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Abstract: The vibrating wire alignment technique is a method which, by measuring the spatial distribution of a

magnetic field, can achieve very high alignment accuracy. The vibrating wire alignment technique can be applied to

fiducializing magnets and the alignment of accelerator straight section components, and it is a necessary supplement to

conventional alignment methods. This article gives a systematic summary of the vibrating wire alignment technique,

including vibrating wire model analysis, system frequency calculation, wire sag calculation, and the relation between

wire amplitude and magnetic induction intensity. On the basis of this analysis, this article outlines two existing

alignment methods, one based on magnetic field measurement and the other on amplitude and phase measurements.

Finally, some basic experimental issues are discussed.
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1 Introduction

The vibrating wire alignment technique was first put
forward by Alexander Temnykh of Cornell University.
Inspired by the ‘pulsed-wire’ method [1], he suggested
using vibrating wire for accelerator magnet alignment
[2]. Compared with the pulsed-wire method, vibrating
wire can substantially shorten the wire required for field
measurements, which makes it possible to apply vibrat-
ing wire to the alignment of long straight section com-
ponents in an accelerator. Compared with pulsed-wire,
another advantage of vibrating wire is that no pulse cur-
rent needs to be generated to pass through the long wire,
so it becomes more convenient to use.

To do the alignment, the vibrating wire alignment
technique measures the spatial distribution of the mag-
netic field, rather than using the mechanical structure
of the magnets, as done in the conventional alignment
method. Because it measures the magnetic field to find
the center and establish the relation between the center
and the fiducials, the vibrating wire method can sub-
stantially decrease the introduction of errors and achieve
very high accuracy. The Brookhaven National Labora-
tory (BNL) reports that the vibrating wire method can
align 6m straight section components within 0.03 mm
[3], which is impossible for the conventional alignment
method. The vibrating wire method can be applied to

fiducialize magnets, align several magnet centers in a line
[4], and align magnets in a cryostat [5]. The vibrating
wire method can achieve high accuracy in a relatively
small range and, if combined with some conventional
alignment methods, it can effectively improve alignment
accuracy for the whole accelerator complex.

2 Vibrating wire model analysis

The vibrating wire system is shown in Fig. 1. A thin
wire is passed through the center of the magnet, the ends
of which are fixed to the motor-driven translation stages.
The stages can move along the x and y directions. The
tension of the wire is T , a current I(t) is passed through
the wire, and at the end of the wire two sensors are used
to measure the wire movement in the x and y directions.

Fig. 1. Vibrating wire system.
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This system can be seen as a typical forced string
vibration model. The driving force is a Lorentz force
generated by the current and magnetic field, and the
frequency of the driving force is determined by the fre-
quency of the current. It can be analyzed using standard
forced string vibration methods [6].

As it carries alternating current, the wire in this
model will be affected by stress, gravity, damping force
and Lorentz force. We first analyze its movement in the
y direction. For each point in the wire, its y coordinate is
a function of coordinate z and time t, written as y(z,t).
The analysis of stress on a section of wire of length dz is
shown in Fig. 2.

Fig. 2. Analysis of stress for a section of wire of length dz.
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When the length of dz is small enough, it can be written

as T2−T1=T
∂2

y

∂z2
dz. The gravity on dz is −µgdz, where

µ is the density of the wire and g is the acceleration
due to gravity. The damping force on the dz segment

is −γ
∂y

∂t
dz, where γ is the damping coefficient. The

Lorentz force on the dz segment is I(t)Bx(z)dz, where
I(t) is the driving current and Bx(z) is the magnetic in-
duction intensity in the x direction. So the differential
equation of motion for segment dz is

µdz
∂2

y

∂t2
=T

∂2
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∂z2
dz−µgdz−γ

∂y

∂t
dz+I(t)Bx(z)dz.

Dividing through by dz and rearranging terms gives

µ
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∂t
−T

∂2
y

∂z2
=−µg+I(t)Bx(z). (1)

This is a nonhomogeneous second-order differential equa-
tion and will be discussed further below.

2.1 Natural frequency of the wire

When no forces act on the wire, from Eq. (1) we can
get
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Because z and t are two independent variables, by sepa-
ration of variables y(z,t)=Yz(z)Yt(t), we then get
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Since both sides are functions of different variables, they
must be constants. We set this constant equal to −k2.
From the right side of Eq. (3) we can get

d2Yz

dz2
+k2Yz=0. (4)

Eq. (4) is a second-order homogeneous linear differential
equation with constant coefficients, with a characteris-
tic equation of r2+pr+q = 0, where p =0 and q = k2.
The solutions are r = ±ik. The solution of Eq. (4) is
then Yz =C1sinkz+C2sinkz. With the boundary condi-
tions Yz(0)=Yz(L)=0, we can get C1 =0, k=nπ/L. So,
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arbitrary constant. From the left side of Eq. (3) we can
get
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where c1, c2 are constants. The general solution of
Eq. (2) is
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From Eq. (7) it can be found that, when no forces act on
the wire and when damping is zero (γ =0), the natural
frequency of the wire is ωn. Because the damping is very
small, the natural frequency of the wire can be assumed

to be ωn=2π

n

2L

√

T

µ
and the basic natural frequency is

ω1=2π

1

2L

√

T

µ
.

2.2 The sag of wire due to gravity

When only gravity acts on the wire, from Eq. (1) we
can get

µ
∂2

y

∂t2
+γ

∂y

∂t
−T

∂2
y

∂z2
=−µg. (8)

Since the force due to gravity does not vary over time,

we can get
∂2

y

∂z2
=

µg

T
. After integrating twice, we get

y(z)=
µg

2T
z2+c1z+c2.

With the boundary conditions y(0)=0, y(L)=0, that is
the case where the wire is level, we then get

y(z)=
µg

2T
z(z−L). (9)

A more common condition is that the wire is tilted, as
shown in Fig. 3.

Fig. 3. Sag analysis of a tilted wire.

The boundary condition becomes y(0) = y1, y(L) =
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. By substituting into

Eq. (9) we then get

y(z)=
g

8f 2
1L2

z(z−L). (10)

Eq. (10) is the sag equation. We can measure f1 for the
vibrating wire and then calculate the sag to do a sag
correction.

2.3 The motion of wire driven by Lorentz force

When only the Lorentz force acts on the wire, from
Eq. (1) we get

µ
∂2

y

∂t2
+γ

∂y

∂t
−T

∂2
y

∂z2
=I(t)Bx(z). (11)

According to the phasor representation method of elec-
tric circuit theory, the current can be written as
I(t)=I0e

iωt. When the vibration reaches a steady state,
the vibration frequency will be the same as the driving
force frequency [6], so we can set y(z,t)=YB(z)eiωt. Sub-
stituting into Eq. (11), we can get
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d2YB
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By re-arranging this, we can get

−ω2µYB+iωγYB−T
d2YB

dz2
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Eq. (12) is a very complicated differential equation, with
YB(z) and Bx(z) both being rather complicated functions
of z. In order to easily solve Eq. (12), we can use the
boundary conditions YB (0) = 0, YB(L) = 0, and expand
YB(z) and Bx(z) in a Fourier sine series:
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where Bxn is a constant. Substituting these in Eq. (12)
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By setting α=
γ

µ
, ω2
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T

µ

(nπ

L

)2

we can get
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.
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.

Using the complex solution method for vibration dif-
ferential equations, y(z,t) is equal to the real part of
YB(z)eiωt:

y(z,t) = Re

∞
∑

n=1

−I0Bxn

µ(ω2−ω2
n−iωα)

sin
(nπz
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)
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[
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2
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2
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n)cos(ωt)

−ωαsin(ωt)]. (15)

The motion of the wire in the x direction is similar to
that in the y direction, but in the x direction gravity does
not act on the wire and the Lorentz force is generated by
By(z). It can thus be seen that the natural frequency in
the x direction is the same as that in the y direction and
gravity does not need to be considered. The equation for
the Lorentz force in the x direction can be obtained by
substituting Bxn for Byn in Eq. (15). This completes the
analysis of the vibrating wire model.

3 Magnet alignment

Eq. (15) describes the relationship between the mo-
tion of point z in the y direction and the magnetic induc-
tion intensity Bxn, but Eq. (15) is still too complex and
difficult to be applied in actual measurements. It needs
to be further simplified for practical application.

3.1 Magnet alignment based on the distribution

of magnetic field measurement

Alexander Temnykh provided a method for magnet
alignment by measuring the distribution of the magnetic
induction intensity in the x-y cross section [2, 7]. Tak-
ing the y direction as an example, we can construct a
function

F (ω)=
1

T

∫T

0

y(z,t)Re
(

I0e
iωt
)

dt, (16)

where T is the sampling time, which should be integral
multiple of the current cycle; y(z,t) is the amplitude of
point z on the wire in the y direction; and, I0e

iωt is the
current. F (ω) can be found by measurement. By setting
the position of the sensor as z, the sensor samples the
motion of the wire in the y direction during period T , si-
multaneously sampling the current. These data are then

used to integrate Eq. (16) numerically. The sampling
rate can be selected according to the fastest sampling
rate of the instrument.

In order to measure the distribution of the magnetic
induction intensity in the x-y cross section, the wire
should be used to do scan measurements in both the x
and y directions. Taking the y direction as an example,
we should firstly use a conventional alignment method
to align the wire to the center of the magnet with an
accuracy of 0.1 mm, we can be sure that the center of
magnet must be within 1 mm of the wire. Secondly, by
taking the wire’s current position as the center and se-
lecting a series of points in a 2 mm wide range in the y
direction, a frequency scan measurement is done at each
point. When doing the frequency scan measurement, we
should set one natural frequency as the center and use
a series of currents with frequencies close to that central
frequency to measure F (ω). We can then get a graph
of F (ω)-ω. Fig. 4 shows the scan result for one of these
points.

Fig. 4. Frequency scan.

Through the frequency scan we can get the magnetic
induction intensity at this point. By substituting the
y(z,t) in Eq. (16) with Eq. (15), we get

F (ω) =

∞
∑

n=1

−I2
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)
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[
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0
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2µ
[

(ω+ωn)
2
(ω−ωn)

2

+(ωα)
2
] .

When ω is close to ωn, this can be simplified to

F (ω) =

∞
∑

n=1

−I2

0Bxnsin
(nπz

L

)

2ω(ω−ωn)

2µ
[

4ω2 (ω−ωn)
2
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2
]

117010-4



Chinese Physics C Vol. 38, No. 11 (2014) 117010

=
∞
∑

n=1

−I2

0
Bxnsin

(nπz

L

)

(ω−ωn)

µ
[

4ω(ω−ωn)
2
+ωα2

] . (17)

We can set F (ω)=

∞
∑

n=1

Fn(ω), where

Fn(ω)=
−I2

0
Bxn

µ
sin
(nπz

L

) ω−ωn

4ω(ω−ωn)
2
+ωα2

. (18)

Since a vibrating wire system is a weakly damped sys-

tem,
ωα2

ω−ωn

will become very small in a certain range. In

Eq. (18), when ω≈ωn, Fn(ω) will become very big, but
when ω=ωn, Fn(ω)=0. This can be seen in Fig. 4: when
ω is close to ωn, F (ω) becomes very big, due to Fn(ω)
being much bigger than other terms, so when ω≈ωn,
F (ω)≈Fn(ω).

We can simplify Eq. (18) as follows:

F (ω)=an

ω−bn

4ω(ω−bn)
2
+ωc2

n

, (19)

where an, bn, cn are coefficients to be solved for. Com-

paring with (18), we can get an =
−I2

0
Bxn

µ
sin
(nπz

L

)

,

bn = ωn, cn = α. Solving for an can, therefore, allow us
to calculate Bxn. By using (19) as the model equation
and using the measured data to do nonlinear fitting we
can get an. Before doing the fit we need to set the initial
values for an, bn, cn. The initial value of bn can be cal-

culated from the equation ωn=2π

n

2L

√

T

µ
, but an and cn

do not have such equations. We can calculate the initial
values of an and cn by rearranging Eq. (19) to give

1

F (ω)
=x1×4ω2−x2×4ω+x3×

ω

ω−bn

, (20)

where x1=
1

an

x2=
bn

an

x3=
c2

n

an

. By substituting bn in (20)

with its initial value, through linear fitting we can solve
for x1, x2 , and x3 and then calculate the initial values
of an and cn. The result of nonlinear fitting is shown in
Fig. 4. According to (14), if we measure many orders
of Bn, we can approximately calculate Bx at the wire
location.

After doing the frequency scan at every point we will
get the distribution of magnetic induction intensity in
the y direction, as shown in Fig. 5. From Fig. 5 it can
be found that the magnetic center is at 0.1 mm. The
measurement of magnetic induction intensity in the x
direction is done in the same way as for the y direc-
tion but instead using the sensor measure x(z,t) and the
magnetic induction intensity By (z).

For magnet alignment, one needs not only to align the
magnetic center but also to align the roll, pitch, and yaw.
The vibrating wire method cannot measure roll, so we
should use the conventional method for roll alignment,

but a vibrating wire can be used to measure pitch and
yaw. According to (14), through measuring many orders
of Bn, we can approximately calculate B(z). The rela-
tionship between B(z) and quadrupole position is shown
in Fig. 6.

Fig. 5. Distribution of magnetic induction intensity.

Fig. 6. Relationship between B(z) and magnet po-
sition: (a) shift measurement; (b) pitch measure-
ment; (c) yaw measurement; and, (d) shift and
tilt measurement.

When pitch and yaw are zero and the magnetic center
is on the wire, B(z) should also be zero. When pitch and
yaw are zero and the magnetic center is not on the wire,
B(z) should be as shown in Fig. 6(a), with a peak at
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the magnet center location. When only the pitch is non-
zero, Bx(z) should be as shown in Fig. 6(b), with two
symmetrical peaks of different polarities at the magnet
location. When only the yaw is non-zero, By (z) should
be as shown in Fig. 6(c), with two symmetrical peaks
of different polarities at the magnet location. When tilt
and shift are both non-zero, B(z) should be as shown in
Fig. 6(d), with two asymmetrical peaks of different po-
larities at the magnet location. One thing to be noticed
is that the accuracy of B(z) is determined by the highest
order of Bn measured because the higher the order the
shorter the wavelength and, hence, the more accurate
the description of B(z). If the wavelength of the highest
order Bn is longer than the magnet, then the result in
Fig. 6 will not be obtained.

3.2 Magnet alignment based on amplitude and

phase measurement

Zachary Wolf provided a method of quadrupole align-
ment by measuring wire amplitude and phase [8]. Ac-
cording to the theory of forced vibrations, for a weakly
damped system, when the drive force frequency ω is the
same as one of the system natural frequencies ωk the
system will generate resonance [6]. When there is reso-
nance, the n = k term in Eq. (15) will be much bigger
than the other terms and for any point of the wire its

motion phase will lag the drive force by
π

2
, so (15) can

be simplified as

y(z,t)≈
I0Bxn

µωnα
sin
(nπz

L

)

cos
(

ωnt−
π

2

)

. (21)

Taking the y direction as an example, to find the mag-
netic center of the magnet, we first use conventional
alignment methods to align the wire to the center of the
magnet and then select a natural frequency ωn as the
driving current frequency. In order to get the actual res-
onance frequency, we need to monitor the wire motion
phase and the driving current phase, adjust the current
frequency until the wire phase lags the current phase by
π

2
, and then use a lock-in amplifier to get the resonance

frequency. For a quadrupole magnet, Bx=Gyd, where G
is the magnetic field gradient, yd is the distance between
the wire and the magnetic center in the y direction. To
get the value of yd, we need to deduce the relationship
between yd and Bxn and substitute it into (22) to solve.

Using a Fourier transformation,

Bxn=
2

L

∫
Bx(z)sin

(nπz

L

)

dz.

Setting the effective length of magnetic field as Lm, the

magnetic center location in the z direction is zm =
L

j
.

When the tilt of the magnet relative to the wire is very

small, Bx(z) can be seen as a constant Bx, so

Bxn =
2

L

∫L
j

+
Lm

2

L
j
−

Lm

2

Bxsin
(nπz

L

)

dz

= −
2

L
Bx

L

nπ

cos
(nπz

L

)

∣

∣

∣

∣

L
j

+
Lm

2

L
j
−

Lm

2

=
4Bx

nπ

sin

(

nπ

j

)

sin

(

nπ

2

Lm

L

)

=
4Gyd

nπ

sin

(

nπ

j

)

sin

(

nπ

2

Lm

L

)

. (22)

Substituting into (21).

y(z,t) ≈
I04Gyd

µωnαnπ

sin

(

nπ

j

)

sin

(

nπ

2

Lm

L

)

sin
(nπz

L

)

×cos
(

ωnt−
π

2

)

.

The relation between the maximum amplitude ymax(z)
and yd is therefore

ymax(z) =

[

I04G

µωnαnπ

sin

(

nπ

j

)

sin

(

nπ

2

Lm

L

)

×sin
(nπz

L

)]

|yd|. (23)

Using (23) the magnetic center in the y direction can be
calculated by measuring ymax(z).

The measurement of the magnetic center in the x di-
rection is the same as the y direction, but with x(z,t)
used as the sensor measurement and By (z) as the mag-
netic induction intensity.

For quadrupoles, the directions of magnetic induction
intensity on both sides of the magnet center are opposite
as shown in Fig. 7.

Fig. 7. Quadrupole magnetic field.

Correspondingly, the phase of the wire relative to the

driving current will also change, from −
π

2
to

π

2
or from
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π

2
to −

π

2
. By monitoring the wire phase change, we can

judge which side the wire is on. Taking the y direction
as an example, the relationship of the wire motion phase

φ and yd is φ=−sign(yd)
(

π

2

)

.

When the tilt of the magnet relative to the wire is not
small and tilt alignment is needed, B(z) at the wire loca-
tion will not be seen as a constant; it should be expressed
as a function of the tilt θ Taking quadrupole pitch as an
example, after finishing the alignment in the x and y di-
rections, the pitch alignment should be done as shown in
Fig. 8.

Fig. 8. Quadrupole pitch alignment.

Bx(z)=−G

(

z−
L

j

)

tanθ≈−G

(

z−
L

j

)

θ,

Bxn =
2

L

∫L
j

+
Lm

2

L
j
−

Lm

2

Bx(z)sin
(nπz

L

)

dz

=
2

L

∫L
j

+
Lm

2

L
j
−

Lm

2

−G

(

z−
L

j

)

θsin
(nπz

L

)

dz

=
2G

L

[

LmL

nπ

cos
nπ

j
cos

nπLm

2L

−2

(

L

nπ

)2

cos
nπ

j
sin

nπLm

2L

]

θ.

Substituting into (21).

y(z,t) ≈
I02G

µωnαL

[

LmL

nπ

cos
nπ

j
cos

nπLm

2L

−2

(

L

nπ

)2

cos
nπ

j
sin

nπLm

2L

]

×θsin
(nπz

L

)

cos
(

ωnt−
π

2

)

.

So the relation of ymax(z) and θ is

ymax(z) =
I02G

µωnαL

[

LmL

nπ

cos
nπ

j
cos

nπLm

2L

−2

(

L

nπ

)2

cos
nπ

j
sin

nπLm

2L

]

sin
(nπz

L

)

|θ|.

(24)

The relation between the wire motion phase relative to

the driving current φ and θ is φ=sign(θ)
(

π

2

)

. For θ>0,

φ =
π

2
and for θ<0, φ = −

π

2
. The yaw measurement

method is the same as for pitch, but with the sensor
measuring x(z,t) and the magnetic induction intensity
being By (z).

4 Some basic experimental techniques

4.1 Sensor

The sensor used in the vibrating wire method is a
kind of optical chopper, as shown in Fig. 9.

Its output characteristic is shown in Fig. 10.

Fig. 9. Optical chopper.

Fig. 10. Sensor output characteristic.
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When the wire moves between a and b, its output
and motion have a linear relation. We should, therefore,
control the amplitude of the wire at the sensor position
in order to make it smaller than the distance between a
and b. The sensor output is sensitive to the direction of
wire movement, so we need to use two sensors to monitor
the wire motion in x and y, respectively.

4.2 Wire

The wire used in the vibrating wire system must be
non-magnetic. We chose Cu-2% Be wire. The diameter
of the wire should be about 0.1 mm. If it is too thick it
will increase the damping, while if it is too thin it will
decrease its tensile strength.

4.3 Driving current frequency

From Section 3.1, by measuring the magnetic induc-
tion intensity components we can calculate the magnetic
induction intensity, but we do not need to measure many
components, just some of the most representative. From

Eq. (14) it can be seen when n=
(1+2k)L

2zm

(k=0, 1, 2, ···,

zm is the magnet z coordinate), the nth order component
is the biggest one at the magnet location, so we can use
this to choose the driving current frequency.

According to Eq. (22), when zm =
(1+2k)L

2n
(k =0,

1, 2, ···, zm is magnet z coordinate) Bxn reaches its
biggest value. From Eq. (21) the wire’s biggest amplitude
ymax(z) is proportional to Bxn, so using the location of
the magnet to choose the driving current frequency can
improve the measurement accuracy. In conclusion, we
should make sure that the magnet is located at the peak
of the wire nth order vibrating mode.

4.4 Sag correction

The nominal reference shape for a vibrating wire is
the straight line between the ends of the wire, but in re-
ality the wire follows a catenary curve because of gravity.

We therefore need to correct for the sag. According to
Eq. (10), by measuring the basic frequency we can cal-
culate for the sag at the magnet center and then, after
subtracting the sag value from the magnetic center value
in the y direction, we can get the distance between the
magnetic center and the nominal reference line.

4.5 Background field elimination

The vibrating wire alignment technique is based on
magnetic field measurements, but in actual measurement
the magnetic fields acting on the wire come not only
from the magnet under measurement but also from other
magnets nearby, as well as the earth’s magnetic field.
In order to eliminate these magnetic fields we can first
use the vibrating wire to do a scan measurement within
the measurement range when the magnets are switched
off. We can thus get the background field distribution.
Through best-fit procedures we can get the magnetic in-
duction intensity distribution curves in the x and y di-
rections relative to the wire position. Then, with the
magnet switched on, the scan measurement is repeated
and best-fit procedures are performed to get the distri-
bution curves with the magnet powered on. Subtracting
the power-off curve from the power-on curve then gives
the magnetic field with the background fields eliminated.

5 Conclusions

The vibrating wire alignment technique is a kind of
high accuracy alignment technique that can be applied to
fiducializing components or the alignment of straight sec-
tion components, which is a necessary supplement to the
conventional alignment method. In this article we ana-
lyzed the vibrating wire mode in detail, deduced the res-
onance frequency equation, sag equation and wire ampli-
tude and magnetic induction intensity relation equations.
We then presented two kinds of alignment method, and
finally discussed some basic experimental techniques.
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