of the third
state is strongly enhanced by this subtraction scheme.
Similarly, for β = 2.8 we use r1 = as and r2 =

√
3as and

set ω = 3.658 which is also close to the central value of
the ratio Φ1(as)/Φ1(

√
3as) = 3.681. The spectral weights

of the three states are roughly 0.007, -0.2 and -1.9, re-
spectively. In Fig. 3 we plot the effective mass plateaus
of C(ω,t)’s for β = 2.4 and β = 2.8. The t and the masses
are expressed in physical units according to the lattice
spacings listed in Table 1. One can see that both plateaus
are fairly good and lie on top of each other. Since both
the sink operator O(H)(r) and the source operator O(W )

(whose correlation functions are C (H)(r, t)) are expected
to couple strongly to hybrid-like states and the contri-
bution from the conventional charmonia is subtracted
largely by the above scheme, we take the state reflected
by the observed plateau as the exotic vector charmonium
and name it X in the rest part of this work (we keep the
name of the experimental state X(4260)). The horizontal
line shows the fitted mass MX = 4.33(2) GeV through a
one-exponential fit in the time range from 0.3 to 0.9 fm.

Fig. 3. (color noline) The effective mass plateaus of
C(ω,t)’s for β = 2.4 (red points) and β = 2.8 (blue
points). The horizontal line shows the fitted mass
MX =4.33(2) GeV through a one-exponential fit.

To this end, we claim that a vector charmonium-like state
with a mass of 4.33(2) GeV has been unambiguously sin-
gled out, whose exotic nature may be reflected by its dis-
tinct coupling to the special interpolation field O(H)(r, t)
in comparison with the conventional vector charmonia.
It should be noted that this state has also been ob-
served by previous lattice studies using variational meth-
ods based on lattice operator sets [14]. However, the spa-
tially extended operators O(H)(r, t) we use give a clearer
picture of its inner structure.

3.4 Leptonic decay constant of the exotic vector

charmonium

Since this hybrid-like charmonium can be disentan-
gled from the conventional charmonia with the prescrip-
tion above, its leptonic decay constant can be investi-
gated accordingly. The leptonic decay constant fV of a
vector meson state V is defined by

〈0|J (em)
µ (0)|V (~p,r)〉= mVfVεµ(~p,r), (10)

where J (em)
µ (0) is the electromagnetic current and εµ(~p,r)

is the polarization vector of V at momentum ~p. For vec-
tor charmonium states, J (em)

µ (0) can be approximated
by c̄γµc(0) if the contribution from other quark flavors
through annihilation diagrams is neglected. Since the
vector current J em

µ (x) defined in the continuum limit is
no longer conserved on the lattice, we perform a nonper-
turbative renormalization procedure [28] to extract the
multiplicative renormalization constant ZV of the cur-
rent. The renormalization constant of the spatial com-
ponets of J em

µ is determined to be Z(s)
V = 1.39(2) for

β = 2.4 and Z(s)
V = 1.11(1) for β = 2.8 [29].

Since the spatial components of J (em)
µ (x) is exactly

the normal quark bilinear operator O(M)
i for vector

mesons, the matrix elements in Eq. (10) can be derived
from the corresponding correlation functions involving
the operator O(M)

i along with the vector current renor-
malization constant Z(s)

V . In order to obtain this matrix
elements, we also calculate two other categories of corre-
lation functions in addition to C(H)(r, t),

C(J)(t)=
1

3

∑

x,i

〈0|Ji(x, t)O
(W ) †
i (0)|0〉

C(W )(t)=
1

3

∑

i

〈0|O(W )
i (t)O(W ) †

i (0)|0〉. (11)

where averaging over the temporal direction is also taken
implicitly in the above expressions. After the interme-
diate states insertion to C(J)(t), C(H)(r, t), and C(W )(t),
we have

C(J)(t)=
∑

n,r

1

2mn

Z(J)
n Z(W )∗

n e−mnt,
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C(H)(r, t)=
∑

n,r

1

2mn

Z(H)
n (r)Z(W )∗

n e−mnt,

C(W )(t)=
∑

n,r

1

2mnV3

Z(W )
n Z(W )∗

n e−mnt, (12)

where mn is the mass of the n-th state and the parameter
Z(K)

n with K referring to H or W is defined as

〈0|O(K)
i |Vn(p, r)〉= Z(K)

n εi(p, r). (13)

Accordingly the leptonic decay constant fVn
can be de-

rived from Z(J)
n from the definition Eq. (10) as

fVn
= CZ(s)

V Z(J)
n /mn, (14)

where C is an overall constant prefactor owing to the re-
definition of our quark fields and the anisotropic lattices
we are using.

The time dependence of the correlation functions is
usually observed from their effective mass plots. The ef-
fective masses of different correlation functions C (X)(t)
are defined as

Meff(t)a = log
C(K)(t)

C(K)(t+1)
, (15)

where K stands for J , H and W . These effective masses
are illustrated in Fig. 4, where the mass of the ground
state (J/ψ) is also plotted as a horizontal dashed line
to guide the eye. The left panel of Fig. 4 is for the
β = 2.4 lattice, and the right panel is for β = 2.8. In
the plots, we present in the third row the effective mass
of C(H)(r, t) at a specific r (r =

√
6as for β = 2.4 and

r = 3as, respectively), where C(H)(r, t) is dominated by
the third state in the short time range, changes sign
and is finally saturated by the ground state when t in-
creases. This is manifested in the effective mass plot
by the phenomenon that Meff(t) shows a meta-stable
plateau (roughly 4.4 GeV) higher than the ground state
before the discontinuity time, and then converges to the
mass of the ground state. This phenomenon also im-
plies that the spectral weight of the third state is much
larger than that of the lower states and the signs of the
two spectral weights are different. In the fitting proce-
dure, we fix the maximal time tmax of the fitting window
(tmax = 30at for β = 2.4 and tmax = 40at for β = 2.8),
and let the minimal time vary over a range. The fitted
spectral weights of C(J)(t) and C(W )(t) are listed in Ta-
ble 2 (raw data), from which the decay constants can be
derived. The fitted masses and the decay constants are
converted to the values in physical units (GeV) and are
presented in Table 3. The spectral weights of C (H)(r, t)
are less relevant and omitted here to save space (one can
refer to Fig. 2 to see their relative magnitudes for the
three states). All the errors are statistical and obtained
through a jackknife analysis. In order to illustrate the fit

quality, we also show the effective masses (in blue bands)
of the functions in Eq. (12) using the fitted parameters
at tmin = 12at for β = 2.4 and tmin = 16at for β = 2.8.
The fit functions describe the measured data very well.
For all the fits, the χ2/Nd.o.f ’s are around 1 even though
the number of degrees-of-freedom Nd.o.f is always several
hundreds.

As shown in Table 2 and Table 3, the fitted parame-
ters are almost stable and insensitive to tmin. The masses
of the first and the second states are consistent with the
those of J/ψ and ψ′, while the mass of the third state
is a little higher than the hybrid-like state we obtained
before. This can be attributed to some extent to con-
tamination from even higher states. In the right part
of Table 2, the spectral weights |Z(W )

3 |2 are an order of
magnitude larger than those of the lowest two states (cor-
responding mostly to J/ψ and ψ′). This is not strange
since Z(W )

n is the coupling of the hybrid-like wall-source
operator O(W ) to the n-th state and is expected to be
enhanced when coupling to a hybrid-like state. In con-
trast, the spectral weights |Z(J)

n Z(W )
n | (in the left part

of Table 2) of the lowest two states, even suppressed by
Z(W )

n , are much larger than that of the third state which
are close to zero with errors. This may imply that the
decay constant of the third state is very small, since Z (J)

n

is proportional to the decay constant of the n-th state.
Using the fitted spectral weights Z(J)

n Z(W )
n and |Z(W )

n |2,
we can get the concrete values of Z (J)

n , from which the
decay constant of the n-th state can be derived using
Eq. (14). The derived decay constants of the three states
are also listed in Table 3, where the last row lists the ex-
perimental values for comparison. For J/ψ, we get its
decay constant to be roughly 0.46(2) GeV at β = 2.4 and
0.43(2)GeV at β = 2.8, which is close to the experimen-
tal value although 5%–10% larger. The deviation can
be attributed to the artifact of the finite lattice spac-
ings (and also the uncertainty owing to the quenched
approximation). The derived decay constant of ψ′, fψ′ ,
seems compatible with the experimental value, but with
huge errors which come mainly from the uncertainty
of |Z(W )

2 |2.
The most striking observation is that the decay con-

stant f3 of the third state is consistent with zero within
the error. Superficially, it seems that the exotic vector
charmonium has a nearly zero decay constant. However,
there is a possibility that this is a mixing effect of two
nearby states (for example, the would-be exotic state and
ψ(4415)), whose contributions to C (J)(t) cancel to some
extent, because we perform the simultaneous fit using
only three mass terms. We have addressed that an ex-
otic vector charmonium state does exist and contributes
substantially to the correlation functions C (H)(r, t) in the
previous subsection. This is also the case for C (W )(t)
since |Z(W )

3 |2 is one magnitude or even more larger than
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|Z(W )
1 |2 and |Z(W )

2 |2. Based on these facts and consider-
ing the possible admixture of a conventional charmonium
state to the exotic state, we try to estimate the upper
limit of the decay constant of the exotic vector charmo-
nium. If the third state is actually contributed from the
would-be exotic state X and the adjacent vector charmo-
nium state ψ(4415), then the spectral weight Z (J)

3 Z(W )
3

can be expressed as

Z(J)
3 Z(W )

3 = Z(J)
X Z(W )

X +Z(J)

ψ(4415)Z
(W )

ψ(4415) ∼ 0. (16)

Thus we have

|Z(J)
X | ∼

|Z(W )

ψ(4415)|
|Z(W )

X |
|Z(J)

ψ(4415)|. (17)

According to Eq. (14), this is equivalent to

fX ∼
|Z(W )

ψ(4415)|
|Z(W )

X |
fψ(4415). (18)

Fig. 4. (color online) The effective masses Meff(t) (in the physical unit GeV) of the correlation functions C(X)(t)
with X standing for J, H, and W , respectively. The mass of the ground state (J/ψ) is plotted as a horizontal line
to guide the eye. We also show the effective masses (in blue bands) of the functions in Eq. (12) using the fitted
parameters at tmin = 12at for β =2.4 and tmin =16at for β = 2.8.

Table 2. The spectral weights of the three states at different tmin on both lattices through a correlated three-
mass-term fit. The errors are obtained through a jackknife analysis. The experimental results are also listed for
comparison.

β tmin |Z
(J)
1 Z

(W )
1 | |Z

(J)
2 Z

(W )
2 | |Z

(J)
3 Z

(W )
3 |

|Z
(W )
1 |2 |Z

(W )
2 |2 |Z

(W )
3 |2

(×105) (×105) (×106)

11 14.3(0.6) 9.7(0.3) 1.3(1.9) 0.144(6) 0.08(5) 0.41(8)

12 14.4(0.8) 9.5(0.5) 2.0(2.7) 0.146(7) 0.06(7) 0.33(9)

2.4 13 13.9(0.4) 9.9(0.7) 0.1(3.2) 0.142(3) 0.12(5) 0.39(17)

14 13.8(0.4) 10.6(1.8) 3.3(7.2) 0.141(3) 0.15(9) 0.39(24)

15 13.6(0.4) 11.6(2.5) 8.0(8.7) 0.140(2) 0.18(8) 0.33(24)

14 33.6(2.8) 22.6(1.9) 0.3(2.1) 3.86(27) 0.88(0.97) 5.9(1.0)

15 31.8(2.2) 21.6(1.1) 1.7(3.0) 3.65(22) 1.39(1.28) 4.3(1.1)

2.8 16 32.1(1.6) 21.5(0.9) 1.3(2.3) 3.68(14) 1.39(0.69) 3.9(0.7)

17 33.1(4.0) 22.0(1.6) 0.0(5.2) 3.81(38) 0.66(1.95) 3.4(0.9)

18 31.5(2.0) 20.7(1.1) 0.4(6.1) 3.64(15) 1.95(0.91) 7.7(2.9)
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Table 3. The masses and the leptonic decay constants of the three states at different tmin on both lattices. All the
values are in GeV using the lattice spacings listed in Table 1. The errors are obtained through a jackknife analysis.
The experimental results are also listed for comparison.

β tmin mJ/ψ fJ/ψ mψ′ fψ′ m3 f3

11 3.101(6) 0.47(2) 3.60(7) 0.4(1) 4.6(1) -0.005(8)

12 3.100(7) 0.47(2) 3.58(9) 0.4(2) 4.6(2) -0.009(10)

2.4 13 3.097(4) 0.46(1) 3.64(6) 0.31(6) 4.7(2) 0.00(1)

14 3.096(4) 0.46(1) 3.68(9) 0.29(6) 4.7(3) 0.01(3)

15 3.095(4) 0.46(1) 3.72(9) 0.29(5) 4.7(3) 0.04(4)

14 3.096(10) 0.44(2) 3.51(7) 0.5(4) 4.7(1) 0.001(5)

15 3.090(9) 0.43(2) 3.56(8) 0.4(2) 4.6(2) 0.005(7)

2.8 16 3.090(6) 0.43(1) 3.54(5) 0.4(1) 4.6(1) 0.004(6)

17 3.090(10) 0.43(3) 3.50(10) 0.6(8) 4.5(2) 0.00(2)

18 3.088(8) 0.42(2) 3.55(7) 0.3(9) 4.9(2) 0.01(1)

Expt. 3.097 0.407(5) 3.686 0.290(2)

Since |Z(W )
3 |2 � |Z(W )

1 |2 ∼ |Z(W )
2 |2, we can take the

approximation Z(W )
3 ≈ Z(W )

X . Furthermore, if we as-
sume |Z(W )

ψ(4415) | ∼ |Z(W )
2 |, from Table 2, we can take

Z(W )

ψ(4415)/Z
(W )
X ∼ 1/5. Using the experimental leptonic

decay width of ψ(4415), Γ (ψ(4415) → e+e−) = 0.58(7)
keV, fψ(4415) is extracted to be 157 MeV through the
relation

Γ (Vcc̄ → e+e−) =
16π

27
α2

QED

f 2
V

MV

, (19)

where we take αQED = 1/134 at the charm quark mass
scale. Therefore, fX can be roughly estimated to be

fX ∼ 30 MeV. (20)

So we can assign a safer upper limit of fX as

fX <
1

10
fJ/ψ∼ 40 MeV, (21)

which gives the upper limit of the leptonic decay width
of the exotic vector charmonium,

Γ (X→ e+e−) < 40 eV. (22)

4 Discussion

The suprisingly small e+e− decay width of the ex-
otic vector charmonium X is in sharp contrast to that of
conventional vector charmonia, which are usually of the
order of keV. In other words, if this hybrid-like vector
charmonium does exist in the real world, its contribu-
tion to the inclusive cross section of e+e− annihilation is
rather small. Actually the R value scan versus the invari-
ant energy

√
s of e+e− collisions does not show any indi-

cation of an extra vector charmonium-like state around√
s = 4.3 GeV (there is however a small dip in this energy

range). The BEPCII/BESIII in Beijing is now accumu-
lating e+e− collision data in this energy range and will
hopefully give a more precise line shape of the R-value
here to clarify the situation. On the other hand, as men-
tioned above, the vector charmonium state X(4260) was

observed by several experiments in the initial state radi-
ation of e+e− annihilation into J/ψπ+π−. The combined
decay width of X(4260) is

Γ (X(4260)→ e+e−)Br(X(4260)→ J/ψππ) = 9.2±1.0eV.
(23)

If X(4260) is tentatively assigned to the X state investi-
gated in this study, combining the above value with the
leptonic decay width of X, we can give an estimate of the
branching ratio of X(4260) decaying into J/ψπ+π−

Br(X(4260)→ J/ψππ) > 20%, (24)

which means that J/ψππ is one of the most important
decay modes of X(4260). This can naturally explain why
X(4260) has only been observed in this channel to date.
Furthermore, given the likely hybrid nature of the X
state, it can be expected that the spin singlet cc̄ compo-
nent of X prefers a hadronic transition into spin singlet
charmonium, such as hc. So X(4260)→ hcππ can also be
an important decay mode of X(4260). Recently the BE-
SIII Collaboration studied the e+e− → π+π−hc process
at center-of-mass energies from 3.90 GeV to 4.42 GeV.
They found that the cross sections are of the same or-
der of magnitude as, but have different line shapes from,
those of e+e− → π+π−J/ψ [30]. It is highly desirable
to investigate whether they are from the same resonance
structure or not.

The reason for the large branching ratio of X(4260)→
J/ψππ can be depicted as follows. In the e+e− annihi-
lation, the charm quark-antiquark pair cc̄ is produced in
the short range through the virtual photon. During the
hadronization procedure, the charm quark and the charm
antiquark emit soft gluons continuously, which form a
colored gluon halo around the gradually localized color
octet cc̄ (in a relative sense). Finally a meta-stable state
is formed as the X(4260) particle. Obviously, the color
octet cc̄ kernel can be readily neutralized into a color
singlet charmonium by absorbing (emitting) soft gluons
from (to) the halo, and the gluon halo thereby becomes
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color neutral and are emitted as light hadrons, for exam-
ple, the ππ pair. If this is actually the case, the color flux
between the charm quark and antiquark have less chance
to be excited to a high enough energy to break, and thus
the possibility of the DD̄ decay modes are suppressed.
There is a little similarity between this ‘halo charmo-
nium’ picture and the so-called ‘hadro-charmonium’ pic-
ture, where the relatively localized color neutral cc̄ kernel
is surrounded by a light hadron cloud [31]. However, the
advantage of the former is that the direct color interac-
tion between the halo and the kernel provides an obvious
binding mechanism, while in the ‘hadro-charmonium’
picture, more phenomenological assumptions are needed
to describe the interaction between the meson cloud and
the charmonium kernel.

5 Conclusion

To summarize, we use a new type of spatially ex-
tended hybrid-like operator to investigate the possi-
ble existence of exotic vector charmonia. In the non-
relativistic approximation of these operators, the local-
ized color octet charm quark-antiquark component is in
the spin singlet state and separates from the chromo-
magnetic field strength with a spatial distance. These
operators couple preferentially to a higher vector state

X with a mass of 4.33(2) GeV when the distance in-
creases. This observation indicates that the charm
quark-antiquark pair of X may acquire a center-of-mass
motion by recoiling against additional degrees of free-
dom depicted by the chromo-magnetic field strength op-
erators, which are necessarily gluonic in the quenched
approximation. In this meaning, the state X can be
taken as a hybrid-like vector charmonium. In addition,
through a simultaneous multi-state fit to different cor-
relation functions built from the vector current operator
and the the hybrid operator mentioned above, the lep-
tonic decay constant of X is tentatively determined to be
roughly one order of magnitude smaller than fJ/ψ, say,
fX < 40 MeV, which gives a very small leptonic decay
width Γ (X → e+e−) < 40 eV. This is a very important
characteristic parameter for X to be identified from ex-
periments. Obviously the mass and the leptonic decay
width of X are consistent with the production and decay
properties of X(4260), which had so far escaped direct
measurement in e+e− annihilation. Based on the com-
bined width ΓeeΓJ/ψπ+π−Γtot = 9.2±1.0 eV of X(4260), if
it can be assigned to the X state in this study, its decay
branch fraction of J/ψππ mode can be larger than 20%,
which also naturally explains why X(4260) is dominantly
observed in J/ψππ. By virtue of the inner structure of
X, X(4260) should also be observed in the hcππ channel.
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