
Chinese Physics C Vol. 38, No. 7 (2014) 078101

Analysis of undulator radiation with an electromagnet undulator
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Abstract: In this paper we discuss the theory of undulator radiation in an electromagnet undulator. We discuss the

spectral properties of undulator radiation when electrons are injected off the undulator axis. This paper highlights

the distinctive features of the radiation spectrum from electromagnet undulators, as compared to PPM undulators.
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1 Introduction

In recent years there has been much interest in short
wavelength free electron lasers (FEL) in pure and ap-
plied research, in both physical and biological sciences.
In a FEL, a relativistic electron beam travels along the
length of an undulator and emits undulator radiation.
The spectral properties of undulator radiation is a diag-
nostic tool in the design and performance studies of a
FEL. One can extract several useful pieces of informa-
tion on the quality of the electron and radiation beam
from the undulator radiation. The spectral properties
of the undulator radiation depend on a large number of
effects associated with the undulator design and fabrica-
tion. For this reason, several FEL experimental configu-
rations have been modelled from the results of undulator
radiation.

The radiation emitted by an FEL depends on the un-
dulator wavelength, the field strength, and the beam en-
ergy. In a Pure Permanent Magnet (PPM) based undu-
lators, the undulator period is limited due to the physical
size and properties of the magnet. Attempts have been
made to design PPM undulators with short periods us-
ing a periodic multi-domain structure [1] and by using
magnetic recording technology [2]. However, the most
attractive proposal is the fabrication of an electromag-
net undulator, where the magnetic field is controlled by
the external current in the electromagnet winding [3–7].
In this paper, we analyse the undulator radiation in a
case where the relativistic electron beam propagates off-
axis in an electromagnet undulator constructed with a
conducting strip of copper foils in between ferromagnetic
strips [3–5]. In our analysis, we use analytical means to
evaluate the distortion induced in the central emission
lines of the radiation spectrum when the electrons are in-

jected off the electromagnet undulator axis. An essential
approach in our calculation is the use of GBF (General-
ized Bessel Functions) to derive the underlying physics
and gain a transparent understanding of the problem. In
Section 2, we study the theory of emission of radiation
in electromagnet undulators. The results and discussion
are given in Section 3.

2 Undulator radiation

We assume that the electrons are moving in an elec-
tromagnet undulator with N periods and with a mag-
netic field that, very near to the undulator axis, is given
by [3]:

By(y,z)=−
2µ0I

πh

sin(πh/λu)

sinh(πδ/λu)
sin

(

2πz

λu

)

cosh

(

2πy

λu

)

,

(1)
where µ0 is the permeability of free space, h is the thick-
ness of the conductor, δ is the length of the gap between
two undulator magnets, I is the current passing through
the magnets, and λu is the period of the undulator mag-
nets. The peak magnetic field B0 is given by:

B0=−
2µ0I

πh

sin(πh/λu)

sinh(πδ/λu)
. (2)

By defining

ku=
2π

λu

, Ωu=kuc,

Eq. (1) can be rewritten as

By=B0sin(kuz)cosh(kuy). (3)

For the on-axis equation, where y=0, the trajectory
of the electron is described by the Lorentz equation. This
gives

x(t)=−
Kc

γΩu

sin(Ωut), (4)

Received 2 September 2013, Revised 7 January 2014

1) E-mail: vijayhuse@gmail.com
©2014 Chinese Physical Society and the Institute of High Energy Physics of the Chinese Academy of Sciences and the Institute of

Modern Physics of the Chinese Academy of Sciences and IOP Publishing Ltd

078101-1



Chinese Physics C Vol. 38, No. 7 (2014) 078101

where

K=
eB0

m0cΩu

,

and

z(t)=β∗ct−
K2c

8γ2Ωu

sin(2Ωut), (5)

where

β∗=1−
1

2γ2

(

1+
K2

2

)

.

K defines the undulator parameter. The representation
of the field in Eq. (3) does not satisfy the Maxwell equa-
tion, as Eq. (3) reads:

By=B0sin(kuz)cosh(kuy),

Bz=B0cos(kuz)sinh(kuy).
(6)

With a little argument expansion, Eq. (6) reads,

By=B0

(

1+
k2

uy
2

2

)

sin(kuz)

Bz=B0kuycos(kuz).

(7)

The equation of motion can now be written with Eq. (7)
as:

ẍ =
e

m0γc

[

B0ż

(

1+
k2

uy
2

2

)

sin(kuz)

−B0ẏkuycos(kuz)

]

, (8)

ÿ =
e

m0γc
B0ẋkuycos(kuz).

We assume that the motion can be decomposed as x=
xR+x1 and y= yR+y1, where xR and yR are the refer-
ence trajectories, and x1 and y1 are additional motions
arising due to the additional off-axis field in Eq. (8). By
extracting the additional betatron motion, we find that:

d2x1

dt
=0,

d2y1

dt2
+Ω2

1y1=0. (9)

The betatron oscillations are described by

Ω2
1 =

K2Ω2
u

2γ2
.

The solution to Eq. (9) gives:

x1=x1(0)+ẋ(0)t,

y1=y1(0)cos(Ω1t)+
ẏ1(0)

Ω1

sin(Ω1t),
(10)

where x1(0) and y1(0) are the initial off axis transverse
positions, and ẋ1(0) and ẏ1(0) describe the injection an-
gles. The solution of Eq. (10) gives the off-axis position
of the betatron oscillation in the electromagnet undu-
lator. The transverse motion is directly coupled to the

longitudinal motion z(t) because the energy is constant.

z(t) = β∗∗ct−
K2c

8γ2Ωu

sin(2Ωut)+
K

γΩu

ẋ1(0)sin(Ωut)

+
1

8Ω1c
(y2

1(0)Ω2
1−ẏ

2
1(0))sin(2Ω1t) (11)

where

β∗∗=1−
1

2γ2
−
K2

4γ2
−

1

4

[
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+

+y2
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1

c2
+
ẏ2
1(0)

c2

]

.

The brightness, which is the energy radiated per unit
solid angle per unit frequency interval by an electron
in an undulator field, is calculated from the Lienard-
Wiechert integral [8],

d2P

dωdΩ
=
e2ω2

4π
2c

∣

∣

∣

∣

∫
∞

0

dt[n̂×(n̂×β)] exp

{

iω

(
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n̂·r

c

)}∣

∣

∣

∣

2

,

(12)
where n̂ is the unit observation vector. Within the small
angle approximation, we can write

n̂=

(

ψcosφ,ψsinφ,1−
1

2
ψ2

)

,

where ψ is the observation angle and φ is the azimuthal
angle. The cross product can be evaluated as follows:

[n̂×(n̂×β)]
x

= −
ẋ1(0)

c
+
K

γ
cos(Ωut)+ψβ

∗∗

+
ψẋ1(0)K

γ
cos(Ωut)

−
ψẏ2

1(0)

4c2
cos(2Ω1t)+

ψ2ẋ1(0)

c
,

[n̂×(n̂×β)]
y

=
1

c
[y1(0)Ω1sin(Ω1t) −ẏ1(0)cos(Ω1t)],

[n̂×(n̂×β)]
z

=
ψK

γ
cos(Ωut)−ψ

2β∗∗+
ψ2ẏ2

1

4c2
cos(2Ω1t),

(13)

where the integration is carried out over the electromag-
net undulator length and ω is the emission frequency of
the source. The oscillating part in Eq. (11) can be writ-
ten:

exp

{

iω

(

t−

∧

n·r

c

)}

=
∞
∑

m,n=−∞

exp[iνt]

×Jm(ξ1,ξ2)Dn(ξ3,0;ξ4,ξ5), (14)

where

ξ1=
Kω

γcΩu

ẋ1(0), ξ2=−

(

Kωψcosφ
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+
K2ω

8γ2Ωu

)

,
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c
, ξ4=

ωψcosφẏ1(0)

cΩu

,

and
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(
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2
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8c2
−
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+
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)

.
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Also,

ν=

(

ω

ω1

−mΩu−nΩ1

)

,

ω1=
2γ2

1+
K2

2
+
γ2

2

{

2ẋ2
1(0)

c2
+
Ω2

1y
2
1(0)

c2
+
ẏ2
1(0)

c2

} .

Jm(ξ1, ξ2), Dn(ξ3, 0; ξ4, ξ5) are the Generalized Bessel
Functions (GBF) of order m and n. The GBF functions
are defined as [9, 10]:

∞
∑

m=−∞

eimθJm(x,y)=exp[i(xsinθ+ysin2θ)],

∞
∑

n=−∞

einθDn(x,y;z,u) = exp{xcosθ+ycos2θ

+[i(zsinθ+usin2θ)]}.

It can easily be shown that the intensity can be expressed
as

d2P

dωdΩ
=
e2ω2T 2

4π
2c

[sinc(νT/2)]
2
[

|Tx|
2
+|Ty|

2
+|Tz|

2
]

, (15)

with

Tx =

(

−
ẋ1(0)

c
+
ψẋ1(0)

c
+ψ2β∗∗

)

Jm(ξ1,ξ2)

×Dn(ξ3,0;ξ4,ξ5)+

(

K

2γ
+
ψẋ1(0)

2γ

)

×[Jm+1(ξ1,ξ2)+Jm−1(ξ1,ξ2)]
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ψẏ2

1(0)

8c2
[Dn+1(ξ3,0;ξ4,ξ5)

+Dn−1(ξ3,0;ξ4,ξ5)]×Jm(ξ1,ξ2),

Ty =
Ω1y1(0)

2ic
[Dn+1(ξ3,0;ξ4,ξ5)−Dn−1(ξ3,0;ξ4,ξ5)]

×Jm(ξ1,ξ2)−
ẏ1(0)

2c
×[Dn+1(ξ3,0;ξ4,ξ5)

+Dn−1(ξ3,0;ξ4,ξ5)]Jm (ξ1,ξ2),

Tz =

(

ψẋ1(0)

c
+ψ2β∗∗

)

Jm(ξ1,ξ2)Dn(ξ3,0;ξ4,ξ5)

−
Kψ

2γ
[Jm+1 (ξ1,ξ2)+Jm−1(ξ1,ξ2)]Dn(ξ3,0;ξ4,ξ5)

+
ψẏ2

1(0)

8c2
[Dn+1(ξ3,0;ξ4,ξ5)+Dn−1(ξ3,0;ξ4,ξ5)]

×Jm(ξ1,ξ2). (16)

For ψ=0 and on-axis emission (φ = 0), we get from

Eq. (16):

Tx = −
ẋ1(0)

c
Jm(ξ1,ξ2a)Jn (0,ξ5a)+

K

2γ
[Jm+1(ξ1,ξ2a)

+Jm−1(ξ1,ξ2a)]Jn(0,ξ5a),

Ty =
Ω1y1(0)

2ic
[Jn+1(0,ξ5a)−Jn−1(0,ξ5a)]Jm (ξ1,ξ2a)

−
ẏ1(0)

2c
[Jn+1(0,ξ5a)+Jn−1(0,ξ5a)]Jm (ξ1,ξ2a).

(17)

where ξ2a=−

(

K2ω

8γ2Ωu

)

and

ξ5a=−

(

ωΩ1y
2
1(0)

8c2
−
ωẏ2

1(0)

8c2Ω1

)

.

Furthermore, when y1(0) = ẏ1(0) = 0, and for ẋ1(0) 6= 0,
Eq. (17) reduces to:

Tx=−
ẋ1(0)

c
Jm(ξ1,ξ2a)+

K

2γ
[Jm+1(ξ1,ξ2a)+Jm−1(ξ1,ξ2a)].

(18)
When ẋ1(0)=ẏ1(0)=0, we get:

Tx=
K

2γ
[Jm+1(0,ξ2a)+Jm−1 (0,ξ2a)]×Jn(0,ξ5b). (19)

In

Ty=
Ω1y1(0)

2ic
[Jn+1(0,ξ5b)−Jn−1(0,ξ5b)]×Jm(0,ξ2a),

this case ξ5b=−
ωΩ1y

2
1(0)

8c2
.

3 Results & discussion

In this paper we have derived the expression for un-
dulator radiation with an electromagnet undulator. In
this case, the undulator parameter, which is a function
of the geometry, is given by,

K=
e|B0|

m0cΩu

=
e

m0cΩu

2µ0I

πh

sin(πh/λu)

sinh(πδ/λu)
.

For an electromagnet undulator with parameters
h=2.38 mm, δ=8 mm and λu=10 mm, the value of the
undulator parameter is K=6.957×10−4 for I=20 A. In
electromagnet undulators, the undulator parameter de-
pends on the winding current. For comparison, a PPM-
based undulator with K ≈1 requires a winding current
of I=28 kA.

The main thrust of our calculation is in Eq. (9)and
Eq. (10). These equations apply when the electrons are
injected off the undulator axis. Unlike the PPM undula-
tor, Eq. (10) is focused in the y-direction and defocused
in the x-direction. This suggests that, when the elec-
trons are injected off-axis with both position and angu-
lar offset along the y-direction, there is a correction in
the resonance condition. However, an axial offset in the
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x-direction does not bring any change in the resonance
condition. However, the resonance condition does change
when there is an angular offset in the x-direction. When
ν=0, the radiation frequency is:

ω=
2γ2(mΩu+nΩ1)

1+
K2

2
+
γ2

2

{

2ẋ2
1(0)

c2
+
Ω2

1y
2
1(0)

c2
+
ẏ2
1(0)

c2

} .

The electrons execute additional one-dimensional sim-
ple harmonic motion in the y-direction at betatron fre-
quency, which gives rise to emission at these frequencies.
Both the even and odd harmonics of the betatron fre-
quency contribute. The intensity expression is modified
by the Bessel function in these expressions. Eqs. (17–19)
highlight the intensity of electron radiation in an electro-
magnet undulator. For on-axis radiation, ψ=0, Eq. (17)
says that the radiation is both horizontally and vertically
polarized. The vertical contributions are entirely due to
imperfect injection along the y-axis. Eq. (18) gives the
intensities when the imperfections along the y-direction
are removed. For angular offsets along the x-axis there
are no additional harmonics, although the original odd
harmonic intensities are modified.

The resonant frequency gives a transparent under-
standing of the undulator radiation physics. For an
example, let us consider the case for which γ = 20,
y1(0)=ẏ1(0)=0. The radiation frequency now reads:

ωm,n=
2γ2(mΩu+nΩ1)

1+
K2

2
+γ2

{

ẋ1(0)

c

}2 .

For an undulator with λu=10 mm, Ωu=18.84×1010 rad/s
and Ω1=46×105 rad/s. For ẋ1/c=0,

ωm,n=(mΩu+nΩ1) rad/s.

The radiation frequency gets shifted to 799.679(mΩu+
nΩ1) rad/s and 794.912(mΩu+nΩ1) rad/s for off axis
injection angles of 1 mrad and 4 mrad, respectively.
This accounts for a shift of 0.04% and 0.6%, respec-

tively, in the resonance frequency. The undulator emits
at ωm =800(mΩu) rad/s for the perfect injection condi-
tion. The betatron frequency gives a substructure in the
spectrum at 46×105 rad/s. This implies that a central
emission frequency of 24 THz will show a substructure
emission at 0.7 MHz.

We have studied the radiation spectrum of undulator
radiation for an electron moving in an electromagnet un-
dulator with imperfect initial conditions. Several points
are observed from the analysis. First, the electromagnet
undulator is focused in the y-direction and defocused
in the x-direction.There are additional betatron oscil-
lations due to off-axis and angular injection along the
y-direction of the undulator. The additional betatron
oscillations give rise to intensity modification due to the
generation of new harmonics, and the resonance condi-
tion is also modified. Second, the undulator radiation
is modified when there is an angular offset in the elec-
tron direction along the x-direction. In this case, both
the resonance condition and the intensity are modified.
However, the radiation spectrum is independent of axial
offset along the x-direction. There are no additional har-
monics of emission due to x-axial misalignments. Third,
electromagnet undulators are self-biharmonic. For on-
axis emission (y=0), the undulator is a single-frequency
undulator. However, for off-axis emission close to the
electromagnet surface, there are additional oscillations at
harmonics of the fundamental [3–5]. This is a distinctive
feature of electromagnet undulators in comparison with
PPM based undulators. In the case of PPM undulators,
vanadium permendur strips are used to modify the PPM
undulator for higher harmonic lasing [11–17]. In the case
of electromagnet undulators, higher harmonic lasing is
arguably possible if the electron beam is shifted up and
away from the axis.
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