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Gauge theory of massless spin-3

2
field in de Sitter space-time
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Abstract: On several levels of theoretical physics, especially particle physics and early universe cosmology, de Sitter

space-time has become an attractive possibility. The principle of local gauge invariance governs all known fundamental

interactions of elementary particles, from electromagnetism and weak interactions to strong interactions and gravity.

This paper presents a procedure for defining the gauge-covariant derivative and gauge invariant Lagrangian density

in de Sitter ambient space-time formalism. The gauge invariant field equation is then explicitly calculated in detail

for a massless spin-
3

2
gauge field.
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1 Introduction

Recent observational data and gravitational wave
detection indicates that the early universe has passed
through a de Sitter-like phase [1–3] . The de Sitter
phase is the vacuum solution of the Einstein equation
using a positive cosmological constant Λ. The de Sitter
space-time is a maximally symmetric curved space-time.
Other space-times which have this level of symmetry are
the anti-de Sitter space-time and the familiar Minkowski
space-time; thus, one would expect to extend quantum
field theory (QFT) from Minkowski to de Sitter space-
time to explain elementary particle physics by the de
Sitter group [4–9].

In space-time, particle states are labeled using
Poincaré labels, the values of which are closely related
to the unitary irreducible representation (UIR) labels
of mass and spin. From the group-theoretical perspec-
tive, we associate these parameters with the eigenvalues
of the Casimir operators. Although the notion of mass
is not as clear in de Sitter space-time as in Minkowski
space-time in a field-theoretical sense, the Casimir op-
erators of SO(1,4) could resolve the issue. There is a
very straightforward link between the Casimir operators
and the wave equation, which we shall investigate us-
ing ambient space-time formalism. Ambient space-time
formalism is a useful tool for making the link between
QFT in de Sitter space-time and the group-theoretical
approach by, in general, reducing the field equation to a
Casimir eigenvalue equation. This connection was estab-

lished for field theory in space-time in Refs. [10, 11], and
led to the canonical form of the covariant particle equa-
tions. In this way, the connection between the Wigner
UIRs of the Poincaré group and the solutions to the field
equation were made explicit.

Rarita and Schwinger derived a wave equation for

a massive spin-
3

2
particle (gravitino) in 1941 [12]. The

gravitino is the gauge fermion super-symmetric partner
of the graviton and can be important in quantum gravity
and quantum cosmology. For example, it has been sug-
gested as a candidate for dark matter [13, 14]. Gravitinos
can be copiously produced in the ultra-high-temperature
region, for example, near the big bang and black hole
horizons [15].

The spin-
3

2
field has previously been studied in a de

Sitter space-time background [16, 17]. In the present pa-

per, the massless spin-
3

2
field is considered in de Sitter

space-time using gauge theory, which is a general class of
quantum field theories used to describe elementary par-
ticles and their interactions. An interaction is defined
using the gauge-covariant derivative, which is defined as
a quantity that preserves the gauge invariant transforma-
tion of the Lagrangian. The field equation of the mass-

less spin-
3

2
field, or the vector-spinor gauge field, is the

gauge invariant in de Sitter space-time and the massless
field in Minkowski space-time for Spin > 1. Vector-spinor
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gauge fields are spinor fields and, consequently, their cor-
responding gauge group must have spinorial generators
to justify a set of well-defined gauge-covariant derivatives
[9, 18]. A set of anti-commutative generators satisfy a
super-algebra; nonetheless, such an algebra would not be
closed, since its constituent generators are Grasmanian
functions which will have usual functions as their mul-
tiplication products, i.e., the anti-commutation of two
spinor generators will become a tensor generator. In this
case, to obtain a closed super-algebra, the Grasmanian
generators must be coupled to the generators of the de
Sitter group. Additionally, in the language of gauge the-
ory, one may describe a vector-spinor gauge field as a real
force which must be coupled to a spin-2 gauge potential.
These two gauge fields can describe a gravitational field.
The gauge group in this case is a super-group.

In our previous work [18] we introduced the gauge-
covariant derivative, gauge invariant Lagrangian density,
and gauge invariant field equation in de Sitter ambient
space-time formalism, where the general solution of this
field has been studied in Ref. [24]. Because of the com-
plexity of the calculations, the gauge-covariant deriva-
tive, gauge invariant Lagrangian density, and gauge in-
variant field equation are explicitly calculated in the
present paper. Section 2 of the current work introduces
the notation of de Sitter ambient space-time formalism.
Section 3 presents the general framework of gauge theory.

Section 4 presents the gauge theory of massless spin-
3

2
.

In Section 5, we draw conclusions and the appendices
present these conclusions in more detail.

2 Notation

The de Sitter (dS) space-time can be identified by
a 4-dimensional hyperboloid embedded in 5-dimensional
Minkowskian space-time with the constraint:

XH = {x∈R
5| x·x= ηαβx

αxβ =−H−2}, α,β= 0,1,2,3,4,
(1)

where ηαβ =diag(1,−1,−1,−1,−1) and H is the Hubble
parameter. The de Sitter metric is:

ds2 = ηαβdxαdxβ |x2=−H−2 = gdS
µν dXµdXν , µ= 0,1,2,3,

(2)
where the Xµ’s are 4 spacetime intrinsic coordinates of
the dS hyperboloid. Any geometrical object in this space
can be written either in terms of four local coordinates
Xµ (intrinsic space notation) or five global coordinates
xα (ambient space notation). The de Sitter group has
two Casimir operators:

Q(1) =−
1

2
LαβL

αβ, α,β= 0,1,2,3,4, (3)

Q(2) =−WαW
α , Wα =

1

8
εαβγδηL

βγLδη, (4)

where the symbol εαβγδη stands for the usual antisym-
metric tensor and Lαβ =Mαβ +Sαβ are ten infinitismal
generators of the de Sitter group. The orbital part
Mαβis:

Mαβ =−i(xα ∂β −xβ ∂α) =−i(xα ∂
>

β −xβ ∂
>

α ), (5)

where ∂
>

β = θ α
β ∂α is the transverse derivative (x· ∂

>
= 0)

and θαβ = ηαβ +H2xαxβ is considered as the projection
tensor in ambient space-time notation. The spinorial

part Sαβ with half-integer spin s= l+
1

2
is defined by:

S
(s)
αβ =S

(l)
αβ +S

( 1
2
)

αβ , (6)

in which the first term acts on a tensor field as follows:

S
(l)
αβΨγ1···γl

=−i

l∑

i=1

(ηαγi
Ψγ1···(γi→β)···γl

−ηβγi
Ψγ1···(γi→α)···γl

) , (7)

and the second term is:

S
( 1
2
)

αβ =−
i

4
[γα,γβ]. (8)

The five γ-matrices are the generators of the Clifford al-
gebra based on the metric ηαβ :

{γα,γβ}= 2ηαβ
I4×4, (9)

and their four-dimensional matrix representations are
[19, 20]:

γ1 =

(

0 iσ1

iσ1 0

)

,γ2 =

(

0 −iσ2

−iσ2 0

)

,

γ3 =

(

0 iσ3

iσ3 0

)

,

γ0 =

(

I2×2 0

0 −I2×2

)

,γ4 =

(

0 I2×2

−I2×2 0

)

,

γα† = γ0γαγ0 (γ4)2 =−I (γ0)2 = I (10)

where I and σi’s are the unit matrix and the Pauli ma-
trices, respectively. The action of the Casimir operator
Q

(1)
j on a vector-spinor field Ψα(x), is [16]:

Q
(1)
j Ψ(x) =

(

−
1

2
MαβM

αβ +
i

2
γαγβM

αβ −
11

2

)

Ψα(x)

−2 ∂αx ·Ψ(x)+2xα ∂ ·Ψ(x)+γα (γ ·Ψ(x)) . (11)

The “scalar” Casimir operator is defined as Q
(1)
0 =

−
1

2
MαβMαβ =− ∂

>

α ∂
α>

.
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3 General formulation of gauge theory

This section briefly discusses a general formulation
of gauge theory of the type needed for super-gravity.
An infinitesimal symmetry transformation is determined
by a set of parameters which we denote in general as
εA, A= 1, · · · ,m where m is the number of independent
transformations, and operation δ(ε) depends linearly on
the parameter and acts on the fields of the dynamical
system under study. For global symmetries, the parame-
ters do not depend on the space-time point at which the
symmetry operation is applied. Because the symmetry
operation is linear in ε, we can write it in general as:

δ(ε) = εATA, (12)

in which TA is an operator on the space-time of fields.
It describes the symmetry transformation with the pa-
rameter stripped. TA satisfies the following commutation
relation:

[TA,TB] = fC
ABTC , (13)

wherefC
AB ’s are the structure constants of the algebra.

The notation and the formalism presented above apply
to all types of symmetry; internal symmetry, space-time
symmetry, and super-symmetry can be viewed as spe-
cial cases. We now want to consider field theories in
which the Lagrangian contains both gauge fields BA

µ with
µ= 0,1,2,3 and other fields φi, where i labels the fields,
whose transformation rules are:

δ(ε)φi(x) = εA(TAφ
i)(x). (14)

One very important covariant quantity is the covariant
derivative of a field φi, for which the gauge transforma-
tion rule has the form (14):

Dµφ
i ≡ ( ∂µ−δ(Bµ))φi = ( ∂µ−B

A
µ TA)φi, (15)

and the notation δ(Bµ) means that the covariant deriva-
tive is constructed using the specific prescription to sub-
tract the gauge transform of the field from the gauge
field itself as the symmetry parameter. For each sym-
metry, there is a field space-time generator TA, but the
parameters εA(x) are arbitrary functions in space-time.
To realize local symmetry in Lagrangian field theory, one
needs a gauge field, which we will generically denote as
BA

µ (x), which transforms as:

δ(ε)BA
µ ≡ ∂µε

A +εCBB
µ f

A
BC . (16)

The proof for this equation is provided in Appendix A.
We can use the covariant derivative to define the next
important set of quantities in any gauge theory of alge-
bra. For each generator of the algebra, curvature RA

µν

is a second rank anti-symmetric tensor. The curvature
reads:

[Dµ,Dν ] =−RA
µνTA,

RA
µν = ∂µB

A
ν − ∂νB

A
µ +BA

µB
B
ν f

C
AB. (17)

The proof for this is provided in Appendix A. Next, we
try to obtain the action using this formalism.

4 Gauge theory of massless spin-3

2

We now consider the vector-spinor gauge field Ψα(x).
The principle of gauge invariance asserts that the interac-
tions of different fields with a specific gauge field should
be defined using the definition of gauge-covariant deriva-
tives. The gauge potential in the present case is a spinor
field which satisfies the Grassmann algebra. Correspond-
ingly, the symmetry group involved includes spinorial
generators (generators with anti-commutation relations).
Assuming that there are N vector-spinor gauge fields
(ΨA

α , with A = 1, · · · ,N), the gauge-covariant derivative
can be defined as:

DΨ
β =∇>

β + i
(
Ψ A

β

)†
γ0QA, (18)

where ∇>
β is the transverse-covariant derivative. The

transverse-covariant derivative makes a tensor-spinor
field of rank l+ 1 from a tensor-spinor field of rank l

on the de Sitter ambient space-time formalism [9]:

∇>
β Ψα1···αl

≡
(

∂
>

β +γ>
β 6x

)

Ψα1···αl

−H2

l∑

n=1

xαn
Ψα1···αn−1βαn+1···αl

, (19)

∇̃>
β Ψ̃α1···αl

≡ ∂
>

β Ψ̃α1···αl
−H2

l∑

n=1

xαn
Ψ̃α1···αn−1βαn+1···αl

,

(20)
where the conjugate spinor is Ψ̃α ≡ Ψ †

αγ
0; in addition,

6x= γαx
α and γ>

α = θβ
αγβ . Generators QA are spinor-like,

satisfying some anti-commutation relations. It is evident
that the super-algebra in de Sitter ambient space-time
formalism will naturally appear. A brief discussion of the
simple case of N =1 is instructive. The gauge-covariant
derivative:

DΨ
β =∇>

β + i(Ψβ)
†
γ0Q=∇>

β + i
(
−Ψ̄βγ

4
)i
Qi,

where i= 1, · · · ,4 is the spinorial index and Ψ̄β =Ψ †
βγ

0γ4.
In order to acquire a rank-1 tensor field for the covariant
derivative, a spinor generator Q must be added. In this
case, the super-algebra between the Grassmanian gener-
ators is not closed, because the product of two Grassma-
nian numbers becomes a normal number. To obtain a
closed super-algebra, these generators must be coupled
to the de Sitter group generators Lαβ. In other words the
vector-spinor gauge field Ψβ must be coupled to the ten-
sor gauge field K γδ

β [9]. K γδ
β is a massless spin-2 rank-3

mixed-symmetric tensor field. The N = 1 super-algebra
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in de Sitter ambient space-time formalism has been cal-
culated [21] as:

{Qi,Qj}=
(

S
( 1
2
)

αβ γ
4γ2
)

ij

Lαβ, (21)

[Qi,Lαβ] =
(

S
( 1
2
)

αβ Q
)

i

, [Q̃i,Lαβ ] =−
(

Q̃S
( 1
2
)

αβ

)

i

, (22)

[Lαβ,Lγδ ] =−i(ηαγLβδ+ηβδLαγ−ηαδLβγ−ηβγLαδ), (23)

where Q̃i = (Qtγ4,C)
i
, and Qt is the transpose of Q.

Charge conjugation C is defined in Ref. [22]. It can
be shown that Q̃γ4Q is a scalar field under the de Sit-
ter transformation [22]. To define the gauge-covariant
derivative, one must use the presented N = 1 super-
algebra; hence, the gauge fields are H A

α ≡ (K γδ
β ,Ψ i

β ), and
the generators are ZA ≡ (Lαβ ,Qi). The gauge-covariant
derivative can be defined as:

DH
β =∇>

β + iH A
β ZA. (24)

One can rewrite the N = 1 super-algebra as:

[ZA,ZB}= C C
BAZC ,

where [ZA,ZB} is a commutation or an anti-commuta-
tion relation and C C

BA is the structure constant of the
algebra. Under a local infinitesimal gauge transforma-
tion generated by εA(x)ZA (Appendix A):

δεH
A

β =DH
β ε

A =∇>
β ε

A +C A
BC H C

β εB. (25)

The covariant derivative can be used to define the next
important set of quantities in any gauge theory of an
algebra. According to the general framework, one can
obtain:

−[DH
α ,D

H
β }=R A

αβ ZA,

where the curvature R is (Appendix A):

R A
αβ =∇>

αH
A

β −∇>
β H

A
α

+H B
β H C

α C A
BC , x

αR A
αβ = 0 =xβR A

αβ . (26)

For the spinorial part, the curvature is:

R i
αβ =∇>

αΨ
i

β −∇>
β Ψ

i
α +H B

β H C
α C i

BC ,

where the transverse-covariant derivative becomes:

∇>
αΨβ = ∂

>

αΨβ +γ>
α 6xΨβ −xβΨα.

Next, we obtain the Lagrangian in ambient space for-
malism by using the gauge principle and defining the
gauge covariant derivative. The interactions between
the elementary systems in the universe are governed by
the gauge principle and formulated through the gauge-
covariant derivative, which is defined as a quantity that
preserves the gauge invariant transformation of the La-
grangian. The super-gauge invariant action, or the

super-gravity Lagrangian in de Sitter ambient space-time
formalism, is [9, 23]:

Sg =

∫

dµ(x)R A
αβ gABR

αβB,

where gAB is the numerical constant matrix and dµ(x)
is the de Sitter invariant volume element [9]. For the
vector-spinor field part, the action is given by:

Sg[Ψ,K] =

∫

dµ(x)
(

R̃i

)

αβ

(
Ri
)αβ

,

where

R̃i
αβ = ∇̃>

α Ψ̃
i

β −∇̃>
β Ψ̃

i
α +H B

β H C
α C i

BC .

The transverse covariant-derivative acts on the conjugate
spinor in the following form [9, 18]:

∇̃>
β Ψ̃α ≡ ∂

>

β Ψ̃α−xαΨ̃β . (27)

In the approximation of the linear field equation, we con-
sider action:

S[Ψ,Ψ̃ ]

'

∫

dµ(x)
[(

∇̃>
α Ψ̃β −∇̃>

β Ψ̃α

)(
∇>αΨβ −∇>βΨα

)]

. (28)

The field equation of the vector-spinor field in the lin-
ear approximation can be obtained by using the Euler-
Lagrange equation as [Appendix B]:

(xα− ∂
>

α )
(
∇>αΨβ −∇>βΨα

)
= 0. (29)

This equation of motion in terms of the Casimir operator
can be rewritten as [Appendix C]:

(

Q
(1)
3
2

+
5

2

)

Ψα +∇>
α ∂

>
·Ψ = 0. (30)

It has been shown that Eq. (30) is completely consistent
with the vector-spinor field that is calculated on the ba-
sis of the group theory approach [9, 16, 17]. It has also
been shown that gauge transformations leave the action
and field equation invariant. One can then prove the
following identities:

Q
(1)
3
2

∇>
α =∇>

αQ
(1)
1
2

, ∂
>
·∇>ψ=−

(

Q
(1)
1
2

+
5

2

)

ψ. (31)

ψ is an arbitrary spinor field and:

Q
(1)
1
2

ψ=

(

Q0+ 6x 6 ∂
>
−

5

2

)

ψ.

One can use these identities to show that the field equa-
tion (30) is invariant for the following gauge transforma-
tion:

Ψα −→Ψ g
α =Ψα +∇>

αψ.

The vector-spinor Lagrangian density is then invariant
under the following gauge transformations [Appendix D]:
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Ψα −→Ψ g
α =Ψα +∇>

αψ,

Ψ̃α −→ Ψ̃ g
α = Ψ̃α + ∂

>

α ψ̃, ∇̃>
α ψ̃= ∂

>

α ψ̃.

Because the action is invariant under a gauge transfor-
mation, we can choose to fix any gauge we want. The
gauge fixing terms are added to the Lagrangian and, in
the linear approximation, the gauge fixing field equation
becomes:

(

Q
(1)
3
2

+
5

2

)

Ψα +c∇>
α ∂

>
·Ψ = 0. (32)

The selection of the gauge fixing parameter c determines
the space of the gauge solutions. The general solution
has been calculated in our previous work [18, 24].

5 Conclusions

The theory of gauge fields is universally recognized to
constitute a supporting pillar of fundamental physics. In
the present paper, the gauge invariant field equation for
a massless spin- 3

2
gauge field in de Sitter space-time is

reformulated using the definition of the gauge-covariant

derivative and gauge invariant Lagrangian density in de
Sitter ambient space-time formalism. In the framework
of gauge theory, the vector-spinor gauge field Ψα can be
considered as a potential of a possible new force in na-
ture, but this gauge field must be coupled to the gauge
potential K γδ

β . As a result, Ψα can be considered to be a
new sector of the gravitational field. This means that the
gravitational field can be decomposed into three parts:
the background θαβ , the gravitational waves K γδ

β , and
Ψα. This result can be used to construct a unitary form
of super-gravity by coupling the vector-spinor gauge field
with the massless spin-2 gauge field in de Sitter ambi-
ent space-time formalism. This will be considered in a
forthcoming paper.
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Appendix A

General formulation

Here, we prove equation (16). Since gauge transforma-
tions commute with covariant differentiation on fields φ for
which the algebra is closed, so we can write

δ(ε)Dµφ= ε
A
Dµ(TAφ). (A1)

We expand the two sides of the above equation. First the left
side:

I = δ(ε)( ∂µ−δ(Bµ))φ= δ(ε) ∂µφ
︸ ︷︷ ︸

II

−δ(ε)δ(Bµ)φ
︸ ︷︷ ︸

III

, (A2)

II= δ(ε) ∂µφ= ∂µ(δ(ε)φ)

= ∂µ(εATAφ)= ( ∂µε
A)(TAφ)+ε

A
∂µ(TAφ), (A3)

III= δ(ε)δ(Bµ)φ= δ(ε)(BA
µ TAφ)

= δ(ε)BA
µ (TAφ)+B

A
µ δ(ε)(TAφ), (A4)

=⇒ I =( ∂µε
A)(TAφ)+ε

A
∂µ(TAφ)−δ(ε)BA

µ (TAφ)

−B
A
µ δ(ε)(TAφ). (A5)

The right side of equation (A1) is:

ε
A
Dµ(TAφ)= ε

A[ ∂µ(TAφ)−δ(Bµ)(TAφ)], (A6)

by the following auxiliary relation:

ε
A
δ(Bµ)(TAφ)−BA

µ δ(ε)(TAφ) = ε
B
B

A
µ f

C
AB(TCφ). (A7)

Equation (A1) becomes:

=⇒ ( ∂µε
A)(TAφ)+ε

B
B

A
µ f

C
AB(TCφ)= δ(ε)BA

µ (TAφ). (A8)

Therefore, we have:

=⇒ δ(ε)BA
µ = ∂µ(εA)+ε

B
B

A
µ f

C
AB , (A9)

which is equation (16). Now, we prove equation (17).

[Dµ,Dν ] =−R
A
µνTA, (A10)

(DµDν −DνDµ)φ=DµDνφ−DνDµφ= ( ∂µ−δ(Bµ))Dνφ

−( ∂ν −δ(Bν))Dµφ, (A11)

=⇒= ∂µ(Dνφ)−δ(Bµ)Dνφ− ∂ν(Dµφ)+δ(Bν)Dµφ, (A12)

=⇒= ∂µ( ∂ν −δ(Bν))φ−δ(Bµ)( ∂ν −δ(Bν))φ

− ∂ν( ∂µ−δ(Bµ))φ+δ(Bν)( ∂µ−δ(Bµ))φ, (A13)

=⇒= ∂µ ∂νφ− ∂µ(δ(Bν)φ)−δ(Bµ) ∂νφ+δ(Bµ)δ(Bν)

− ∂ν ∂µφ+ ∂ν(δ(Bµ)φ)

+δ(Bν) ∂µφ−δ(Bν)δ(Bµ). (A14)

By the following auxiliary relations:

[δ(ε1), δ(ε2)]φ=
[

ε
A
1 TA, ε

B
2 TB

]

φ= ε
A
2 ε

B
1 [TA,TB]φ

= ε
A
2 ε

B
1 f

C
ABTC , (A15)
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[δ(Bµ), δ(Bν)]φ=B
A
ν B

B
µ f

C
ABTC , (A16)

we have:

=⇒=− ∂µ(δ(Bν)φ)−δ(Bµ) ∂νφ+ ∂ν(δ(Bµ)φ)

+δ(Bν) ∂µφ+B
A
ν B

B
µ f

C
ABTC , (A17)

=⇒=− ∂µ(BA
ν TAφ)−δ(Bµ) ∂νφ+ ∂ν(BA

µ TAφ)

+δ(Bν) ∂µφ+B
A
ν B

B
µ f

C
ABTC , (A18)

=⇒=−( ∂µB
A
ν )(TAφ)−BA

ν ( ∂µTAφ)−BA
µ TA ∂νφ

+( ∂νB
A
µ )(TAφ)+B

A
µ ( ∂νTAφ)

+BA
ν TA ∂µφ+B

A
ν B

B
µ f

C
ABTC , (A19)

=⇒=−( ∂µB
A
ν )(TAφ)+(∂νB

A
µ )(TAφ)+B

A
ν B

B
µ f

C
ABTC ,(A20)

hence

[Dµ,Dν ]=−( ∂µB
A
ν )(TAφ)+(∂νB

A
µ )(TAφ)

+BA
ν B

B
µ f

C
ABTC , (A21)

finally

R
A
µν = ∂µB

A
ν − ∂νB

A
µ +B

A
µB

B
ν f

C
AB , (A22)

which is equation (17). Now, if TA replaced by iZA, BA
µ re-

placed by HA
ν and ∂µ replaced by ∇>

α , we obtain equations
(25) and (26).

Appendix B

The Euler-Lagrange equation

From the action, the Lagrangian density is

L=
(

∇̃
>
α Ψ̃β −∇̃

>
β Ψ̃α

)(

∇
>α
Ψ

β
−∇

>β
Ψ

α
)

, (B1)

where
(

∇̃
>
α Ψ̃β −∇̃

>
β Ψ̃α

)

=
(

∂
>
α Ψ̃β −xβΨ̃α− ∂

>
β Ψ̃α +xαΨ̃β

)

. (B2)

Using the Euler-Lagrange equation

δL

δΨ̃m

− ∂
>
l

δL

δ( ∂
>
l Ψ̃m)

=0, (B3)

we obtain

δL

δΨ̃m

=(xαδ
m
β −xβδ

m
α )
(

∇
>α
Ψ

β
−∇

>β
Ψ

α
)

, (B4)

and

δL

δ( ∂
>
l Ψ̃m)

= (δl
αδ

m
β −δ

l
βδ

m
α )
(

∇
>α
Ψ

β
−∇

>β
Ψ

α
)

. (B5)

If β=m, we have

δL

δΨ̃m

=xα

(

∇
>α
Ψ

m
−∇

>m
Ψ

α
)

, (B6)

δL

δ( ∂
>
l Ψ̃m)

= δ
l
α

(

∇
>α
Ψ

m
−∇

>m
Ψ

α
)

=
(

∇
>l
Ψ

m
−∇

>m
Ψ

l
)

.

(B7)
Then the Euler-Lagrange equation leads immediately to the
following field equation

(xα− ∂
>
α )
(

∇
>α
Ψ

β
−∇

>β
Ψ

α
)

= 0, (B8)

which is equation (29).

Appendix C

The equation of motion expressed in terms of the

Casimir operator

We write the equation of motion (29) in terms of the
Casimir operator:

(xα− ∂
>
α )
(

∇
>α
Ψ

β
−∇

>β
Ψ

α
)

= 0, (C1)

where
(

∇
>α
Ψ

β
−∇

>β
Ψ

α
)

=
(

∂
>α
Ψ

β +γ
α
6xΨ

β
− ∂

>β
Ψ

α
−γ

β
6xΨ

α
)

.

Equation (C1) is divided into two parts as follows:

xα

(

∂
>α
Ψ

β +γ
α
6xΨ

β
− ∂

>β
Ψ

α
−γ

β
6xΨ

α
)

= 0, (C2)

I = ∂
>
α

(

∂
>α
Ψ

β +γ
α
6xΨ

β
− ∂

>β
Ψ

α
−γ

β
6xΨ

α
)

. (C3)

So we can write:

=⇒I= ∂
>
α ∂

>α
Ψ

β+ ∂
>
α (γα

6xΨ
β)− ∂

>
α ∂

>β
Ψ

α
− ∂

>
α (γβ

6xΨ
α),

(C4)

=⇒I=−Q0Ψ
β+γα

γ
ρ
∂
>
α (xρΨ

β)−∂
>
α ∂

>β
Ψ

α
−γ

β
γ

ρ
∂
>
α (xρΨ

α).
(C5)

According to our definitions and the auxiliary relations:

x ·Ψ =0, x · ∂
>

=0, Q0 =− ∂
>
α ∂

>α
,

Q
(1)
3
2

Ψα = (Q0+ 6x 6 ∂
>
−3)Ψα +2xα ∂

>
·Ψ+γ

α
6Ψ,

∂
>
αxρ = ηαρ+xαxρ, ∂

>
αx

ρ = δ
ρ
α+xαx

ρ
, γ ·γ= 5 , 6x· 6x=−1,

[ ∂
>
α , ∂

>
β ] =xβ ∂

>
α −xα ∂

>
β ,

after doing some calculation we have:

=⇒ I =−Q0Ψ
β +γ

α
γ

α
Ψ

β+ 6x 6xΨ
β +γ

α
6x ∂

>
αΨ

β
− ∂

>
α ∂

>β
Ψ

α

−γ
β
γαΨ

α
−γ

β
xα 6xΨ

α

−γ
β
6x ∂

>
·Ψ, (C6)

=⇒ I =−(Q0Ψα+ 6x 6 ∂
>
Ψα−3Ψα−

5

2
Ψα +2xα ∂

>
·Ψ

+γα
6Ψ)− ( ∂

>
α +γα 6x−xα) ∂

>
·Ψ−

5

2
Ψα, (C7)

and finally, the above equation can be written as
(

Q
(1)
3
2

+
5

2

)

Ψα +∇
>
α ∂

>
·Ψ = 0, (C8)

which is equation (30).
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Appendix D

Gauge invariance

The Lagrangian density is:

L=
(

∇̃
>
α Ψ̃β −∇̃

>
β Ψ̃α

)(

∇
>α
Ψ

β
−∇

>β
Ψ

α
)

.

The above Lagrangian density is invariant under the following
gauge transformations:

Ψα −→Ψ
g
α =Ψα +∇

>
αψ, (D1)

Ψ̃α −→ Ψ̃
g
α = Ψ̃α + ∂

>
α ψ̃. (D2)

The Lagrangian density is divided into two parts, as follow:

A=
(

∇
>α
Ψ

β
−∇

>β
Ψ

α
)

=
(

∂
>α
Ψ

β +γ
α
6xΨ

β
− ∂

>β
Ψ

α
−γ

β
6xΨ

α
)

, (D3)

B=
(

∇̃
>
α Ψ̃β −∇̃

>
β Ψ̃α

)

=
(

∂
>
α Ψ̃β −xβΨ̃α− ∂

>
β Ψ̃α +xαΨ̃β

)

, (D4)

where all parts have their own gauge transformation. Under
the gauge transformation (D1), the first part becomes:

A
g = ∂

>α
(Ψβ +∇

>β
ψ)+γ

α
6x(Ψβ +∇

>β
ψ)

− ∂
>β

(Ψα +∇
>α
ψ)−γβ

6x(Ψα +∇
>α
ψ)

= ∂
>α
Ψ

β +γ
α
6xΨ

β
− ∂

>β
Ψ

α
−γ

β
6xΨ

α + ∂
>α

∇
>β
ψ

+γα
6x∇

>β
ψ− ∂

>β
∇

>α
ψ−γ

β
6x∇

>α
ψ.

By using the following relations

∂
>α

∇
>β
ψ= ∂

>α
∂
>β
ψ+γ

β
γ

α
ψ+γ

β
x

α
6xψ+γ

β
6x ∂

>α
ψ

−η
αβ
ψ−x

α
x

β
ψ−x

β
∂
>α
ψ,

∂
>β

∇
>α
ψ= ∂

>β
∂
>α
ψ+γ

α
γ

β
ψ+γ

α
x

β
6xψ+γ

α
6x ∂

>β
ψ

−η
βα
ψ−x

β
x

α
ψ−x

α
∂
>β
ψ,

γ
α
6x∇

>β
ψ= γ

α
6x ∂

>β
ψ+γ

α
6xx

β
ψ+γ

α
γ

β
ψ,

γ
β
6x∇

>α
ψ= γ

β
6x ∂

>α
ψ+γ

β
6xx

α
ψ+γ

β
γ

α
ψ,

we have:

∂
>α

∇
>β
ψ+γ

α
6x∇

>β
ψ− ∂

>β
∇

>α
ψ−γ

β
6x∇

>α
ψ=0. (D5)

Therefore, by using (D5), we can see that(D3) is invariant un-
der (D1). Similarly for (D4), under the transformation (D2),
we have:

B
g = ∂

>
α (Ψ̃β + ∂

>
β ψ̃)−xβ(Ψ̃α + ∂

>
α ψ̃)

− ∂
>
β (Ψ̃α + ∂

>
α ψ̃)+xα(Ψ̃β + ∂

>
β ψ̃)

= ∂
>
α Ψ̃β −xβΨ̃α− ∂

>
β Ψ̃α +xαΨ̃β + ∂

>
α ∂

>
β ψ̃

−xβ ∂
>
α ψ̃− ∂

>
β ∂

>
α ψ̃+xα ∂

>
β ψ̃.

Using the identity

[ ∂
>
α , ∂

>
β ] =xβ ∂

>
α −xα ∂

>
β ,

or equivalently

∂
>
α ∂

>
β ψ̃−xβ ∂

>
α ψ̃− ∂

>
β ∂

>
α ψ̃+xα ∂

>
β ψ̃=0,

one can see that (D4) is also invariant under the gauge trans-
formation (D2).
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