Activation cross－section measurement of a sort of nuclide produced with a target including two isotopes＊

ZHOU Feng－Qun（周丰群 $)^{1 ; 1)}$ TIAN Ming－Li（田明丽）$)^{1} \quad$ SONG Yue－Li（宋月丽 $)^{1}$
LAN Chang－Lin（兰长林）$)^{2}$ KONG Xiang－Zhong（孔祥忠）${ }^{2}$
${ }^{1}$ Electric and Information Engineering College，Pingdingshan University，Pingdingshan 467000，China
${ }^{2}$ School of Nuclear Science and Technology，Lanzhou University，Lanzhou 730000，China

Abstract

Based on a formula used to calculate the activation cross－section sum of two reactions producing a sort of nuclide with a target including two isotopes，the related problems in some references have been analyzed and discussed．It is pointed out that the calculation methods of the cross－section sum of two reactions producing the same radioactive nuclide for two isotopes in some references are improper and usually it is impossible to obtain the correct cross－section sum of two reactions producing the same radioactive nuclide for two isotopes in the case of using natural samples．At the same time，the related concepts are clarified and the correct processing method and representation are given．The comparison with the experimental results show that the theoretical analysis results are right．

Key words：cross section，cross－section sum of two reactions producing the same radioactive nuclide，cross－section measurement
PACS：25．40．－h，24．10．－i，52．70．La DOI：10．1088／1674－1137／37／8／084002

1 Introduction

Nuclear reaction cross sections are to test the funda－ mental basis of nuclear theory．They are also the basic data for nuclear technology and nuclear power develop－ ment．Therefore，the accurate measurement of nuclear reaction cross sections is very important．However，in practice，cross－section measurement induced by neutrons can be influenced by many factors，such as the interac－ tions of all possible reactions，γ－rays with close energies， the interferences from the excited states on the ground state，$\gamma-\gamma$ cascade coincidences，γ－ray self－absorption in the sample，and so on．All of these problems need to be resolved．As to the problem of the interactions of all possible reactions，it can usually be resolved by using the solution of isotope separation or a different cooling time according to the different half－life of the product radionu－ clide．When the target nuclei have many stable isotopes and natural samples are used，it is sometimes difficult to avoid the effects of all possible reactions，such as ${ }^{a} \mathrm{X}$（n， $\mathrm{p})^{a} \mathrm{Y}$ and ${ }^{a+1} \mathrm{X}\left(\mathrm{n}, \mathrm{d}^{*}\right)^{a} \mathrm{Y}\left(\mathrm{d}^{*}=\mathrm{np}+\mathrm{pn}+\mathrm{d}\right)$ reactions，${ }^{a} \mathrm{X}$ $(\mathrm{n}, 2 \mathrm{n})^{(a-1) \mathrm{m}} \mathrm{X}$ and ${ }^{a-1} \mathrm{X}\left(\mathrm{n}, \mathrm{n}^{\prime}\right)^{(a-1) \mathrm{m}} \mathrm{X}$ reactions，and so
on．For these cases，different processing methods or rep－ resentations are used in different references［1－14］and even the meaning of nuclear reaction cross section is not clear in some references．They are neither conducive to academic exchanges nor conducive for adoption by inter－ national or national nuclear data centers．For the effects of ${ }^{a} \mathrm{X}(\mathrm{n}, \mathrm{p})^{a} \mathrm{Y}$ and ${ }^{a+1} \mathrm{X}\left(\mathrm{n}, \mathrm{d}^{*}\right)^{a} \mathrm{Y}$ reactions or ${ }^{a} \mathrm{X}(\mathrm{n}$ ， $2 \mathrm{n})^{(a-1) \mathrm{m}} \mathrm{X}$ and ${ }^{a-1} \mathrm{X}\left(\mathrm{n}, \mathrm{n}^{\prime}\right)^{(a-1) \mathrm{m}} \mathrm{X}$ reactions on each other，there are different processing methods or repre－ sentations in Refs．［1－14］．

In this paper，based on a formula used to calculate the activation cross－section sum of two reactions produc－ ing a sort of nuclide with a target including two isotopes， the related problems in Refs．［1－14］are analyzed and dis－ cussed，and the theoretical analysis results are compared with the experimental results．It is pointed out that the calculation methods of the cross－section sum of two re－ actions producing the same radioactive nuclide for two isotopes in Refs．［1－8］are improper．At the same time， the related concepts are clarified and the correct process－ ing method and representation are given．

[^0]
2 The related formulas

The measured cross sections σ_{x} were calculated by the following activation formula [15]:

$$
\begin{equation*}
\sigma_{x}=\frac{\left[S \varepsilon^{\mathrm{p}} I_{\gamma} \eta K M D\right]_{0}}{\left[S \varepsilon^{\mathrm{p}} I_{\gamma} \eta K M D\right]_{x}} \frac{[\lambda A F C]_{x}}{[\lambda A F C]_{0}} \sigma_{0}, \tag{1}
\end{equation*}
$$

where the subscript 0 represents the term corresponding to the monitor reaction and subscript x corresponds to the measured reaction, $\varepsilon^{\mathrm{p}}=$ full-energy peak efficiency of the measured characteristic gamma ray, $I=$ gammaray intensity, $\eta=$ abundance of the target nuclide, $M=$ mass of sample, $D=\mathrm{e}^{-\lambda t_{1}}-\mathrm{e}^{-\lambda t_{2}}=$ counting collection factor, $t_{1}, t_{2}=$ time intervals from the end of the irradiation to the start and end of counting, respectively, $A=$ atomic weight, $C=$ measured full-energy peak area, $\lambda=$ decay constant, $F=$ total correction factor of the activity: $F=f_{\mathrm{s}} \times f_{\mathrm{c}} \times f_{\mathrm{g}}$, where $f_{\mathrm{s}}, f_{\mathrm{c}}$ and f_{g} are the correction factors for the self-absorption of the sample at a given gamma energy and the coincidence sum effect of cascade gamma rays in the investigated nuclide and in the counting geometry, respectively, $K=$ neutron fluence fluctuation factor:

$$
K=\left[\sum_{i}^{L} \Phi_{i}\left(1-\mathrm{e}^{-\lambda \Delta t_{i}}\right) \mathrm{e}^{-\lambda T_{i}}\right] / \Phi S,
$$

where $L=$ number of time intervals into which the irradiation time is divided, $\Delta t_{i}=$ duration of the i th time intervals, $T_{i}=$ time interval from the end of the i th interval to the end of irradiation, $\Phi_{i}=$ neutron flux averaged over the sample in $\Delta t_{i}, \Phi$ neutron flux averaged over the sample in the total irradiation time T and $S=1-\mathrm{e}^{-\lambda T}=$ growth factor of product nuclide.

Using a similar approach of Ref. [16], the following formula used to calculate the cross-section sum of ${ }^{a} \mathrm{X}$ (n, $\mathrm{p})^{a} \mathrm{Y}$ and ${ }^{a+1} \mathrm{X}\left(\mathrm{n}, \mathrm{d}^{*}\right)^{a} \mathrm{Y}$ reactions can be deduced
$\sigma_{x}=\sigma_{1 x}+\sigma_{2 x}=\frac{\left[M \eta I_{\gamma} \varepsilon^{\mathrm{p}} K S D\right]_{0}}{\left[M I_{\gamma} \varepsilon^{\mathrm{p}} K S D\right]_{x}} \frac{[F \lambda A]_{x}}{[F C \lambda A]_{0}} \sigma_{0}\left(\frac{C_{1 x}}{\eta_{1 x}}+\frac{C_{2 x}}{\eta_{2 x}}\right)$,
where $\eta_{1 x}$ and $\eta_{2 x}$ are the abundances of ${ }^{a} \mathrm{X}$ and ${ }^{a+1} \mathrm{X}$ respectively, $C_{1 x}$ and $C_{2 x}$ are the full-energy peak (FEP) counts of the characteristic γ ray of ${ }^{a} \mathrm{Y}$ from ${ }^{a} \mathrm{X}(\mathrm{n}, \mathrm{p})^{a} \mathrm{Y}$ and ${ }^{a+1} \mathrm{X}\left(\mathrm{n}, \mathrm{d}^{*}\right)^{a} \mathrm{Y}$ reactions respectively.

The result is also applicable to the cross-section sum of ${ }^{a} \mathrm{X}(\mathrm{n}, 2 \mathrm{n})^{(a-1) \mathrm{m}} \mathrm{X}$ and ${ }^{a-1} \mathrm{X}\left(\mathrm{n}, \mathrm{n}^{\prime}\right)^{(a-1) \mathrm{m}} \mathrm{X}$ reactions.

3 Theoretical analysis and discussion of related problems

It can be seen from Eq. (2) that the FEP counts $C_{1 x}$ and $C_{2 x}$ of the characteristic γ ray of ${ }^{a} \mathrm{Y}$ from ${ }^{a} \mathrm{X}$ (n, $\mathrm{p})^{a} \mathrm{Y}$ and ${ }^{a+1} \mathrm{X}\left(\mathrm{n}, \mathrm{d}^{*}\right)^{a} \mathrm{Y}$ reactions must be measured separately in order to obtain the cross-section sum of
${ }^{a} \mathrm{X}(\mathrm{n}, \mathrm{p})^{a} \mathrm{Y}$ and ${ }^{a+1} \mathrm{X}\left(\mathrm{n}, \mathrm{d}^{*}\right)^{a} \mathrm{Y}$ reactions, it is impossible in the case of using natural samples, because the ${ }^{a} \mathrm{Y}$ from ${ }^{a} \mathrm{X}(\mathrm{n}, \mathrm{p})^{a} \mathrm{Y}$ and the ${ }^{a+1} \mathrm{X}\left(\mathrm{n}, \mathrm{d}^{*}\right)^{a} \mathrm{Y}$ reactions can not be distinguished. However, Refs. [1-8] obtained the cross-section sum of ${ }^{a} \mathrm{X}(\mathrm{n}, \mathrm{p})^{a} \mathrm{Y}$ and ${ }^{a+1} \mathrm{X}\left(\mathrm{n}, \mathrm{d}^{*}\right)^{a} \mathrm{Y}$ reactions or ${ }^{a} \mathrm{X}(\mathrm{n}, 2 \mathrm{n})^{(a-1) \mathrm{m}} \mathrm{X}$ and ${ }^{a-1} \mathrm{X}\left(\mathrm{n}, \mathrm{n}^{\prime}\right)^{(a-1) \mathrm{m}} \mathrm{X}$ reactions, it is possible that the so-called cross-section sum is obtained by using one of the following two methods in Refs. [1-8].

The first method: The cross section of the ${ }^{a} \mathrm{X}(\mathrm{n}$, $\mathrm{p})^{a}$ Y reaction or the ${ }^{a} \mathrm{X}(\mathrm{n}, 2 \mathrm{n})^{(a-1) \mathrm{m}} \mathrm{X}$ reaction was calculated from Eq. (1) and it was regarded as the crosssection sum. While the cross section of the ${ }^{a} \mathrm{X}(\mathrm{n}, \mathrm{p})^{a} \mathrm{Y}$ reaction or the ${ }^{a} \mathrm{X}(\mathrm{n}, 2 \mathrm{n})^{(a-1) \mathrm{m}} \mathrm{X}$ reaction was calculated, the FEP count C_{x} of the characteristic γ ray from ${ }^{a} \mathrm{Y}$ or ${ }^{(a-1) \mathrm{m} \mathrm{X}}$ (it is $C_{1 x}+C_{2 x}$ in fact) was regarded as $C_{1 x}$, so the so-called cross-section sum can be given as

$$
\begin{equation*}
\sigma_{x}^{\prime}=\frac{\left[M \eta I_{\gamma} \varepsilon^{\mathrm{p}} K S D\right]_{0}}{\left[M I_{\gamma} \varepsilon^{\mathrm{p}} K S D\right]_{x}} \cdot \frac{[F \lambda A]_{x}}{[F C \lambda A]_{0}} \frac{C_{1 x}+C_{2 x}}{\eta_{1 x}} \sigma_{0} . \tag{3}
\end{equation*}
$$

Comparing Eqs. (3) and (2), it can be seen that the cross-section sum from Eq. (3) is in agreement with that from Eq. (2) only when the abundance $\eta_{1 x}$ of ${ }^{a} \mathrm{X}$ equals the abundance $\eta_{2 x}$ of ${ }^{a+1} \mathrm{X}$ (or the abundance $\eta_{1 x}$ of ${ }^{a} \mathrm{X}$ equals the abundance $\eta_{2 x}$ of ${ }^{a-1} \mathrm{X}$). In other words, Eq. (3) is not the formula used to calculate the activation cross-section sum of two reactions producing the same radioactive nuclide for two isotopes in normal cases. The cross-section sum from Eq. (3) is less than that from Eq. (2) when $\eta_{1 x}$ is more than $\eta_{2 x}$ and the cross-section sum from Eq. (3) is more than that from Eq. (3) when $\eta_{1 x}$ is less than $\eta_{2 x}$.

The second method: The cross section of the ${ }^{a} \mathrm{X}(\mathrm{n}, \mathrm{p})^{a} \mathrm{Y}$ reaction was calculated from Eq. (1) and it was regarded as the cross-section sum. While the cross section of the ${ }^{a} \mathrm{X}(\mathrm{n}, \mathrm{p})^{a} \mathrm{Y}$ reaction was calculated, the FEP count C_{x} of the characteristic γ ray from ${ }^{a} \mathrm{Y}$ (it is $C_{1 x}+C_{2 x}$ in fact) was regarded as $C_{1 x}$, and the sum of the abundance $\eta_{1 x}$ of ${ }^{a} \mathrm{X}$ and the abundance $\eta_{2 x}$ of ${ }^{a+1} \mathrm{X}$ was regarded as the abundance $\eta_{1 x}$ of ${ }^{a} \mathrm{X}$, so the so-called cross-section sum can be given as

$$
\begin{equation*}
\sigma_{x}^{\prime \prime}=\frac{\left[M \eta I_{\gamma} \varepsilon^{\mathrm{p}} K S D\right]_{0}}{\left[M I_{\gamma} \varepsilon^{\mathrm{p}} K S D\right]_{x}} \cdot \frac{[F \lambda A]_{x}}{[F C \lambda A]_{0}} \frac{C_{1 x}+C_{2 x}}{\eta_{1 x}+\eta_{2 x}} \sigma_{0} \tag{4}
\end{equation*}
$$

Comparing Eqs. (4) and (2), it can be seen that the cross-section sum from Eq. (4) is always less than that from Eq. (2).

Ref. [4] pointed out explicitly that the data value for ${ }^{*} \mathrm{Ni}(\mathrm{n}, \mathrm{p}){ }^{61} \mathrm{Co}={ }^{61} \mathrm{Ni}(\mathrm{n}, \mathrm{p}){ }^{61} \mathrm{Co}+{ }^{62} \mathrm{Ni}(\mathrm{n}, \mathrm{n}+\mathrm{p}){ }^{61} \mathrm{Co}$ was defined by authors taking the abundance of the first mentioned isotope. It can be seen that the cross-section sum of the ${ }^{61} \mathrm{Ni}(\mathrm{n}, \mathrm{p}){ }^{61} \mathrm{Co}$ reaction and the ${ }^{62} \mathrm{Ni}(\mathrm{n}, \mathrm{n}+\mathrm{p}){ }^{61} \mathrm{Co}$ reaction in the Ref. [4] was calculated according to the first method mentioned above. The target nuclear abundance corresponding to the $\mathrm{Ba}(\mathrm{n}, \mathrm{x}){ }^{136} \mathrm{Cs}$ reaction is
9.009% which exactly equals the sum of the abundance 2.417% of ${ }^{134} \mathrm{Ba}$ and the abundance 6.592% of ${ }^{135} \mathrm{Ba}$ in Table 1 of Ref. [7]. This shows that the cross-section sum was calculated according to the second method mentioned above. A desciption of how to obtain the crosssection sum was not given in Refs. $[1-3,5,6,8]$, but the cross-section sum calculated according to either method mentioned above is not the true cross-section sum which is calculated from Eq. (2).

When the target nuclei have many stable isotopes and natural samples are used, it is sometimes difficult to avoid the summation of ${ }^{a} \mathrm{X}(\mathrm{n}, \mathrm{p})^{a} \mathrm{Y}$ and ${ }^{a+1} \mathrm{X}\left(\mathrm{n}, \mathrm{d}^{*}\right)^{a} \mathrm{Y}$ reactions, ${ }^{a} \mathrm{X}(\mathrm{n}, 2 \mathrm{n})^{(a-1) \mathrm{m}} \mathrm{X}$ and ${ }^{a-1} \mathrm{X}(\mathrm{n}, \mathrm{n})^{(a-1) \mathrm{m}} \mathrm{X}$ reactions. The common methods used are as follows.

If the cross-section difference between the ${ }^{a+1} \mathrm{X}(\mathrm{n}$, $\left.\mathrm{d}^{*}\right)^{a} \mathrm{Y}$ reaction and the ${ }^{a} \mathrm{X}(\mathrm{n}, \mathrm{p})^{a} \mathrm{Y}$ reaction is very small or the effect of the ${ }^{a+1} \mathrm{X}\left(\mathrm{n}, \mathrm{d}^{*}\right)^{a} \mathrm{Y}$ reaction on the ${ }^{a} \mathrm{X}(\mathrm{n}$, $\mathrm{p})^{a} \mathrm{Y}$ reaction can not be neglected, the cross sections of the ${ }^{a} \mathrm{X}(\mathrm{n}, \mathrm{p})^{a} \mathrm{Y}$ reaction can be obtained by subtracting the contribution of the ${ }^{a+1} \mathrm{X}\left(\mathrm{n}, \mathrm{d}^{*}\right)^{a} \mathrm{Y}$ reaction with the credible experimental or evaluation values of the cross section of the ${ }^{a+1} \mathrm{X}\left(\mathrm{n}, \mathrm{d}^{*}\right)^{a} \mathrm{Y}$, and vice versa. The same is true for the ${ }^{a-1} \mathrm{X}\left(\mathrm{n}, \mathrm{n}^{\prime}\right)^{(a-1) \mathrm{m}} \mathrm{X}$ reaction on the ${ }^{a} \mathrm{X}(\mathrm{n}$, $2 \mathrm{n})^{(a-1) \mathrm{m}} \mathrm{X}$ reaction. For example, the cross sections of the ${ }^{61} \mathrm{Ni}(\mathrm{n}, \mathrm{p}){ }^{61}$ Co reaction were calculated by Formula (1) deducting the contribution of the ${ }^{62} \mathrm{Ni}\left(\mathrm{n}, \mathrm{d}^{*}\right){ }^{61}$ Co reaction with the evaluated values from ENDF JEFF-3.1 in Ref. [13]. For another example, the cross sections of the ${ }^{46} \mathrm{Ti}(\mathrm{n}, \mathrm{p})^{46} \mathrm{Sc}$ reaction, which were obtained by subtracting the effect of the ${ }^{47} \mathrm{Ti}\left(\mathrm{n}, \mathrm{d}^{*}\right)^{46} \mathrm{Sc}$ reaction with the credible experimental values of the cross sections of the ${ }^{a+1} \mathrm{X}\left(\mathrm{n}, \mathrm{d}^{*}\right)^{a} \mathrm{Y}$, were in agreement with the results of using enriched isotope samples in Ref. [14]

If the cross sections of the ${ }^{a+1} \mathrm{X}\left(\mathrm{n}, \mathrm{d}^{*}\right)^{a} \mathrm{Y}$ reaction are much smaller than those of the ${ }^{a} \mathrm{X}(\mathrm{n}, \mathrm{p})^{a} \mathrm{Y}$ reaction, or the abundance of ${ }^{a+1} \mathrm{X}$ is also much smaller than that of ${ }^{a} \mathrm{X}$, the cross sections of the ${ }^{a} \mathrm{X}(\mathrm{n}, \mathrm{p})^{a} \mathrm{Y}$ reaction can be obtained by ignoring the influence of the ${ }^{a+1} \mathrm{X}\left(\mathrm{n}, \mathrm{d}^{*}\right)^{a} \mathrm{Y}$ reaction. It is same with the ${ }^{a-1} \mathrm{X}(\mathrm{n}$, $\left.\mathrm{n}^{\prime}\right)^{(a-1) \mathrm{m}} \mathrm{X}$ reaction on the ${ }^{a} \mathrm{X}(\mathrm{n}, 2 \mathrm{n})^{(a-1) \mathrm{m}} \mathrm{X}$ reaction. For example, after calculation we know that the effect of the ${ }^{98} \mathrm{Mo}\left(\mathrm{n}, \mathrm{d}^{*}\right){ }^{97} \mathrm{Nb}$ reaction on the ${ }^{97} \mathrm{Mo}(\mathrm{n}, \mathrm{p}){ }^{97} \mathrm{Nb}$ reaction was lower than 0.1% in Ref. [12]. For another example, the relative errors of the cross sections for the ${ }^{60} \mathrm{Ni}(\mathrm{n}, \mathrm{p}){ }^{60 \mathrm{~m}} \mathrm{Co}$ reaction which neglected the effect of the ${ }^{61} \mathrm{Ni}\left(\mathrm{n}, \mathrm{d}^{*}\right)^{60 \mathrm{~m}} \mathrm{Co}$ reaction are lower 1.2% than those
which deducted the effect of the ${ }^{61} \mathrm{Ni}\left(\mathrm{n}, \mathrm{d}^{*}\right)^{60 \mathrm{~m}}$ Co reaction with the credible experimental values. So the cross sections of the ${ }^{60} \mathrm{Ni}(\mathrm{n}, \mathrm{p}){ }^{60 \mathrm{~m}}$ Co reaction were calculated by Formula (1) neglecting the effects of ${ }^{61} \mathrm{Ni}\left(\mathrm{n}, \mathrm{d}^{*}\right)^{60 \mathrm{~m}} \mathrm{Co}$ reactions in Ref. [13].

The cross sections of ${ }^{137,136,134} \mathrm{Ba}(\mathrm{n}, \mathrm{p})$ reactions in Ref. [9] and the cross sections of ${ }^{a} \mathrm{X}(\mathrm{n}, \mathrm{p})^{a} \mathrm{Y}$ reaction in Refs. [10, 11] may be calculated by using the first method mentioned above. In fact, the effects of the ${ }^{a+1} \mathrm{X}$ (n, $\left.\mathrm{d}^{*}\right)^{a} \mathrm{Y}$ reaction were neglected while the cross sections of the ${ }^{a} \mathrm{X}(\mathrm{n}, \mathrm{p})^{a} \mathrm{Y}$ reaction were calculated by using Formula (1) in Refs. [9-11].

4 Comparison between the experimental and theoretical results

Two experiments (one by using natural samples, another by using the enriched isotope) should be done to compare the difference between the so-called crosssection sum obtained by using two methods mentioned above and the true cross-section sum calculated from Eq. (2), but we did only the experiment by using natural samples due to the limitation of the experimental conditions. For comparison, the so-called cross-section sum was obtained from Eqs. (3) and (4) respectively with related experimental data in our experiments, and the true cross-section sum was calculated from Eq. (2) with the experimental values reported in Refs. [17, 18] and the evaluation values of ENDF/B-VII. 1 [21], respectively.

The experimental conditions, instruments, equipment, samples, experimental process and so on in our experiments can be seen from Refs. [5] and [19] The natural abundances of the target isotopes are taken from Ref. [20] the so-called cross-section sum calculated from Eq. (3) is expressed by using σ_{1} and the so-called crosssection sum calculated from Eq. (4) is expressed by using σ_{2}, the cross-section sum σ is calculated from Eq. (2) with the experimental values reported in Refs. [17, 18] and the cross-section sum σ^{*} is calculated from Eq. (2) with the evaluation values of ENDF/B-VII.1 [21]. They are all listed in Table 1.

It can be seen from Table 1 that the abundance of ${ }^{46} \mathrm{Ti}$ is more than that of ${ }^{47} \mathrm{Ti}$, so σ_{1} is less than σ, but the difference of σ_{1} and σ is very small because the abundances of ${ }^{46} \mathrm{Ti}$ and ${ }^{47} \mathrm{Ti}$ are close. The abundance of ${ }^{198} \mathrm{Hg}$ is less than that of ${ }^{199} \mathrm{Hg}$, so σ_{1} is more than σ.

Table 1. Comparison between theoretical and experimental results.

reaction	abundance of target isotope (\%)	neutron energy $/ \mathrm{MeV}$	σ_{1} / mb	σ_{2} / mb	σ / mb	
${ }^{46} \mathrm{Ti}(\mathrm{n}, \mathrm{p})^{46} \mathrm{Sc}+$	8.0	14.81	305 ± 12	159 ± 7	$329.5 \pm 5.0[17]$	$263.62[21]$
${ }^{47} \mathrm{Ti}(\mathrm{n}, \mathrm{d})^{46} \mathrm{Sc}$	7.3					
${ }^{198} \mathrm{Hg}(\mathrm{n}, \mathrm{p})$	9.97	14.5	5.7 ± 0.3	2.1 ± 0.2	$4.9 \pm 0.5[18]$	
${ }^{198} \mathrm{Au}+$	16.87			$5.81[21]$		
${ }^{199} \mathrm{Hg}(\mathrm{n}, \mathrm{d})^{198} \mathrm{Au}$						

But σ_{2} is always less than σ in the two situations. These are in agreement with the theoretical analysis results in Part 3. It shows the theoretical analysis results are very reasonable.

In summary, in this article it is pointed out that the calculation methods of the cross-section sum of two reactions producing the same radioactive nuclide for two isotopes in some references are improper and normally it is impossible to obtain the cross-section sum of two reactions producing the same radioactive nuclide for two isotopes in the case of using natural samples. The activation cross-section sum of two reactions producing the same radioactive nuclide for two isotopes in normal circumstances can be obtained from Eq. (3) when the abundance of ${ }^{a} \mathrm{X}$ equals the abundance of ${ }^{a+1} \mathrm{X}$ or the abundance of ${ }^{a} \mathrm{X}$ equals the abundance of ${ }^{a-1} \mathrm{X}$. If the cross-
section difference between the ${ }^{a+1} \mathrm{X}\left(\mathrm{n}, \mathrm{d}^{*}\right)^{a} \mathrm{Y}$ reaction and the ${ }^{a} \mathrm{X}(\mathrm{n}, \mathrm{p})^{a} \mathrm{Y}$ reaction is small or the effect of the ${ }^{a+1} \mathrm{X}\left(\mathrm{n}, \mathrm{d}^{*}\right)^{a} \mathrm{Y}$ reaction on the ${ }^{a} \mathrm{X}(\mathrm{n}, \mathrm{p})^{a} \mathrm{Y}$ reaction can not be neglected, the cross sections of the ${ }^{a} \mathrm{X}(\mathrm{n}, \mathrm{p})^{a} \mathrm{Y}$ reaction can be obtained by subtracting the effect of the ${ }^{a+1} \mathrm{X}\left(\mathrm{n}, \mathrm{d}^{*}\right)^{a} \mathrm{Y}$ reaction with the credible experimental or evaluation values of the cross section of the ${ }^{a+1} \mathrm{X}(\mathrm{n}$, $\left.\mathrm{d}^{*}\right)^{a} \mathrm{Y}$, and vice versa. It is the same with the ${ }^{a-1} \mathrm{X}(\mathrm{n}$, $\left.\mathrm{n}^{\prime}\right)^{(a-1) \mathrm{m}} \mathrm{X}$ reaction on the ${ }^{a} \mathrm{X}(\mathrm{n}, 2 \mathrm{n})^{(a-1) \mathrm{m}} \mathrm{X}$ reaction. If the cross sections of the ${ }^{a+1} \mathrm{X}\left(\mathrm{n}, \mathrm{d}^{*}\right)^{a} \mathrm{Y}$ reaction are much smaller than those of the ${ }^{a} \mathrm{X}(\mathrm{n}, \mathrm{p})^{a} \mathrm{Y}$ reaction, or the abundance of ${ }^{a+1} \mathrm{X}$ is much smaller than that of ${ }^{a} \mathrm{X}$, the cross sections of the ${ }^{a} \mathrm{X}(\mathrm{n}, \mathrm{p})^{a} \mathrm{Y}$ reaction can be obtained by ignoring the influence of the ${ }^{a+1} \mathrm{X}\left(\mathrm{n}, \mathrm{d}^{*}\right)^{a} \mathrm{Y}$ reaction. The same is true with the ${ }^{a-1} \mathrm{X}\left(\mathrm{n}, \mathrm{n}^{\prime}\right)^{(a-1) \mathrm{m}} \mathrm{X}$ reaction on the ${ }^{a} \mathrm{X}(\mathrm{n}, 2 \mathrm{n})^{(a-1) \mathrm{m}} \mathrm{X}$ reaction.

References

1 LU W D, Ranakumar N, Fink R W. Phys. Rev. C, 1970, 1: 350
2 Hankla A K, Fink R W. Nucl. Phys., 1972, 180: 157
3 LUO Jun-Hua, HE Guo-Zhu, LIU Zhong-Jie, KONG XiangZhong. Radiochim. Acta, 2005, 93: 381
4 Bahal B M, Pepelnik R. Report: GKSS-85-E, 1985, 11
5 YUAN Jun-Qian, WANG Yong-Chang, KONG Xiang-Zhong, YANG Jing-Kang. HEP \& NP, 1992, 16: 57 (in Chinese)
6 ZHENG Wei-Qiang, YUAN Jun-Qian. J. Lanzhou University, 1997, 33: 37 (in Chinese)
7 KONG Xiang-Zhong, WANG Yong-Chang, YANG Jing-Kang, YUAN Jun-Qian. HEP \& NP, 1995, 19: 781 (in Chinese)
8 LU Han-Lin, ZHAO Wen-Rong, YU Wei-Xian, Chin. Nucl. Phys., 1992, 14: 244
9 YUAN Jun-Qian, QIU Jiu-Zi, YANG Jing-Kang, KONG Xiang-Zhong, WANG Yong-Chang. Trends in Nucl. Phys., 1994, 11: 65 (in Chinese)
10 LAN Chang-Lin, XU Xiao-San, FANG Kai-Hong, LIU Gang, KONG Xiang-Zhong, LIU Rong. An. Nucl. Energy, 2008, 35: 2105
11 PU Zhong-Sheng, GUAN Qiu-Yun, MA Jun, YAN Dong. HEP
\& NP, 2006, 30: 1171 (in Chinese)
12 KONG Xiang-Zhong, WANG Yong-Chang, YANG Jing-Kang, YUAN Jun-Qian, WANG Xue-Zhi. J. Lanzhou University, 1992, 28: 170 (in Chinese)
13 ZHOU Feng-Qun, XIAO Xia-Jie, FANG Kai-Hong, LAN Chang-Lin, KONG Xiang-Zhong. Nucl. Instrum. Methods Phys. Res., Sect. B, 2011, 269: 642
14 LU Han-Lin, WANG Da-Hai, CUI Yun-Feng et al. Nuclear Energy Science and Technology, 1975, 12: 113
15 KONG Xiang-Zhong, WANG Rong, WANG Yong-Chang, YANG Jing-Kang. Appl. Radiat. Isot., 1999, 50: 361
16 ZHOU Feng-Qun, SONG Yue-Li, KONG Xiang-Zhong, TUO Fei. CPC (HEP \& NP), 2011, 35: 31
17 Ribansky I, Gmuca S. J. Phys., 1983, 9: 1537
18 Hankla A K, Fink R W, Hamilton J H. Nucl. Phys. A, 1972, 180: 157
19 YUAN Jun-Qian, KONG Xiang-Zhong, YANG Jing-Kang. China Nuclear Science and Technology Report, 1995, S3: 16. http://www.cnki.com.cn/Journal/C-C3-ZHBG.htm
20 Firestone R B, Shirley V S. Table of Isotopes. New York: Wiley, 1996
21 ENDF/B-VII.1, US Evaluated Nuclear Data Library, 2011/12, http://www-nds.iaea.org/

[^0]: Received 10 September 2012
 ＊Supported by Program for Science \＆Technology Innovation Talents of Universities of Henan Province，China（2008 HASTIT032）， Research Program for Basic \＆Forefront Technology of Henan Province，China（132300410302，102300410039）and Scientific Research Start up Outlay of High－Position Talent at Pingdingshan University in Henan Province，China

 1）E－mail：zfq＠pdsu．edu．cn；zhoufq03＠163．com
 © 2013 Chinese Physical Society and the Institute of High Energy Physics of the Chinese Academy of Sciences and the Institute of Modern Physics of the Chinese Academy of Sciences and IOP Publishing Ltd

