Investigations on the charmless decays of $\mathbf{Y}(4260)^{*}$

LI Gang（李刚 $)^{1,3 ; 1)}$ AN Chun－Sheng（安春生 $)^{2 ; 2)} \quad$ LI Peng－Yu（李鹏宇）${ }^{1}$
LIU Di（刘迪）$)^{1}$ ZHANG Xiao（张晓）$)^{1} \quad$ ZHOU Zhu（周柱）${ }^{1}$
${ }^{1}$ Department of Physics，Qufu Normal University，Qufu 273165，China
${ }^{2}$ Institute of High Energy Physics，and Theoretical Physics Center for Science Facilities， Chinese Academy of Sciences，Beijing 100049，China
${ }^{3}$ State Key Laboratory of Theoretical Physics，Institute of Theoretical Physics， Chinese Academy of Sciences，Beijing 100190，China

Abstract

Apart from the charmful decay channels of $Y(4260)$ ，the charmless decay channels of $\mathrm{Y}(4260)$ also provide us a good platform to study the nature and the decay mechanism of $Y(4260)$ ．In this paper，we propose to probe the structure of $\mathrm{Y}(4260)$ through the charmless decays $\mathrm{Y}(4260) \rightarrow \mathrm{VP}$ via intermediate $\mathrm{D}_{1} \overline{\mathrm{D}}+$ c．c．meson loops，where V and P stand for light vector and pseudoscalar mesons，respectively．Under the molecule ansatz of $\mathrm{Y}(4260)$ ，the predicted total branching ratio $B R_{\mathrm{VP}}$ for all $\mathrm{Y}(4260) \rightarrow \mathrm{VP}$ processes are about $\left(0.34_{-0.23}^{+0.32}\right) \%$ to $\left(0.75_{-0.52}^{+0.72}\right) \%$ with the cutoff parameter $\alpha=2-3$ ．Numerical results show that the intermediate $\mathrm{D}_{1} \overline{\mathrm{D}}+\mathrm{c} . \mathrm{c}$ ．meson loops may be a possible transition mechanism in the $\mathrm{Y}(4260) \rightarrow \mathrm{VP}$ decays．These predicted branching ratios are the same order to that of $\mathrm{Y}(4260) \rightarrow \mathrm{Z}_{\mathrm{c}}^{+}(3900) \pi^{-}$，which may be an evidence of $\mathrm{D}_{1} \mathrm{D}$ molecule and can be examined by the forthcoming BESIII data in the near future．

Key words：intermediate meson loop，exotic states
PACS：13．25．GV，13．75．Lb，14．40．Pq DOI：10．1088／1674－1137／39／6／063102

1 Introduction

In the past decade，many new charmonium（or char－ moniumlike）states，i．e．，the so－called XYZ states，have been observed experimentally，which has triggered a lot of theoretical investigations on the nature of ex－ otic meson resonances beyond the conventional q \bar{q} quark model［1－6］．Among these observed XYZ states，the res－ onance $\mathrm{Y}(4260)$ ，which was first observed by the BaBar Collaboration in the $\pi^{+} \pi^{-} \mathrm{J} / \psi$ invariant spectrum in $\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow \gamma_{\text {ISR }} \pi^{+} \pi^{-} \mathrm{J} / \psi[7]$ ，and then confirmed by both the CLEO and Belle collaborations［8，9］，is a very inter－ esting one because of that its mass $m=4263_{-9}^{+8} \mathrm{MeV}$［10］ is only about $30-40 \mathrm{MeV}$ below the S－wave $\mathrm{D}_{1} \overline{\mathrm{D}}+$ c．c． threshold．And very recently，the new data from BESIII confirms the signal in $\mathrm{Y}(4260) \rightarrow \mathrm{J} / \psi \pi^{+} \pi^{-}$with much higher statistics［11］．It indicates that it is worth study－ ing the structure and decays of $\mathrm{Y}(4260)$ ．

Since the observation of $Y(4260)$ ，many different
solutions have been proposed to study the structure of $\mathrm{Y}(4260)$ ．These solutions include the $4 S$ charmo－ nium［12］，tetraquark c $\bar{c} s \bar{s}$ state［13］，charmonium hy－ brid［14－16］， $\mathrm{D}_{1} \overline{\mathrm{D}}$ molecule［17－19］${ }^{3)}, \chi_{\mathrm{c} 1} \omega$ molecule［23］， $\chi_{\mathrm{c} 1} \rho$ molecule［24］，hadrocharmonium state［4，25，26］， spin－triplet $\Lambda_{\mathrm{c}}-\bar{\Lambda}_{\mathrm{c}}$ baryonium states［27－30］，a cusp［31， 32］or a non－resonance explanation［33，34］．Under the $\mathrm{D}_{1} \overline{\mathrm{D}}$ molecule ansatz，some experimental observations can be described，such as the observation of $\mathrm{Z}_{\mathrm{c}}(3900)$ in $\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow \pi^{+} \pi^{-} \mathrm{J} / \psi[19]$ ，the production of $\mathrm{X}(3872)$ in the $\mathrm{e}^{+} \mathrm{e}^{-}$annihilation around the mass of $\mathrm{Y}(4260)$［20］， and the threshold behavior in the main decay channels of $\mathrm{Y}(4260)$［35］etc．In Ref．［26］，Li and Voloshin argue that the hadrocharmonium interpretation of $\mathrm{Y}(4260)$ may be more credible．Their argument is based on the fact that the production of S－wave pairs with $S_{\mathrm{L}}^{\mathrm{P}}=(3 / 2)^{+}$and $S_{\mathrm{L}}^{\mathrm{P}}=(1 / 2)^{-}$heavy mesons，where S_{L} is the sum of the spin of the light quark and the orbital angular momen－ tum in the heavy mesons，is forbidden in $\mathrm{e}^{+} \mathrm{e}^{-}$collisions

[^0]（c）（i）Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence．Any further distribution of this work must maintain attribution to the author（s）and the title of the work，journal citation and DOI．Article funded by SCOAP ${ }^{3}$ and published under licence by Chinese Physical Society and the Institute of High Energy Physics of the Chinese Academy of Sciences and the Institute of Modern Physics of the Chinese Academy of Sciences and IOP Publishing Ltd
in the limit of exact heavy quark spin symmetry. In Ref. [26], it was also shown that both the rescattering due to the process $\mathrm{D}^{*} \overline{\mathrm{D}}^{*} \rightarrow \mathrm{D}_{1} \overline{\mathrm{D}}$ and the mixing of the $D_{1}(2420)$ with the $D_{1}(2430)$ cannot evade this suppressed production. They also considered the possible kinematic effects that might increase the amount of the heavy quark spin symmetry (HQSS) violation and found that the kinematical effect is quite small at such energy. Thus, they concluded that S-wave $\mathrm{D}_{1} \overline{\mathrm{D}}$ production is suppressed. In Ref. [36], Wang et al. tackle both the hadronic molecule and the hadrocharmonium interpretations of the $\mathrm{Y}(4260)$ with the experimental data currently available. Although the production of $(3 / 2)^{+}$ and $(1 / 2)^{-}$heavy meson pairs is suppressed in the heavy quark limit [26], the heavy quark spin symmetry breaking effects in the charm sector can be significant. So the resulting suppression for the physical charm quark mass is not in conflict with the interpretation that the main component of the $\mathrm{Y}(4260)$ is a $\mathrm{D}_{1} \overline{\mathrm{D}}$ molecule.

On the other hand, the intermediate meson loop transition as an important nonperturbative dynamical mechanism has been extensively studied in the energy region of charmonium [37-64]. It is widely recognized that the intermediate meson loops may be closely related to some nonperturbative phenomena observed in experiments [46-67], e.g. sizeable branching ratios for non-D \bar{D} decay of $\psi(3770)$ [46-52], the helicity selection rule violations in charmonium decays [59-61], isospin symmetry breaking in charmonium decays [63, 64]. Recently, this intermediate meson loops mechanism has been applied to the production and decays of ordinary and exotic states [19, 20, 35, 68-73].

Recently, the charmful decay channels have been extensively used to constrain the reaction mechanism and gain insights into the nature $\mathrm{Y}(4260)$ [35, 68-70]. Apart from the charmful decay channels of $\mathrm{Y}(4260)$, the charmless decay channels of $\mathrm{Y}(4260)$ are also a good platform to further study $\mathrm{Y}(4260)$. In the present work, we study the charmless decays $\mathrm{Y}(4260) \rightarrow \mathrm{VP}$ via $\mathrm{D}_{1} \overline{\mathrm{D}}$ loop with an effective Lagrangian approach (ELA) under the $\mathrm{D}_{1} \overline{\mathrm{D}}+\mathrm{c} . c$. molecule ansatz. The paper is organized as follows. In Section 2, we will briefly introduce the ELA and give some relevant formulae, the numerical results are presented in Section 3, and Section 4 contains a brief summary.

2 The model

Generally speaking, all the possible intermediate meson exchange loops should be included in the calculation. In reality, the breakdown of the local quark-hadron duality allows us to pick up the leading contributions as a reasonable approximation [74, 75]. For example, the intermediate states involving flavor changes turn out to be
strongly suppressed. One reason is because of the large virtualities involved in the light meson loops. The other is because of the Okubo-Zweig-Iizuka-rule suppressions. In this work, we have assumed that $\mathrm{Y}(4260)$ is dominated by the S-wave $\mathrm{D}_{1} \overline{\mathrm{D}}+$ c.c. component and the $\mathrm{D}_{1} \overline{\mathrm{D}}+$ c.c. mass threshold is only 30 MeV above the $\mathrm{Y}(4260)$, so we consider the S-wave $\mathrm{D}_{1} \overline{\mathrm{D}}$ meson loops as the leading contributions.

By assuming $\mathrm{Y}(4260)$ is an S-wave $\mathrm{D}_{1} \overline{\mathrm{D}}$ molecular state, the effective Lagrangian is constructed as

$$
\begin{equation*}
\mathcal{L}_{\mathrm{Y}(4260) \mathrm{D}_{1} \mathrm{D}}=\mathrm{i} \frac{x}{\sqrt{2}}\left(\bar{D}_{\mathrm{a}}^{\dagger} Y^{\mu} D_{1 \mathrm{a}}^{\mu \dagger}-\bar{D}_{1 \mathrm{a}}^{\mu \dagger} Y^{\mu} D_{\mathrm{a}}^{\dagger}\right)+\text { H.c. } \tag{1}
\end{equation*}
$$

where x is the coupling constant.
For a state slightly below an S-wave two-hadron threshold, the effective coupling constant of this state to the two-body channel, g_{NR}, is related to the probability of finding the two-hadron component in the physical wave function of the bound state, c^{2}, and the binding energy, $\epsilon=m_{1}+m_{2}-M[20,76,77]$

$$
\begin{equation*}
g_{\mathrm{NR}}^{2} \equiv 16 \pi\left(m_{1}+m_{2}\right)^{2} c^{2} \sqrt{\frac{2 \epsilon}{\mu}}[1+\mathcal{O}(\sqrt{2 \mu \epsilon r})] \tag{2}
\end{equation*}
$$

where $\mu=m_{1} m_{2} /\left(m_{1}+m_{2}\right)$ is the reduced mass, and r denotes the range of the forces. Notice that the coupling constant gets maximized for a pure bound state, which has $c^{2}=1$ by definition.

Using the masses of the $\mathrm{Y}(4260), \mathrm{D}$ and D_{1} given in PDG [10], we obtain the mass difference between the $\mathrm{Y}(4260)$ and the $\mathrm{D}_{1} \overline{\mathrm{D}}+$ c.c. threshold to be $m_{\mathrm{D}}+m_{\mathrm{D}_{1}}-m_{\mathrm{Y}}=$ $27_{-8}^{+9} \mathrm{MeV}$. Assuming that $\mathrm{Y}(4260)$ is pure DD_{1} molecule, which corresponds to the probability of finding a $D_{1} \overline{\mathrm{D}}$ component in the physical wave function of the bound states $c^{2}=1$, we obtain the coupling constant x

$$
\begin{equation*}
|x|=14.62_{-1.25}^{+1.11} \pm 6.20 \mathrm{GeV} \tag{3}
\end{equation*}
$$

where the first errors are due to the uncertainties of the binding energies, and the second ones are from the approximate nature of Eq. (2).

The effective Lagrangian relevant to the light vector mesons can be obtained as follows [78, 79],

$$
\begin{align*}
\mathcal{L}_{\mathcal{V}}= & \mathrm{i} g_{\mathcal{D}^{*} \mathcal{D} \mathcal{V}} \epsilon_{\alpha \beta \mu \nu}\left(\mathcal{D} \overleftrightarrow{\partial_{\alpha}} \mathcal{D}^{* \beta \dagger}-\mathcal{D}^{* \beta \dagger} \overleftrightarrow{\partial_{\alpha}} \mathcal{D}^{j}\right) \partial^{\mu} \mathcal{V}^{\nu} \\
& +\mathrm{i} g_{\overline{\mathcal{D}}^{*} \overline{\mathcal{D}} \mathcal{}} \epsilon_{\alpha \beta \mu \nu}\left(\overline{\mathcal{D}} \overleftrightarrow{\partial_{\alpha}} \overline{\mathcal{D}}^{* \beta \dagger}-\overline{\mathcal{D}}^{* \beta \dagger} \overleftrightarrow{\partial_{\alpha}} \overline{\mathcal{D}}^{j}\right) \partial^{\mu} \mathcal{V}^{\nu} \\
& + \text { H.c. } \tag{4}
\end{align*}
$$

and the effective Lagrangian for the light pseudoscalar mesons are constructed based on both heavy quark spinflavor transformation and chiral transformation [80-83]. Accordingly, the interaction terms studied in the present work read

$$
\begin{align*}
\mathcal{L}_{\mathcal{P}}= & g_{\mathrm{D}_{1} \mathcal{D} * \mathcal{P}}\left[3 D_{1}^{\mu}\left(\partial_{\mu} \partial_{\nu} \mathcal{P}\right) \mathcal{D}^{* \dagger \nu}-D_{1}^{\mu}\left(\partial^{\nu} \partial_{\nu} \mathcal{P}\right) \mathcal{D}_{\mu}^{* \dagger}\right] \\
& +g_{\overline{\mathrm{D}}_{1} \overline{\mathcal{D}}^{* \mathcal{P}}}\left[3 \overline{\mathcal{D}}^{* \dagger \mu}\left(\partial_{\mu} \partial_{\nu} \mathcal{P}\right) \bar{D}_{1}^{\nu}-\overline{\mathcal{D}}^{* \dagger \mu}\left(\partial^{\nu} \partial_{\nu} \mathcal{P}\right) \bar{D}_{1 \nu}\right] \\
& + \text { H.c. }, \tag{5}
\end{align*}
$$

with $\mathcal{D}^{(*)}=\left(\mathrm{D}^{(*)+}, \mathrm{D}^{(*) 0}, \mathrm{D}_{\mathrm{s}}^{(*)+}\right)$ and $\overline{\mathcal{D}}^{(*)}=\left(\mathrm{D}^{(*)-}, \overline{\mathrm{D}}^{(*) 0}\right.$, $\left.\mathrm{D}_{\mathrm{s}}^{(*)-}\right) . \mathcal{P}$ and \mathcal{V} denote the 3×3 matrices for the pseu-
$\mathcal{P}=\left(\begin{array}{ccc}\frac{\pi^{0}}{\sqrt{2}}+\frac{\eta \cos \alpha_{P}+\eta^{\prime} \sin \alpha_{P}}{\sqrt{2}} & \pi^{+} & K^{+} \\ \pi^{-} & -\frac{\pi^{0}}{\sqrt{2}}+\frac{\eta \cos \alpha_{P}+\eta^{\prime} \sin \alpha_{P}}{\sqrt{2}} & K^{0} \\ K^{-} & \bar{K}^{0} & -\eta \sin \alpha_{P}+\eta^{\prime} \cos \alpha_{P}\end{array}\right), \mathcal{V}=\left(\begin{array}{ccc}\frac{\rho^{0}}{\sqrt{2}}+\frac{\omega}{\sqrt{2}} & \rho^{+} & K^{*+} \\ \rho^{-} & -\frac{\rho^{0}}{\sqrt{2}}+\frac{\omega}{\sqrt{2}} & K^{* 0} \\ K^{*-} & \bar{K}^{* 0} & \phi\end{array}\right)$.
doscalar octet and vector nonet, respectively [55], i.e.,

The physical states η and η^{\prime}, which should be linear combinations of $n \bar{n}=(u \bar{u}+d \bar{d}) / \sqrt{2}$ and $s \bar{s}$, are taken to be the following form

$$
\begin{align*}
|\eta\rangle & =\cos \alpha_{\mathrm{P}}|n \bar{n}\rangle-\sin \alpha_{\mathrm{P}}|s \bar{s}\rangle \\
\left|\eta^{\prime}\right\rangle & =\sin \alpha_{\mathrm{P}}|n \bar{n}\rangle+\cos \alpha_{\mathrm{P}}|s \bar{s}\rangle \tag{7}
\end{align*}
$$

where $\alpha_{\mathrm{P}} \approx \theta_{\mathrm{P}}+\arctan \sqrt{2}$. The empirical value for the pseudoscalar mixing angle θ_{P} should be in the range $-22^{\circ}--13^{\circ}$ [10], and here we take $\theta_{\mathrm{P}}=-19.3^{\circ}[54]$.

The coupling constants relevant to the light vector mesons in Eq. (4) read

$$
\begin{equation*}
g_{\mathcal{D}^{*} \mathcal{D} \mathcal{V}}=-g_{\overline{\mathcal{D}}^{*} \overline{\mathcal{D}} \mathcal{V}}=-\frac{1}{\sqrt{2}} \lambda g_{\mathrm{V}} \tag{8}
\end{equation*}
$$

where $f_{\pi}=132 \mathrm{MeV}$ is the pion decay constant, and the parameter g_{V} is given by $g_{\mathrm{V}}=m_{\rho} / f_{\pi}$ [83]. By matching the form factor obtained from the light cone sum rule and that calculated from lattice QCD, we can obtain the parameter $\lambda=0.56 \mathrm{GeV}^{-1}$ [84].

In the chiral and heavy quark symmetry limit, the coupling constants relevant to the pseudoscalar mesons in Eq. (5) are

$$
\begin{equation*}
g_{\mathrm{D}^{*} \mathrm{D}_{1} \mathrm{P}}=g_{\overline{\mathrm{D}}^{*} \overline{\mathrm{D}}_{1} \mathrm{P}}=-\frac{\sqrt{6}}{3} \frac{h^{\prime}}{\Lambda_{\chi} f_{\pi}} \sqrt{m_{\mathrm{D}^{*}} m_{\mathrm{D}_{1}}} . \tag{9}
\end{equation*}
$$

Here Λ_{χ} is the momentum scale characterizing the convergence of the derivative expansion, usually taken as the chiral symmetry breaking scale $\Lambda_{\chi} \approx 1 \mathrm{GeV}$. The coupling h^{\prime}, which is relevant to Δ_{H}, i.e., the difference between the charmed meson doublet mass and the mass of the heavy quark involved, can be obtained in a constituent quark-meson model [85]. If one take the value $\Delta_{\mathrm{H}}=0.4 \pm 0.1 \mathrm{GeV}$, then one can obtain $h^{\prime}=0.65_{-0.30}^{+0.44}$ [85]. As the total $D_{2}^{* 0}$ width is dominated by the one pion mode in the chiral heavy meson Lagrangian, one can use the experimental result of $49.0 \pm 1.4 \mathrm{MeV}$ to extract an experimental value for h^{\prime} to be 0.74 ± 0.01 [10]. Here, we take $h^{\prime}=0.74 \pm 0.01$ as an estimate.

The loop transition amplitudes for the transitions in Fig. 1 can be expressed in a general form in the effective Lagrangian approach as follows,

$$
\begin{equation*}
\mathcal{A}_{\mathrm{fi}}=\int \frac{\mathrm{d}^{4} q_{2}}{(2 \pi)^{4}} \sum_{\mathrm{D}^{*} \text { pol. }} \frac{T_{1} T_{2} T_{3}}{a_{1} a_{2} a_{3}} \mathcal{F}\left(m_{2}, q_{2}^{2}\right) \tag{10}
\end{equation*}
$$

where T_{i} and $a_{i}=q_{i}^{2}-m_{i}^{2}(i=1,2,3)$ are the vertex functions and the denominators of the intermediate meson
(
propar of $\mathrm{Y}(4260)$ is slightly below the S-wave $\mathrm{D}_{1} \overline{\mathrm{D}}$ threshold, so the off-shell effects of intermediate D_{1} and $\overline{\mathrm{D}}$ should be smaller than that of the exchanged particle. So, in order to take care of the off-shell effects of the exchanged particles [37, 86, 87], we adopt a monopole form factor

$$
\begin{equation*}
\mathcal{F}\left(m_{2}, q_{2}^{2}\right) \equiv \frac{\Lambda^{2}-m_{2}^{2}}{\Lambda^{2}-q_{2}^{2}} \tag{11}
\end{equation*}
$$

with $\Lambda \equiv m_{2}+\alpha \Lambda_{\mathrm{QCD}}$, and the QCD energy scale $\Lambda_{\mathrm{QCD}}=$ 220 MeV .

Fig. 1. The hadron-level diagrams for $\mathrm{Y}(4260) \rightarrow$ VP with $\mathrm{D}_{1} \overline{\mathrm{D}}$ as the intermediate states. V and P denote the light vector and pseudoscalar mesons, respectively.

3 Numerical results

The width of $\mathrm{Y}(4260)$ is about $95 \pm 14 \mathrm{MeV}$ [10], so we should take into account the mass distribution of the $\mathrm{Y}(4260)$ in the calculations of its decay widths. Then the decay width of $\mathrm{Y}(4260) \rightarrow \mathrm{VP}$ can be calculated as follows [88],

$$
\begin{align*}
\Gamma_{\mathrm{Y}(4260) \rightarrow \mathrm{VP}}= & \frac{1}{W} \int_{\left(m_{\mathrm{Y}}-2 \Gamma_{\mathrm{Y}}\right)^{2}}^{\left(m_{\mathrm{Y}}+2 \Gamma_{\mathrm{Y}}\right)^{2}} \mathrm{~d} s \frac{(2 \pi)^{4}}{2 \sqrt{s}} \\
& \times \int \mathrm{d} \Phi_{2}|\mathcal{A}|^{2} \frac{1}{\pi} \operatorname{Im}\left(\frac{-1}{s-m_{\mathrm{Y}}^{2}+\mathrm{i} m_{\mathrm{Y}} \Gamma_{\mathrm{Y}}}\right) \tag{12}
\end{align*}
$$

where \mathcal{A} are the loop transition amplitudes for the processes in Fig. 1. The factor $1 / W$ with

$$
\begin{equation*}
W=\frac{1}{\pi} \int_{\left(m_{\mathrm{Y}}-2 \Gamma_{\mathrm{Y}}\right)^{2}}^{\left(m_{\mathrm{Y}}+2 \Gamma_{\mathrm{Y}}\right)^{2}} \operatorname{Im}\left(\frac{-1}{s-m_{\mathrm{Y}}^{2}+\mathrm{i} m_{\mathrm{Y}} \Gamma_{\mathrm{Y}}}\right) \mathrm{d} s \tag{13}
\end{equation*}
$$

is used to normalize the spectral function of the $\mathrm{Y}(4260)$ state.

Before proceeding to the numerical results, we first discuss the possible uncertainties involved in the calculations. The first uncertainty is the assumption of the probability $c^{2}=1$ for the $\mathrm{D}_{1} \overline{\mathrm{D}}$ structure for $\mathrm{Y}(4260)$. As shown in Eq. (2), the predicted branching ratios are proportional to probability c^{2}. The second one comes from the width effects of $Y(4260)$ and the final ρ mesons. We have checked that the width effect of ρ meson causes only a minor change of about $1 \%-5 \%$, which is because the mass of the final states are about 3 GeV below $\mathrm{Y}(4260)$.

In Fig. 2, we present the total branching ratio of all possible $\mathrm{Y}(4260) \rightarrow \mathrm{VP}$ in terms of the cutoff parameter α. The upper and lower limits are obtained with the upper and lower limits of the coupling constant in (3). As shown from this figure, there is no cusp structure in the curve. This is because the mass of $\mathrm{Y}(4260)$ lies below the intermediate $\mathrm{D}_{1} \overline{\mathrm{D}}$ threshold. The branching ratios are not drastically sensitive to the cutoff parameter, which indicates a reasonable cutoff of the ultraviolet contributions by the empirical form factors to some extent.

To show the branching ratios of $\mathrm{Y}(4260)$ to different VP channels explicitly, we list the predicted branching ratios of $\mathrm{Y}(4260)$ for each decay channel with $\alpha=2.0$ and 3.0 in Table 1, with comparison to the numerical results obtained without a form factor. Notice that the given errors are from the uncertainties of the the coupling constants in Eq. (3). As shown in Table 1, the total branching ratio of $\mathrm{Y}(4260) \rightarrow \mathrm{VP}$ is about $\left(8.03_{-5.52}^{+7.78}\right) \%$ without form factor. Obviously, the obtained branching ratio in this way is somewhat larger than expected. In principle, since the $\mathrm{Y}(4260)$ is taken to be a $\mathrm{D}_{1} \overline{\mathrm{D}}+$ c.c. molecule, so the main decay channel would be $\mathrm{D}^{*} \overline{\mathrm{D}} \pi$. This is because the exchanged charmed mesons are usually off-shell, which indicates the necessity of considering the form factor. As shown in the last two columns in Table 1, the total branching ratio of $\mathrm{Y}(4260) \rightarrow$ VP are
from $\left(3.36_{-2.31}^{+3.24}\right) \times 10^{-3}$ to $\left(7.48_{-5.16}^{+7.22}\right) \times 10^{-3}$ with the cutoff parameter $\alpha=2.0-3.0$.

Fig. 2. The α dependence of the total branching ratios of $\mathrm{Y}(4260) \rightarrow \mathrm{VP}$. The upper and lower limits are obtained with the upper and lower limits of the coupling constant in Eq. (3).

Fig. 3. The α dependence of the total branching ratios of $\mathrm{Y}(4260) \rightarrow \mathrm{VP}$. The upper and lower limits are obtained with the upper and lower limits of the coupling constant in Eq. (3).

Table 1. The predicted branching ratios of $\mathrm{Y}(4260)$ decays with different α values. The uncertainties are dominated by the use of Eq. (2).

final states	no form factor	monopole form factor	
	$\left(1.46_{-1.01}^{+1.41}\right) \times 10^{-2}$	$\left(8.93_{-6.12}^{+8.58}\right) \times 10^{-4}$	$\alpha=3.0$
$\rho^{0} \pi^{0}$	$\left(4.39_{-3.03}^{+4.25}\right) \times 10^{-2}$	$\left(2.61_{-1.99}^{+2.51}\right) \times 10^{-3}$	$\left(1.98_{-1.36}^{+1.91}\right) \times 10^{-3}$
$\rho \pi$	$\left(4.90_{-3.37}^{+4.72}\right) \times 10^{-3}$	$\left(1.09_{-0.76}^{+1.06}\right) \times 10^{-4}$	$\left(5.92_{-4.11}^{+5.72}\right) \times 10^{-3}$
$\mathrm{~K}^{*+} \mathrm{K}^{-}+$c.c.	$\left(4.96_{-3.41}^{+4.78}\right) \times 10^{-3}$	$\left(1.44_{-0.99}^{+1.38}\right) \times 10^{-4}$	$\left(3.27_{-2.25}^{+3.12}\right) \times 10^{-4}$
$\mathrm{~K}^{* 0} \overline{\mathrm{~K}}^{-}+$c.c.	$\left(1.37_{-0.95}^{+1.33}\right) \times 10^{-2}$	$\left(3.63_{-2.51}^{+3.51}\right) \times 10^{-4}$	$\left(3.21_{-2.21}^{+3.09}\right) \times 10^{-4}$
$\omega \eta$	$\left(1.25_{-0.86}^{+1.21}\right) \times 10^{-2}$	$\left(3.47_{-2.39}^{+3.35}\right) \times 10^{-5}$	$\left(8.18_{-5.62}^{+7.88}\right) \times 10^{-4}$
$\omega \eta^{\prime}$	$\left(2.93_{-2.01}^{+2.83}\right) \times 10^{-7}$	$\left(9.48_{-6.52}^{+9.13}\right) \times 10^{-9}$	$\left(8.38_{-5.77}^{+8.13}\right) \times 10^{-5}$
$\rho \eta$	$\left(8.18_{-5.62}^{+7.88}\right) \times 10^{-7}$	$\left(3.27_{-2.25}^{+3.15}\right) \times 10^{-8}$	$\left(1.96_{-1.35}^{+1.89}\right) \times 10^{-8}$
$\rho \eta^{\prime}$	$\left(5.22_{-3.56}^{+5.02}\right) \times 10^{-7}$	$\left(1.44_{-1.00}^{+1.39}\right) \times 10^{-8}$	$\left(6.52_{-4.41}^{+6.27}\right) \times 10^{-8}$
$\omega \pi^{0}$	$\left(8.03_{-5.52}^{+7.78}\right) \%$	$\left(3.36_{-2.31}^{+3.24}\right) \times 10^{-3}$	$\left(3.09_{-2.13}^{+2.97}\right) \times 10^{-8}$
total			$\left(7.48_{-5.16}^{+7.22}\right) \times 10^{-3}$

For the isospin-violating channels, i.e., Y(4260) \rightarrow $\omega \pi^{0}, \rho \eta$, and $\rho \eta^{\prime}$, the charged and neutral charmed meson loops should cancel out exactly in the isospin symmetry limit. In other words, the mass difference between the u and d quark will lead to $m_{\mathcal{D}}^{(*) \pm} \neq m_{\mathcal{D}}^{(*) 0}$ due to the isospin symmetry breaking. As a result, the charged and neutral charmed meson loops cannot completely cancel out, and the residue part will contribute to the isospin-violating amplitudes. The branching ratios of these isospin-violating channels as shown in Table 1 are suppressed. Differing from the isospin-violating channels, since there are no cancelations between the charged and neutral meson loops for the isospin isospin conserved channels, i.e., $\mathrm{Y}(4260) \rightarrow \rho \pi, \mathrm{K}^{*} \overline{\mathrm{~K}}+\mathrm{c} . c, \omega \eta$, and $\omega \eta^{\prime}$, so the calculated branching ratios of these channels are 3-4 orders of magnitude larger than those of the isospin violated channels. As shown in this table, at the same α, the predicted branching ratios of $\mathrm{Y}(4260) \rightarrow \omega \eta$ are one order of magnitude larger than those of $\mathrm{Y}(4260) \rightarrow \omega \eta^{\prime}$. The reasons may attribute to the different $n \bar{n}$ component and different phase space. We suggest experimental measurements to test this point.

In order to better understand the decay mechanism of $\mathrm{Y}(4260)$, we define the following ratio

$$
\begin{equation*}
R=\frac{B r(\mathrm{Y}(4260) \rightarrow \mathrm{VP})}{B r\left(\mathrm{Y}(4260) \rightarrow \mathrm{Z}_{\mathrm{c}}^{+}(3900) \pi^{-}\right)}, \tag{14}
\end{equation*}
$$

which is plotted in Fig. 3 for the dependence on the cutoff parameter. The ratio is less sensitive to the cutoff parameter, which is a consequence of the fact that the involved loops are the same. The predicted branching
ratios for $\mathrm{Y}(4260) \rightarrow \mathrm{VP}$ are the same order to that of $\mathrm{Y}(4260) \rightarrow \mathrm{Z}_{\mathrm{c}}(3900) \pi$. It may be an evidence for the molecule structure of $\mathrm{Y}(4260)$ and can be tested by the experimental measurements in future.

4 Summary

In this work, we have investigated the charmless decays of $\mathrm{Y}(4260)$ in ELA, where $\mathrm{Y}(4260)$ is considered as a $D_{1} \overline{\mathrm{D}}$ molecular state candidate. We explore the rescattering mechanism with the effective Lagrangian based on the heavy quark symmetry and chiral symmetry. The results show that the branching ratios are not drastically dependent on α. With the commonly accepted $\alpha=2-3$ range, we make a quantitative prediction for all $\mathrm{Y}(4260) \rightarrow \mathrm{VP}$ with $B R_{\mathrm{VP}}$ from $\left(3.36_{-2.31}^{+3.24}\right) \times 10^{-3}$ to $\left(7.48_{-5.16}^{+7.22}\right) \times 10^{-3}$. These predicted branching ratios are the same order as those of $\mathrm{Y}(4260) \rightarrow \mathrm{Z}_{\mathrm{c}}^{+}(3900) \pi^{-}$ with the molecular state assumption. It indicates that the intermediate $\mathrm{D}_{1} \overline{\mathrm{D}}$ meson loops may be a possible mechanism in $\mathrm{Y}(4260) \rightarrow \mathrm{VP}$ decays. Of course, the relevant calculations of these $\mathrm{Y}(4260) \rightarrow$ VP channels in other models are also needed in order to study the nature of $\mathrm{Y}(4260)$ in more depth. We expect that with the help of precise measurements of various decay modes at BESIII, the nature of $\mathrm{Y}(4260)$ and the decay mechanism of $\mathrm{Y}(4260) \rightarrow \mathrm{VP}$ can be investigated in depth, and the intermediate meson loops mechanism can be established as a possible nonperturbative dynamics mechanism in the charmonium energy region, especially when the initial states are close to the two particle thresholds.

References

1 Brambilla B, Eidelman S, Heltsley B K, Vogt R, Bodwin G T, Eichten E, Frawley A D, Meyer A B et al. Eur. Phys. J. C, 2011, 71: 1534
2 Swanson E S. Phys. Rept., 2006, 429: 243
3 Eichten E, Godfrey S, Mahlke H, Rosner J H. Rev. Mod. Phys., 2008, 80: 1161
4 Voloshin M B. Prog. Part. Nucl. Phys., 2008, 61: 455
5 Godfrey S, Olsen S L. Ann. Rev. Nucl. Part. Sci., 2008, 58: 51
6 Drenska N, Faccini R, Piccinini F, Polosa F A, Renga F, Sabelli C, Riv. Nuovo Cim., 2010, 033: 633
7 Aubert B et al. (BABAR collaboration). Phys. Rev. Lett., 2005, 95: 142001
8 HE Q et al. (CLEO collaboration). Phys. Rev. D, 2006, 74: 091104
9 YUAN C Z et al. (Belle collaboration). Phys. Rev. Lett., 2007, 99: 182004
10 Olive K A et al. (Particle Data Group collaboration). Chin. Phys. C, 2014, 38: 1
11 Ablikim M et al. (BESIII collaboration). Phys. Rev. Lett., 2013, 110: 252001
12 Llanes-Estrada F J. Phys. Rev. D, 2005, 72: 031503
13 Maiani L, Riquer V, Piccinini F, Polosa A D. Phys. Rev. D, 2005, 72: 031502
14 ZHU S L. Phys. Lett. B, 2005, 625: 212

15 Kou E, Pene O. Phys. Lett. B, 2005, 631: 164
16 Close F E, Page P R. Phys. Lett. B, 2005, 628: 215
17 DING G J, ZHU J J, YAN M L. Phys. Rev. D, 2008, 77: 014033
DING G J. Phys. Rev. D, 2009, 79: 014001
WANG Q, Hanhart C, ZHAO Q. Phys. Rev. Lett., 2013, 111: 132003
20 GUO F K, Hanhart C, Meißner U G, WANG Q, ZHAO Q. Phys. Lett. B, 2013, 725: 127
21 Filin A A, Romanov A, Baru V, Hanhart C, Kalashnikova Y X, Kudryavtsev A E, Meißner U G, Nefediev A V. Phys. Rev. Lett., 2010, 105: 019101
22 GUO F K, Meißner U G. Phys. Rev. D, 2011, 84: 014013
23 YUAN C Z, WANG P, MO X H. Phys. Lett. B, 2006, 634: 399
24 LIU X, ZENG X Q, LI X Q. Phys. Rev. D, 2005, 72: 054023
25 Dubynskiy S, Voloshin M B. Phys. Lett. B, 2008, 666: 344
LI X, Voloshin M B. Phys. Rev. D, 2013, 588: 034012
7 QIAO C F. Phys. Lett. B, 2006, 639: 263
QIAO C F. J. Phys. G, 2008, 35: 075008
CHEN Y D, QIAO C F. Phys. Rev. D, 2012, 85: 034034
CHEN Y D, QIAO C F, SHEN P N, ZENG Z Q. Phys. Rev. D, 2013, 88: 114007
31 van Beveren E, Rupp G. arXiv:0904.4351 [hep-ph]
32 van Beveren E, Rupp G. Phys. Rev. D, 2009, 79: 111501
33 van Beveren E, Rupp G, Segovia J. Phys. Rev. Lett., 2010, 105 102001
34 CHEN D Y, HE J, LIU X. Phys. Rev. D, 2011, 83054021

35 LIU X H, LI G. Phys. Rev. D, 2013, 88: 014013
36 WANG Q, Cleven M, GUO F K, Hanhart C, Meißner U G, WU X G, ZHAO Q. Phys. Rev. D, 2014, 89: 034001
37 LI X Q, Bugg D V, ZOU B S. Phys. Rev. D, 1997, 55: 1421
38 ZHAO Q, ZOU B S. Phys. Rev. D, 2006, 74: 114025
39 ZHAO Q. Phys. Lett. B, 2006, 636: 197
40 LI G, ZHAO Q. Phys. Rev. D, 2011, 84: 074005
41 LI G, LIU X H, ZHAO Q. Eur. Phys. J. C, 2013, 73: 2576
42 LI G, ZHAO Q, CHANG C H. J. Phys. G, 2008, 35: 055002
43 WANG Q, LI G, ZHAO Q. Phys. Rev. D, 2012, 85: 074015
44 LI G, SHAO F L, ZHAO C W, ZHAO Q. Phys. Rev. D, 2013, 87: 034020
45 LI G, ZHAO Q. Phys. Lett. B, 2008, 670: 55
46 Achasov N N, Kozhevnikov A A. Phys. Lett. B, 1991, 260: 425
47 Achasov N N, Kozhevnikov A A. JETP Lett., 1991, 54: 193; Pisma Zh. Eksp. Teor. Fiz., 1991, 54: 197
48 Achasov N N, Kozhevnikov A A. Phys. Rev. D, 1994, 49: 275
49 Achasov N N, Kozhevnikov A A. Phys. Atom. Nucl., 2006, 69: 988
50 ZHANG Y J, LI G, ZHAO Q. Phys. Rev. Lett., 2009, 102: 172001
51 LIU X, ZHANG BO, LI X Q. Phys. Lett. B, 2009, 675: 441
52 LI G, LIU X H, WANG Q, ZHAO Q. Phys. Rev. D, 2013, 88: 014010
53 WU J J, ZHAO Q, ZOU B S. Phys. Rev. D, 2007, 75: 114012
54 LIU X, ZENG X Q, LI X Q. Phys. Rev. D, 2006, 74: 074003
55 CHENG H Y, CHUA C K, Soni A. Phys. Rev. D, 2005, 71: 014030
56 Anisovich V V, Bugg D V, Sarantsev A V, ZOU B S. Phys. Rev. D, 1995, 51: 4619
57 ZHAO Q, ZOU B S, MA Z B. Phys. Lett. B, 2005, 631: 22
58 LI G, ZHAO Q, ZOU B S. Phys. Rev. D, 2008, 77: 014010
59 LIU X H, ZHAO Q. Phys. Rev. D, 2010, 81: 014017
60 WANG Q, LIU X H, ZHAO Q. Phys. Lett. B, 2012, 711: 364
61 LIU X H, ZHAO Q. J. Phys. G, 2011, 38: 035007
62 GUO F K, Hanhart C, Meißner U G. Phys. Rev. Lett., 2009, 103: 082003; 2010, 104: 109901
63 GUO F K, Hanhart C, LI G, U. G. Meißner, ZHAO Q. Phys.

Rev. D, 2010, 82: 034025
64 GUO F K, Hanhart C, LI G, U. G. Meißner, ZHAO Q. Phys. Rev. D, 2011, 83: 034013
65 LI G. Eur. Phys. J. C, 2013, 73: 2621
66 Brambilla N et al. (Quarkonium Working Group collaboration). hep-ph/0412158
67 Brambilla N, Pineda A, Soto J, Vairo A. Rev. Mod. Phys., 2005, 77: 1423
68 WANG Q, Hanhart C, ZHAO Q. Phys. Lett. B, 2013, 725: 106
69 Cleven M, WANG Q, GUO F K, Hanhart C, Meißner U G, ZHAO Q. arXiv:1310.2190 [hep-ph]
70 WU X G, Hanhart C, WANG Q, ZHAO Q. Phys. Rev. D, 2014, 89: 054038
71 LI G, LIU X H. Phys. Rev. D, 2013, 88: 094008
72 LI G, WANG W. Phys. Lett. B, 2014, 733: 100
73 LI G, LIU X H, ZHOU Z. Phys. Rev. D, 2014, 90: 054006
74 Lipkin H J. Nucl. Phys. B, 1987, 291: 720
75 Lipkin H J. Phys. Lett. B, 1986, 179: 278
76 Weinberg S. Phys. Rev., 1965, 137 B672
77 Baru V et al. Phys. Lett. B, 2004, 586: 53
78 Casalbuoni R, Deandrea A, Bartolomeo N Di, Gatto R, Feruglio F, Nardulli G. Phys. Lett. B, 1992, 292: 371
79 Casalbuoni R, Deandrea A, Bartolomeo N Di, Gatto R, Feruglio F, Nardulli G. Phys. Lett. B, 1993, 299: 139
80 Burdman G, Donoghue J F. Phys. Lett. B, 1992, 280: 287
81 YAN T M, CHENG H Y, CHEUNG C Y, LIN G L, LIN C Y, YU H L. Phys. Rev. D, 1992, 46: 1148; 1997, 55: 5851
82 Falk A F, Luke M E. Phys. Lett. B, 1992, 292: 119
83 Casalbuoni R, Deandrea A, Bartolomeo N Di, Gatto R, Feruglio F, Nardulli G. Phys. Rept., 1997, 281: 145
84 Isola C, Ladisa M, Nardulli G, Santorelli P. Phys. Rev. D, 2003, 68: 114001
85 Deandrea A, Gatto R, Nardulli G, Polosa A D. JHEP, 1999, 9902: 021
86 Locher M P, LU Y, ZOU B S. Z. Phys. A, 1994, 347: 281
87 LI X Q, ZOU B S. Phys. Lett. B, 1997, 399: 297
88 Cleven M, GUO F K, Hanhart C, Meißner U G. Eur. Phys. J. A, 2011, 47: 120

[^0]: Received 11 October 2014，Revised 17 November 2014
 ＊Supported by National Natural Science Foundation of China（11275113，11205164）
 1）E－mail：gli＠mail．qfnu．edu．cn
 2）E－mail：ancs＠ihep．ac．cn
 3）There are two D_{1} states of similar masses，and the one in question should be the narrower one，i．e．，the $\mathrm{D}_{1}(2420)(\Gamma=27 \mathrm{MeV})$ ，the $\mathrm{D}_{1}(2430)(\Gamma \approx 384 \mathrm{MeV})$ is too broad to form a molecular state［20－22］．

