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Abstract: We solve the Duffin-Kemmer-Petiau (DKP) equation in the presence of Hartmann ring-shaped potential

in (3+1)-dimensional space-time. We obtain the energy eigenvalues and eigenfunctions by the Nikiforov-Uvarov (NU)

method.
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1 Introduction

The first order DKP equation, which describes spin-0
and spin-1 bosons [1–3], is a direct generalization of the
Dirac equation in which the γ matrices are replaced with
the β-matrices [4]. β matrices have three irreducible rep-
resentations: the one-dimensional representation which
is trivial, the five-dimensional representation that is for
spin-zero particles and the ten-dimensional case which
enables us to study spin-one particles [5]. In the past
decade, there has been a growing interest in the study of
DKP theory. Within the potential model, several efforts
were devoted to considering the DKP equation under
various potentials. The DKP equation with a pseudo-
harmonic potential in the presence of a magnetic field in
(2+1)-dimensions was solved in Ref. [6]. In Ref. [7] the
authors reported the solutions of the equation in (3+1)-
dimensions in the presence of coulomb and harmonic os-
cillator interactions [7]. The S-wave solutions of spin-one
DKP equation for a deformed Hulthén potential were ob-
tained in Ref. [8]. The equations have also been consid-
ered in the various related aspects including the quan-
tum chromodynamics (QCD) [9], covariant Hamiltonian
formalism [10], causal approach [11], in the context of
five-dimensional Galilean invariance [12] and scattering
of K+- nucleus [13]. Refs. [14-16] analyze the effect of
the magnetic field on the spectrum of the system. A
survey on other physical terms within the framework of
the equation can be found in Refs. [17–23]. In this work,
we intend to solve the DKP equation for a spin-one par-
ticle in (3+1)-dimensions in the presence of Hartmann
ring-shaped potential in an analytical manner. The mo-

tivation behind the present work is twofold. The first
is that the spin-one DKP equation and its counterpart,
i.e. the Proca equation, have not been sufficiently dis-
cussed in literature. This is not much appealing as we
do require a reliable basis to study spin-one bosons. The
second is the nature of the considered potential. We con-
sider the ring-shaped Hartmann potential which enables
us to study the deformation effects. This potential, as
our forthcoming formulae reveals, is the more general
case of the well-known Coulomb potential. The outline
of this work is as follows: In Section 2, we introduce
the DKP equation. In Section 3, we introduce the DKP
equation in the presence of the Hartmann ring shaped
potential. In Section 4, we obtain the energy eigenvalues
and eigenfunctions of the radial part by the Nikiforov-
Uvarov (NU) method. In Section 5, we solve the an-
gular part of the problem and end the manuscript with
the conclusions and comments on the applications of the
study.

2 Basic concepts of the DKP theory

The DKP equation for free scalar and vector bosons
is (~=c=1)

(iβµ ∂µ−m)ψ=0, (1)

where βµ are the DKP matrices and for a spin-one field
satisfy the algebra

βµβνβλ+βλβνβµ=gµνβλ+gλνβµ, (2)

with

gµν =diag(1,1, 1,−1), (gµν)
2
=1. (3)
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In the case of vector bosons, the βµ matrices are

β0 =











0 0 0 0

0
T

03×3 I3×3 03×3

0
T
I3×3 03×3 03×3

0
T

03×3 03×3 03×3











,

βi =











0 0 ei 0

0
T

03×3 03×3 −iSi

−eTi 03×3 03×3 03×3

0
T −iSi 03×3 03×3











, (4)

where (Si)jk =−iεijk are 3×3 matrices and εijk is 1, −1,
0 for an even permutation, an odd permutation and re-
peated indices, respectively. (ei)1j =δij matrices are 1×3
ones with e1 = (1,0,0), e2 = (0,1,0), e3 = (0,0,1).) The
matrices, I3×3 and 03×3, represent the unit and null 3×3

matrices, respectively.
The more general form of the interaction is consid-

ered as

U=S1(r)+PS2(r)+β
0V1(r)+β

0PV2(r), (5)

and the equation takes the form

(iβµ ∂µ−m−U)ψ=0, (6)

or

(iβµ∂µ−m−S1(r)−PS2(r)−β0V1(r)−β0PV2(r))ψ=0, (7)

where the projection operator is

P=diag(1,1,1,1,0,0,0,0,0,0). (8)

We write the wave function as

ψ=(iφ,F 1,F 2,F 3,W 1,W 2,W 3,X1,X2,X3)
T
. (9)

and therefore the equation can be expanded as

















































































−m 0 0 0 i∂1 i∂2 i∂3 0 0 0

0 −m 0 0 i∂0 0 0 0 −i∂3 i∂2

0 0 −m 0 0 i∂0 0 i∂3 0 −i∂1

0 0 0 −m 0 0 i∂0 −i∂2 i∂1 0

−i∂1 i∂0−V2 0 0 −m 0 0 0 0 0

−i∂2 0 i∂0−V2 0 0 −m 0 0 0 0

−i∂3 0 0 i∂0−V2 0 0 −m 0 0 0

0 0 −i∂3 i∂2 0 0 0 −m 0 0

0 i∂3 0 −i∂1 0 0 0 0 −m 0

0 −i∂2 i∂1 0 0 0 0 0 0 −m









































−









































S1+S2 0 0 0 0 0 0 0 0 0

0 S1+S2 0 0 V1 0 0 0 0 0

0 0 S1+S2 0 0 V1 0 0 0 0

0 0 0 S1+S2 0 0 V1 0 0 0

0 V1 0 0 S1 0 0 0 0 0

0 0 V1 0 0 S1 0 0 0 0

0 0 0 V1 0 0 S1 0 0 0

0 0 0 0 0 0 0 S1 0 0

0 0 0 0 0 0 0 0 S1 0

0 0 0 0 0 0 0 0 0 S1

























































































































iφ

F 1

F 2

F 3

W 1

W 2

W 3

X1

X2

X3









































=0. (10)

After some algebra, we find the coupled equations

i(−m−S1−S2)φ+i∂1W
1+i∂2W

2+i∂3W
3=0, (11a)

(−m−S1−S2)F
1+(i∂0−V1)W

1−i∂3X
2+i∂2X

3=0,

(11b)

(−m−S1−S2)F
2+(i∂0−V1)W

2+i∂3X
1−i∂1X

3=0,

(11c)

(−m−S1−S2)F
3+(i∂0−V1)W

3−i∂2X
1+i∂1X

2=0,

(11d)

∂1φ+(i∂0−V2−V1)F
1+(−m−S1)W

1=0, (11e)

∂2φ+(i∂0−V2−V1)F
2+(−m−S1)W

2=0, (11f)

∂3φ+(i∂0−V2−V1)F
3+(−m−S1)W

3=0, (11g)

−i∂3F
2+i∂2F

3+(−m−S1)X
1=0, (11h)
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i∂3F
1−i∂1F

3

+(−m−S1)X
2=0, (11i)

−i∂2F
1+i∂1F

2+(−m−S1)X
3=0. (11j)

Thus, we have

−→
∇·

−→
W=(m+S1+S2)φ, (12a)

(E−V1)
−→
W+i(

−→∇×−→
X )=(m+S1+S2)

−→
F , (12b)

−→
∇φ+(E−V2−V1)

−→
F =(m+S1)

−→
W, (12c)

i(
−→
∇×

−→
F )=(m+S1)

−→
X. (12d)

To our best knowledge, the latter has not been solved
in the general case and the existing papers are restricted
to special cases.

3 DKP equation in some special cases

It is clear that by choosing the S1 =S2 =V1 =V2 =0,
we have

(E2
n,l,λ−m2)

−→
F +∇2−→F =0, (13a)

∇2=−p2, (13b)

(E2
n,l,λ−m2−p2)

−→
F =0. (13c)

For the case of S1=S2=V1=0, we may write

(En,l,λ(En,l,λ−V2)−m2)
−→
F +∇2−→F =0. (14)

The Hartmann ring-shaped potential is a special case of
the non-central potentials originally introduced in quan-
tum chemistry to explain the ring-shaped molecules like
benzene and has the form [24, 25]

V2(r,θ)=
A

r
− B

r2sin2θ
, (15a)

with

A=2ησ2a0ε0, (15b)

and

B=η2σ2a2
0ε0. (15c)

The dimensionless parameters η and σ are positive and
real. For the wave function, we introduce

−→
F =

−→
F (~r,θ,ϕ)=R(~r)Q(θ)eiλϕ, (16)

and rewrite the wave equation as

∇2−→F (~r,θ,ϕ)−En,l,λV2

−→
F (~r,θ,ϕ)

+(E2
n,l,λ−m2)

−→
F (~r,θ,ϕ)=0. (17)

4 Energy eigenvalues and eigenfunctions

Expanding Eq. (17), we find
[

1

r2
d

dr

(

r2
d

dr

)

+
1

r2

(

1

sinθ

d

dθ

(

sinθ
d

dθ

))

+
1

r2 sin2θ

d2

dϕ2

]

−→
F −En,l,λ

(

A

r
− B

r2 sin2θ

)

−→
F

+(E2
n,l,λ−m2)

−→
F =0. (18)

The separation of variable yields

d2R(r)

dr2
+

2

r

dR(r)

dr

+

[

(E2
n,l,λ−m2)r2−En,l,λAr−l(l+1)

r2

]

R(r)=0, (19)

where

α1 = 2, α2=0, α3=0, ξ1=m2−E2
n,l,λ, ξ2=−En,l,λA,

ξ3 = l(l+1), α4=−1

2
, α5=0, α6=m

2−E2
n,l,λ,

α7 = En,l,λA, α8=
1

4
+l(l+1), α9=m

2−E2
n,l,λ,

α10 = 1+2

√

1

4
+l(l+1), α11=2

√

m2−E2
n,l,λ,

α12 = −1

2
+

√

1

4
+l(l+1), α13=−

√

m2−E2
n,l,λ. (20)

Compared with the appendix, the energy can be simply
found as

En,l,λ=±
m

{

(2n+1)+2

√

(

l+
1

2

)2
}

√

√

√

√A2+

{

(2n+1)+2

√

(

l+
1

2

)2
}2

. (21)

5 The angular section

Let us now start to solve the angular section with the
governing equation

d2Q

dθ2
+

cosθ

sinθ

dQ

dθ
+
En,l,λB−λ2

sin2θ
Q(θ)+l(l+1)Q(θ)=0. (22)

By choosing the change of variable s = cosθ, Eq. (22)
appears as

d2Q

ds2
+

−2s

1−s2
dQ

ds

+

(

En,l,λB−λ2+l(l+1)−l(l+1)s2

1+s4−2s2

)

Q(s)=0, (23)
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after a new transformation of the form z=
1

2
− 1

2
s, be-

comes

d2Q

dz2
+

1−2z

−z2+z

dQ

dz

+

1

4
(En,l,λB−λ2)−l(l+1)z2+l(l+1)z

z4−2z3+z2
Q(z)=0. (24)

By a simple comparison with the appendix, we find the
requisite parameters as

α1 = 1, α2=2, α3=1, ξ1=l(l+1), ξ2=l(l+1),

ξ3 =
1

4
(λ2−En,l,λB), α4=0,α5=0, α6=l(l+1),

α7 = −l(l+1), α8=
1

4
(λ2−En,l,λB), α9=

1

4
(λ2−En,l,λB),

α10 = 1+
√

(λ2−En,l,λB), α11=2+2
√

(λ2−En,l,λB),

α12 =
1

2

√

(λ2−En,l,λB), α13=−
√

(λ2−En,l,λB). (25)

Therefore, the angular part of the wave function is cal-
culated as

Q(θ) =

(

1−cosθ

2

)α12
(

1−α3

(

1−cosθ

2

))

−α12−( α13
α3

)

×P
(

α10−1,
(

α11

α3

)

−α10−1
)

n

(

1−2α3

(

1−cosθ

2

))

,

(26)

where

P

(

α10−1,
(

α11

α3

)

−α10−1
)

n

(

1−2α3

(

1−cosθ

2

))

represents the Jacobi polynomials. Combining the above
equations, the energy spectrum can be determined as

l(l+1) = n′2+2
√

(λ2−En,l,λB)n′+n′+(λ2−En,l,λB

+
√

λ2−En,l,λB). (27)

Therefore,

l=n′+
√

λ2−En,l,λB. (28)

Finally, we can write the total form of the considered
component as

Fn,l,λ(~r,θ,ϕ)

= r
(

−
1

2
+
√

1

4
+l(l+1)

)

e(−
√

m2−E2

n,l,λ
)r
L

(

2
√

1

4
+l(l+1)

)

n

×
(

(2
√

m2−E2
n,l,λ)r

)

×
(

1−cosθ

2

)

(

1

2

√
(λ2−En,l,λB)

)

×
(

1+cosθ

2

)

(

1

2

√
(λ2−En,l,λB)

)

×P
(√

(λ2−En,l,λB),
√

(λ2−En,l,λB)
)

n (cosθ)eiλϕ. (29)

6 Conclusion

In the present work, we have considered the DKP
equation in the presence of Hartmann ring-shaped po-
tential in (3+1)-dimensions for spin-one particles. The
eigenvalues and the eigenfunctions are calculated via the
NU technique. The eigenfunctions and energy eigenval-
ues, after proper facts and modifications are done, can be
as well used in meson spectroscopy, in the study of equi-
librium separation between the nuclei, decay properties
of the wave function, cross sections, interference pat-
terns, charge transfer, excitation effects, static multiple
polarizabilities of the interacting particles and various
static properties of mesons.

We wish to express our sincere gratitude to the referee
for his/her instructive comments and careful reading of
the article.

033102-4



Chinese Physics C Vol. 38, No. 3 (2014) 033102

Appendix A

We consider the following second-order differential equa-
tion whose form represents a general Schrödinger-type equa-
tion to obtain the parametric generalization of the NU
method [26, 27],

{

d2

ds2
+
α1−α2s

s(1−α3s)

d

ds
+

1

[s(1−α3s)]2
[−ξ1s

2+ξ2s−ξ3]

}

×ψn(s)=0. (A1)

According to the NU method, the eigenfunctions are

ψn(s) = s
α12 (1−α3s)

−α12−
α13

α3

×P

(

α10−1,
α11

α3
−α10−1

)

n (1−2α3s). (A2)

Where the Jacobi polynomial is,

P
(c,d)
n (z) = 2−n

n
∑

p=0

(

n+c

P

)(

n+d

n−p

)

(1−z)n−p (1+z)p

P
(c,d)
n (z) =

Γ (n+c+1)

n!Γ (n+c+d+1)

n
∑

r=0

(

n

r

)

×
Γ (n+c+d+r+1)

Γ (r+c+1)

(

z−1

2

)r

. (A3)

Where
(

n

r

)

=
n!

r!(n−r)!
=

Γ (n+1)

Γ (r+1)Γ (n−r+1)
.

And the eigenenergies satisfy

α2n−(2n+1)α5+(2n+1)(
√
α9+α3

√
α8)+n(n−1)α3

+α7+2α3α8+2
√
α8α9=0. (A4)

Where

α4 =
1

2
(1−α1), α5=

1

2
(α2−2α3), α6=α2

5+ξ1,

α7 = 2α4α5−ξ2, α8=α2
4+ξ3, α9=α3α7+α

2
3α8+α6,

α10 = α1+2α4+2
√
α8, α11=α2−2α5+2(

√
α9+α3

√
α8),

α12 = α4+
√
α8, α13=α5−(

√
α9+α3

√
α8). (A5)

Furthermore in some cases we can use

ψn(s) = s
α∗

12(1−α3s)
−α∗

12
−

α∗

13

α3

×P

(

α∗

10
−1,

α∗

11

α3
−α10−1

)

n (1−2α3s), (A6)

α∗

10=α1+2α4−2
√
α8,

α∗

11=α2−2α5+2(
√
α9−α3

√
α8),

α∗

12=α4−
√
α8,

α∗

13=α5−(
√
α9−α3

√
α8).

Also for this problem when

lim
α3→0

P
(α10−1,

α11

α3
−α10−1)

n (1−α3s)=L
α10−1
n (α11s), (A7)

And lim
α3→0

(1−α3s)
−α12−

α13

α3 =eα13s.

Thus the solution given in Eq. (A4) becomes

ψn(s)=sα12eα13s
L

α10−1
n (α11s). (A8)
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