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Krein regularization of λφ3 theory
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Abstract: In this paper, the one-loop self energy of λφ3 theory is calculated by using Krein regularization in four

and six dimensions and the result, which is finite, is compared with the conventional result of λφ3 theory in Hilbert

space. The self energy is calculated in the one-loop approximation and the result is automatically regularized as a

result of “Krein Regularization”.
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1 Introduction

λφ3 theory is super-renormalizable in four dimen-
sions; in six dimensions this theory is renormalizable.
Conventional methods, studying λφ3 theory requires di-
mensional or Paui-Villars regularization and subsequent
renormalization. In contrast, it is possible to show that
if Krein space quantization and quantum metric fluctu-
ation are combined, the resulting “Krein regularization”
[1, 2] can be used to study the theory in a finite form with
no need for a renormalization procedure. Krein space
quantization has been applied to the covariant quanti-
zation of the minimally coupled scalar field in de Sitter
space [3–5]. The appearance of the auxiliary negative
norm state is a consequence of Krein quantization. This
unphysical particle (the negative norm state) does not in-
teract with the physical state (the positive norm state)
and acts as a regulator in the theory [1, 6–8]. Krein
space quantization and quantum metric fluctuations re-
move the ultraviolet and infrared divergent terms from
the Feynman propagator. In Krein regularization for the
scalar field, the propagator is [9]:

PP m2

k2(k2−m2)
.

This propagator is similar to the one used in the Pauli-
Villars method [10]:

PP (m2−M 2)

(k2−M 2)(k2−m2)
.

In the Pauli-Villars method, it is assumed that a ghost
particle, which has a negative norm, exists with mass
M . When this mass tends to infinity the unphysical
particle decouples from the theory [10]. The modified

Pauli-Villars propagator behaves as
1

k4
, which removes

the divergent term but breaks the unitarity of the theory.
Krein regularization resembles Pauli-Villars regulariza-
tion because of the similarity of the propagators but in
the Krein method a finite answer is gained without the
application of a renormalization procedure and the uni-
tarity is improved by the “reality condition” in which the
negative norm states do not appear in the external legs
of the Feynmann diagram and a renormalized definition
of the S-matrix is assumed [1].

Krein regularization has been used successfully in
studying the λφ4 theory, Casimir effect, QED theory,
removing the infrared divergence in linear gravity in de
Sitter space, the effective action of λφ4 and QED, in cal-
culating values of the magnetic anomaly, Lamb shift and
coupling constants of λφ4 and QED [1, 7–9, 11–15].

In the next section, λφ3 in Krein quantization is in-
troduced. In Sections 3 and 4, Krein regularization is
performed for λφ3 theory in four and six dimensions and
the one-loop self energy is calculated via the Krein regu-
larization method and in the final section, the conclusion
is presented.

2 λφ3 in Krein space quantization

In the λφ3 theory, for studying the self energies in four
and six dimensions the negative norm state propagates
in the loop and takes part in the calculation of self energy
as a regulator. Because of this we expect that after ap-
plying Krein regularization, the theory will be finite and
renormalization will be unnecessary. It must be noted
that the possible propagation of negative norm states in
the theory can be neutralized by employing a certain “re-
ality condition”, as mentioned previously, which allows
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for physical quantities only. Any negative norm states
encountered in the disconnected sections of the Feynman
diagram can be removed by renormalizing the relevant
probability amplitudes.

Despite the use of Krein space quantization, the
Feynman rules and S-matrix elements are the same as
they are in Hilbert space, because the effect of unphys-
ical fields on physical fields is zero and only the Krein
regularization propagator appears in the loop. In the
first loop the self energy is obtained as follows [16, 17]:

Sfi=〈in,p′|S(2) |p,in〉= (2π)
4
δ

4(p′−p)√
2ωp2ω′

p

iΣkr, (1)

where Sfi describes the scattering of the i state into the
f state and

S(2)=
λ2

2

∫
d4xd4x′T[ϕ3(x)ϕ3(x′)],

thus the self energy would be:

iΣkr(p)=λ2

∫
d4q

(2π)
4 G̃T (q)G̃T (p−q), (2)

In Eq. (2), the delta function divergence term is still
present. In order to remove the divergence, it is nec-
essary to include the quantum metric fluctuation with
the Krein propagator. We therefore use <G̃T (q)> and

< G̃T (p−q) > and Eq. (2) takes on the following form,
which no longer exhibits any divergence:

iΣkr(p)=λ
2

∫
ddq

(2π)
d
<G̃T (q)><G̃T (p−q)>. (3)

3 Calculation of Krein regularization for

the one-loop self energy in 4 dimen-

sions

In λφ3 theory for four dimensions, only the self en-
ergy diagram has a divergent term; all other diagrams
are finite. Because of the delta function singularity in
the propagators, the integral (2) is divergent at the ul-
traviolet limit, whereas the integral (3) is finite:

iΣkr(p) =
m4λ2

4

∫
d4q

(2π)
4PP

(
1

q2(q2−m2)

)

×PP
(

1

(p−q)
2
[(p−q)

2−m2]

)
. (4)

Using Feynman parameters and relation [18]:

1

A1 ···An

=

∫1

0

dx1 ···dxnδ

(
n∑

i=1

xi−1

)

× (n−1)!

(x1A1+···+xnAn)
n , (5)

equation (4) changes to:

iΣkr(p)=6m4λ2

∫1

0

dudxdydzδ(1−u−x−y−z)

∫
d4l

(2π)
4

1

D4
,

(6)
where D=xq2+y(q2−m2)+z(p−q)2+u(p−q)2−um2. The
variable change q → l+(z+u)p is applied; D becomes
l2−(z+u)2p2+(y+u)m2−(z+u)p2 [18].

Wick rotation is applied so that if the denominator
has iε in it, l0E =−il0 or if it contains −iε, then l0E = il0,
resulting in the following integral [18]:

iΣkr(p)=
im4λ2

(4π)2

∫1

0

dudxdydzδ(1−u−x−y−z)
1

[(z+u)
2
p2+(y+u)m2−(z+u)p2]

2 , (7)

where relation (8) is used [18]:

∫
ddl

(2π)
d

1

|l2−∆|m =
i(−1)

m

(4π)
d

2

Γ

(
m−d

2

)

Γ (m)∆m−
d

2

. (8)

Integrating over dx in Eq. (7), we have:

Σkr(p) =
m4λ2

(4π)
2

∫1

0

dz

∫1−z

0

du

∫1−z−u

0

dy

[(z+u)
2
p2+(y+u)m2−(z+u)p2]

2

=
m2λ2

(4π)2

∫1

0

dz

∫1−z

0

du

[
1

p2u2+u(2zp2−p2+m2)+z2p2−zp2
− 1

p2u2+u(2zp2−p2)+z2p2−zp2+(1−z)m2

]
. (9)

Integrating over du and substituting the variable α2 for 4p2m2z+(p2−m2)2 for the first term and β2=p4−4p2m2+4p2m2z
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for the second term:

Σkr(p) = − λ2

(4π)
2

∫p2+m2

m2
−p2

dα
1

2p2

{
ln

p2+m2−α

p2+m2+α
− ln

α2−(p2−m2)
2
+2m4−2m2p2−2m2α

α2−(p2−m2)
2
+2m4−2m2p2+2m2α

}

+
λ2

(4π)
2

∫p2

√
p4

−4p2m2

dβ
1

2p2

{
ln

p2−β

p2+β
− ln

β2−p4+2m2p2−2m2β

β2−p4+2m2p2+2m2β

}
, (10)

the final answer is finite without using any conventional method of regularization:

Σkr(p) =
λ2

32π2






√
1−4m2

p2
ln




1−2m2

p2
+

√
1−4m2

p2

2m2

p2
−1+

√
1−4m2

p2


−2ln(2p2)−3ln(2p2−2m2)+

(
4m2

p2
−1

)
ln(2m2)





=finite. (11)

In Hilbert space, we have [19]:

ΣRe
Hi (p)=

λ2

32π2

∫1

0

dxln

(
m2−p2x(1−x)

m2(1−x+x2)

)
=

λ2

32π2

√
1−4m2

p2
ln




1−2m2

p2
+

√
1−4m2

p2

2m2

p2


. (12)

4 Calculation of Krein regularization for

the one-loop self energy in 6 dimen-

sions

In six dimensions, the degree of divergence in the self
energy diagram is two. Instead of using conventional
regularization, Krein regularization is applied as follows:

iΠkr(p) =
m4

λ
2

4

∫
d6q

(2π)
6PP

(
1

q2(q2−m2)

)

×PP
(

1

(p−q)
2
[(p−q)

2−m2]

)
. (13)

Using Feynman parameters, changing the variable q to
l+(z+u)p and relation (5) we have [18]:

iΠkr(p)=6m4λ2

∫1

0

dudxdydzδ(1−u−x−y−z)

∫
d6l

(2π)
6

1

D4
,

(14)
where D is defined as in the previous section.

Applying Wick rotation and using relation (8), we
have:

iΠkr(p) =
im4λ2

2(4π)3

∫1

0

dudxdydzδ(1−u−x−y−z)

× 1

[(z+u)
2
p2+(y+u)m2−(z+u)p2]

. (15)

Integrating over dx and dy in Eq. (15), we have:

Πkr(p) =
m4λ2

(4π)
3

∫1

0

dz

∫1−z

0

du

∫1−z−u

0

dy

(z+u)
2
p2+(y+u)m2−(z+u)p2

=
m2λ2

(4π)3

∫1

0

dz

∫1−z

0

duln
p2u2+p2(2z−1)u+z2p2−p2z+m2(1−z)

p2u2+u(2zp2−p2+m2)+z2p2−zp2
. (16)

Integrating over du:

Πkr(p) =
λ2

2(4π)
3

∫1

0

dz





Aln

A+
1

2
−m2

p2

−A+
1

2
−m2

p2

+B ln

z−B+
1

2
−m2

2p2

z−B−1

2
+

m2

2p2






+
λ2

2(4π)
3

∫1

0

dz

{
1

2
ln

m2

p2
+

(
1

2
−z

)
ln

(
z−m2

p2

)
− 1

2

(
1+

m2

p2

)
ln

(
z+

m2

p2

)}
, (17)
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where

A=

√
4
m2

p2
(z−1)+1

and

B=

√
4z2+4

m2

p2
z+1+

m4

p4
−2

m2

p2
.

In Hilbert space, we have [20]:

ΠHi(p) =
λ

2

2(4π2)3

∫1

0

dz[z(1−z)p2

+m2−iε]ln

(
m2+p2z(1−z)

m2(1−z+z2)

)
. (18)

5 Conclusion and outlook

The role of Krein space quantization, including the
quantum metric fluctuation, is to regularize the theory.

This method has been used to good effect in the elimi-
nation of the singularity in λφ3, λφ4 and QED theories
in four dimensions without affecting the physical aspects
of the theory in the one-loop approximation.

This method can easily be used for linear quantum
gravity in the background field method [21], where the
theory is automatically renormalized and could also be
an alternative way to solve the non-renormalizability of
linear quantum gravity, which would be compatible with
general relativity. This paper will later be supplemented
with the results of applying Krein regularization to the
λφ5 theory.
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