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Spacetime structure of MOND with Tully-Fisher relation and

Lorentz invariance violation *
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Abstract: It is believed that the modification of Newtonian dynamics (MOND) is a possible alternative for dark

matter hypothesis. Although Bekenstein’s TeVeS supplies a relativistic version of MOND, one may still wish for

a more concise covariant formulism of MOND. In this paper, within covariant geometrical framework, we present

another version of MOND. We show the spacetime structure of MOND with properties of Tully-Fisher relation and

Lorentz invariance violation.
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1 Introduction

In 1932, physicists [1, 2] found from the observations
of galaxies and galaxy clusters that Newton’s gravity
could not provide enough force to attract the matter
of galaxies. The recent astronomical observations show
that the rotational velocity curves of all spiral galaxies
tend to some constant values [3]. These include the Oort
discrepancy in the disk of the Milky Way [4], the veloc-
ity dispersions of dwarf Spheroidal galaxies [5], and the
flat rotation curves of spiral galaxies [6]. These facts vi-
olate sharply the prediction of Newton’s gravity. The
most widely adopted way to resolve these difficulties is
the dark matter hypothesis. It is assumed that all visible
stars are surrounded by massive nonluminous matter.

The dark matter hypothesis has dominated astron-
omy and cosmology for almost 80 years. However, up
to now, no direct observations have been substantially
tested. Some models have been built for an alternative
to the dark matter hypothesis. Their main ideas are to
assume that the Newtonian gravity or Newton’s dynam-
ics are invalid in galactic scale. The most successful and
famous model is MOND [7]. It assumed that the New-
tonian dynamics does not hold in galactic scale. The
particular form of MOND is given as

mµ

(

a

a0

)

a=F ,

lim
x�1

µ(x)=1, lim
x�1

µ(x)=x,

(1)

where a0 is at the order of 10−8 cm/s2. At beginning, as
a phenomenological model, MOND explains well the flat
rotation curves with a simple formula and a new parame-
ter. In particular, it deduce naturally a well-known global
scaling relation for spiral galaxies, the Tully-Fisher rela-
tion [8]. The Tully-Fisher relation is an empirical rela-
tion between the total luminosity of a galaxy and the
maximum rotational speed. The relation is of the form
L∝ va

max, where a ≈ 4 if luminosity is measured in the
near-infrared. Tully and Pierce [9] showed that the Tully-
Fisher relation appears to be convergence in the near-
infrared. McGaugh [10] investigated the Tully-Fisher re-
lation for a large sample of galaxies, and concluded that
the Tully-Fisher relation is the fundamental relation be-
tween the total baryonic mass and the rotational speed.
MOND [7] predicts that the rotational speed of a galaxy
has an asymptotic value limr→∞v4 = GMa0, which ex-
plains the Tully-Fisher relation.

By introducing several scalar, vector and tensor
fields, Bekenstein [11] rewrote the MOND into a covari-
ant formulation (TeVeS). He showed that the MOND sat-
isfies all four classical tests on Einstein’s general relativ-
ity in the Solar system. Beside Bekenstein’s theory, there
are other MOND theories (for example, Einstein-aether
theory [12]). These MOND theories modify gravity with
additional scalar/vector/tensor fields. Bekenstein’s the-
ory and Einstein-aether theory both admit a preferred
reference frame and break local Lorentz invariance. It
means that local Lorentz symmetry violation is a feat-

Received 4 March 2013, Revised 3 June 2013

∗ Supported by National Natural Science Foundation of China (11075166, 11147176)

1) E-mail: lixin@ihep.ac.cn

2) E-mail: changz@ihep.ac.cn
©2013 Chinese Physical Society and the Institute of High Energy Physics of the Chinese Academy of Sciences and the Institute of

Modern Physics of the Chinese Academy of Sciences and IOP Publishing Ltd

123103-1



Chinese Physics C Vol. 37, No. 12 (2013) 123103

ure of MOND.
The local Lorentz symmetry violation implies that

the space structure of a galaxy is not Minkowskian at
large scale, and the relationship between the Tully-Fisher
relation and MOND implies that the space structure of
a galaxy depends on rotational speed. Finsler gravity
based on Finsler geometry involves the above features.
It is natural to assume that the Finsler gravity is a co-
variant formulism of MOND. Finsler geometry [13] as
a natural extension of Riemann geometry involves Rie-
mann geometry as its special case. The length element
of Finsler geometry depends not only on the positions
but also the velocities. Finsler gravity naturally pre-
serves fundamental principles and results of general rela-
tivity. A new geometry (Finsler geometry) involves new
spacetime symmetry. The Lorentz invariance violation
is intimately linked to Finsler geometry. Kostelecky [14]
has studied effective field theories with explicit Lorentz
invariance violation in Finsler spacetime. In this pa-
per, within the covariant geometric framework, we try
to present a covariant formulism of MOND with explicit
Tully-Fisher relation and Lorentz invariance violation.

2 Vacuum field equation in Finsler

spacetime

Instead of defining an inner product structure over
the tangent bundle in Riemann geometry, Finsler geom-
etry is based on the so called Finsler structure F with
the property F (x,λy) = λF (x,y) for all λ > 0, where x

represents position and y≡ dx

dτ
represents velocity. The

Finsler metric is given as [13]

gµν≡
∂

∂yµ

∂
∂yν

(

1

2
F 2

)

. (2)

Finsler geometry has its genesis in integrals of the form∫r

s

F

(

x1,··· ,xn;
dx1

dτ
,··· , dxn

dτ

)

dτ. (3)

The Finsler structure represents the length element of
Finsler space.

The parallel transport has been studied in the frame-
work of Cartan connection [15–17]. The notation of par-
allel transport in Finsler manifold means that the length

F

(

dx

dτ

)

is constant. The geodesic equation for Finsler

manifold is given as [13]

d2xµ

dτ 2
+2Gµ=0, (4)

where

Gµ=
1

4
gµν

(

∂2
F 2

∂xλ∂yν
yλ−∂F 2

∂xν

)

(5)

is called geodesic spray coefficient. Obviously, if F is

Riemannian metric, then

Gµ=
1

2
γ̃µ

νλyνyλ, (6)

where γ̃µ

νλ is the Riemannian Christoffel symbol. Since
the geodesic Eq. (4) is directly derived from the integral
length

L=

∫
F

(

x,
dx

dτ

)

dτ, (7)

the inner product

(
√

gµν

(

x,
dx

dτ

)

dxµ

dτ

dxν

dτ
=F

(

x,
dx

dτ

)

)

of two parallel transported vectors is preserved.
In Finsler manifold, there exists a linear connection –

the Chern connection [18]. It is torsion free and almost
metric-compatible,

Γ α
µν =γα

µν−gαλ

(

Aλµβ

Nβ
ν

F
−Aµνβ

Nβ

λ

F
+Aνλβ

Nβ
µ

F

)

, (8)

where γα
µν is the formal Christoffel symbols of the sec-

ond kind with the same form of Riemannian connec-
tion, Nµ

ν is defined as Nµ
ν ≡ γµ

ναyα−Aµ

νλγλ
αβyαyβ and

Aλµν≡ F

4
∂

∂yλ

∂
∂yµ

∂
∂yν

(F 2) is the Cartan tensor (regarded

as a measurement of deviation from the Riemannian
Manifold). In terms of Chern connection, the curvature
of Finsler space is given as

R λ
κ µν =

δΓ λ
κν

δxµ
−δΓ λ

κµ

δxν
+Γ λ

αµΓ α
κν−Γ λ

ανΓ
α
κµ, (9)

where
δ

δxµ
=

∂
∂xµ

−Nν
µ

∂
∂yν

.

The gravity in Finsler spacetime has been investi-
gated for a long time [19–22]. In this paper, we intro-
duce a vacuum field equation by the way discussed first
by Pirani [23, 24]. In Newton’s theory of gravity, the
equation of motion of a test particle is given as

d2xi

dt2
=−ηij ∂φ

∂xj
, (10)

where φ = φ(x) is the gravitational potential and ηij is
Euclidean metric. For an infinitesimal transformation
xi → xi+εξi(|ε| � 1), the Eq. (10) becomes, up to first
order in ε,

d2xi

dt2
+ε

d2ξi

dt2
=−ηij ∂φ

∂xj
−εηijξk ∂2

φ

∂xj ∂xk
. (11)

Combining the above Eqs. (10) and (11), we obtain

−d2ξi

dt2
=ηijξk ∂2

φ

∂xj ∂xk
≡ξkH i

k. (12)

In Newton’s theory of gravity, the vacuum field equation
is given as H i

i =∇2φ=0. It means that the tensor H i
k is

traceless in Newton’s vacuum.
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In general relativity, the geodesic deviation gives a
similar equation

−D2ξµ

dτ 2
=ξνR̃µ

ν , (13)

where

R̃µ
ν =R̃µ

λ νρ

dxλ

dτ

dxρ

dτ
.

Here, R̃µ

λ νρ is Riemannian curvature tensor, D denotes
the covariant derivative along the curve xµ(τ). The vac-
uum field equation in general relativity gives R̃λ

µ λν = 0

[25]. It implies that the tensor R̃µ
ν is also traceless,

R̃≡R̃µ
µ=0.

In Finsler spacetime, the geodesic deviation gives [13]

−D2ξµ

dτ 2
=ξνRµ

ν , (14)

where Rµ
ν =Rµ

λ νρ

dxλ

dτ

dxρ

dτ
. Here, R µ

λ νρ is Finsler curva-

ture tensor defined in (9), D denotes covariant derivative

Dξµ

Dτ
=

dξµ

dτ
+ξν dxλ

dτ
Γ µ

νλ

(

x,
dx

dτ

)

.

Since the vacuum field equations of Newton’s gravity and
general relativity have similar form, we may assume that
the vacuum field equation in Finsler spacetime holds
a similar requirement as the case of Newton’s gravity
and general relativity. It implies that the tensor Rµ

ν in
Finsler geodesic deviation equation should be traceless,
R ≡Rµ

µ = 0. In fact, we have proved that the analogy
from the geodesic deviation equation is valid at least in
Finsler spacetime of Berwald type [26]. We suppose that
this analogy is still valid in general Finsler spacetime.

It should be noticed that H is called the Ricci scalar,
which is a geometrical invariant. For a tangent plane
Π⊂TxM and a non-zero vector y∈TxM , the flag curva-
ture is defined as

K(Π,y)≡ gλµRµ
νuνuλ

F 2gρθuρuθ−(gσκyσuκ)2
, (15)

where u ∈ Π . The flag curvature is a geometrical in-
variant and a generalization of the sectional curvature in
Riemannian geometry. It is clear that the Ricci scalar R
is the trace of Rµ

ν , which is the predecessor of flag curva-
ture. Therefore, the value of Ricci scalar R is invariant
under the coordinate transformation. Furthermore, the
predecessor of flag curvature could be written in terms
of the geodesic spray coefficient

Rµ
ν =2

∂Gµ

∂xν
−yλ ∂2

Gµ

∂xλ∂yν
+2Gλ ∂2

Gµ

∂yλ∂yν
−∂Gµ

∂yλ

∂Gλ

∂yν
. (16)

Thus, the Ricci scalar R is insensitive to specific con-
nection form. It only depends on the length element F .
The gravitational vacuum field equation R = 0 is uni-
versal in all types of theories of Finsler gravity. Pfeifer

et al. [27] have constructed gravitational dynamics for
Finsler spacetimes in terms of an action integral on the
unit tangent bundle. Their results also show that the
gravitational vacuum field equation in Finsler spacetime
is R=0.

3 The Newtonian limit in Finsler space-

time

It is well known that the Minkowski spacetime is a
trivial solution of Einstein’s vacuum field equation. In
the Finsler spacetime, the trivial solution of Finslerian
vacuum field equation is called locally Minkowski space-
time. A Finsler spacetime is called a locally Minkowshi
spacetime if there is a local coordinate system (xµ), with
induced tangent space coordinates yµ, such that F de-
pends only on y and not on x. Using the formula (16),
one knows obviously that locally Minkowski spacetime is
a solution of the Finslerian vacuum field equation.

In Ref. [28], we supposed that the metric is close to
the locally Minkowski metric ηµν(y),

gµν =ηµν(y)+hµν(x,y), |hµν |�1. (17)

To the first order in h, the geodesic spray coefficient is

Gµ=
1

4
ηµν

(

2
∂hαν

∂xλ
yαyλ−∂hαβ

∂xν
yαyβ

)

. (18)

Then we obtain that the gravitational vacuum field equa-
tion is of the form

ηµν ∂2
hαβ

∂xµ ∂xν
−1

2

∂ηµν

∂yµ

∂2
hαβ

∂xν ∂xλ
yλ+

∂ηµν

∂yµ

∂2
hαν

∂xλ∂xβ
yλ=0, (19)

where the lowering and raising of indices are carried out
by ηµν and its matrix inverse ηµν . To make contact
with Newton’s gravity, we consider the gravitational field
hµν is stationary and the particle moving very slowly
(|yk| � 1). In general relativity, gravitational field h00

corresponds to Newton’s gravitational potential. Here,
we consider that only h00 is the non vanishing compo-
nent of hµν . Then, the non trivial equations of vacuum
field Eq. (19) are given as

ηij ∂2
h00

∂xi∂xj
−1

2

∂ηij

∂yi

∂2
h00

∂xj ∂xk
yk=0, (20)

∂ηµ0

∂yµ

∂2
h00

∂xj ∂xk
yk=0. (21)

In this paper, we consider the deviation from Minkowski
spacetime to be very small, and the quantity

∂ηµν

∂yµ
=−2Āµν

µ /
√

ηαβyαyβ

relates to the Cartan tensor of Finsler metric ηµν which
describes the deviation from Minkowski spacetime. We
will show that the magnitude of deviation is several
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times larger than the Newtonian gravitational potential.
Therefore, the second term of Eqs. (20) and (21) just
provides high order corrections. If we ignore it, then the
vacuum field Eq. (19) could be simplified as

ηij ∂2
h00

∂xi∂xj
=0. (22)

The solution of (22) is given as

h00=
C

R
η00, (R 6=0), (23)

where C is a constant and R2 =−ηijx
ixj . The gravita-

tional theory should reduce to Newton’s gravity, if the
Finsler metric gµν reduces to Riemann metric. Thus,
for a given gravitational source with mass at R=0, the
gravitational field equation is supposed to take the form

ηij ∂2
h00

∂xi ∂xj
=−8πFGρη00, (24)

where ρ is the energy density of gravitational source. In
Finsler spacetime, the space volume of ηµν(y) [13] is dif-
ferent from the one in Euclidean space. We used πF in
(24) to represent the difference, where

πF ≡
3

4

∫
R=1

√
gdx1∧dx2∧dx3 (25)

and g is the determinant of ηij . The solution of (24) is
given as

h0
0=

2GM

R
. (26)

Here, we have used h0
0 to denote the gravitational field

instead of h00. It is due to the fact that η00 6=1 and we
want to obtain the formula (26) which is insensitive to
the spacetime index. The signature of Minkowski space-
time is set to be (+,−,−,−).

In the approximation of Newton’s limit, by making
use of the formula of geodesic spray coefficient (18), the
geodesic Eq. (4) reduces to

d2x0

dτ 2
−η0i

2

∂h00

∂xi

dx0

dτ

dx0

dτ
+η00 ∂h00

∂xj

dxj

dτ

dx0

dτ
= 0, (27)

d2xi

dτ 2
−ηij

2

∂h00

∂xj

dx0

dτ

dx0

dτ
= 0. (28)

The Eq. (27) implies that
dx0

dτ
is a function of h00. Since

η0i is a high order quantity compared to η00 and ηij ,
dx0

dτ
could be treated as a constant in Eq. (28). Then we find
from (28) that

d2xi

dx02 =−GM

R2

xi

R
, (29)

where dx02 = η00dx0dx0. The formula (29) means that
the law of gravity in Finsler spacetime is similar to New-
ton’s gravity. The difference is that space length is Fins-
lerian. It is what we expect from Finslerian gravity,

because the length difference is the major attribute of
Finsler geometry.

It may be expected that the Finsler gravity (29) do-
mains in large scale. The empirical Tully-Fisher relation
[8] between galaxy luminosity and rotational speed im-
plies that the rotational speed of the galaxy has a limi-
tation. It hints that we may consider the space length of
galaxies to be Finslerian

ηij =−δij

(

1−
(

GMa0y
04

/(δmnymyn)2
)2
)

, (30)

where a0 is the constant of MOND. In Finsler space-

time, the speed of a particle is given as vi ≡ dxi

dx0
=

yi

y0
.

The space length of galaxies (30) could be written into
a concise form

R=
√

−ηijxixj =r

√

1−
(

GMa0

v4

)2

, (31)

where r2≡δijx
ixj and v2≡δijv

ivj . By making use of for-
mula (29), we obtain the approximate dynamical equa-
tion in the galaxy system. It is given as

GM

R2
=

v2

R
. (32)

Substituting formula (31) into Eq. (32), we obtain that

GM

r
√

1−(GMa0/v4)
2
=v2. (33)

One could find from (33) that the rotational speed of
galaxies has an asymptotic value

lim
r→∞

v4=GMa0. (34)

The asymptotic speed stems from the Tully-Fisher rela-
tion. The formula (33) could be written into a familiar
form

GM

r2
=

v2

r
µ

(

v2

ra0

)

, (35)

where µ(x) = x/
√

x2+1 is an interpolating function of
MOND. It indicates that the law of gravity (33) in
Finsler spacetime is MOND and the spacetime struc-
ture of MOND is “Tully-Fisher” like (31). It should be
noticed that the formula (33) is given in natural units
(c=1). The term Lg≡GM/c2 corresponds to the typical
galaxy scale where the gravity of the galaxy is domi-
nated. The term L0≡c2/a0≈2πLH≈1029 cm [29], where
LH is the Hubble radius. Thus, the constant term GMa0

in (33) equals the ratio of galaxy scale Lg to cosmologi-
cal scale L0. The law of gravity (33) in Finsler spacetime
hints that there is a connection between MOND and cos-
mology.
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4 Conclusions

In this paper, we presented a Finsler geometry ori-
gin of MOND. We showed that the spacetime structure
of galaxies may be Finslerian (31). The “Tully-Fisher”
like length (31) could be the reason for the empirical
Tully-Fisher relation. The law of gravity in galaxies was
shown as formula (33). It hints that there is a connection
between MOND and cosmology.

The strong and weak gravitational lensing observa-
tions of Bullet Cluster 1E0657-558 [30] could not be ex-
plained well by MOND and Bekenstein’s relativistic ver-
sion of MOND [31]. The surface density Σ-map and the
convergence κ-map of Bullet Cluster 1E0657-558 show
that the center of baryonic matter separates from the
center of gravitational force, and the distribution of grav-

itational force does not possess spherical symmetry. One
should notice that Finsler metric (30) satisfies

ηij(−y)=ηij(y). (36)

Most of the galaxies possess spherical symmetry, so the
length element should satisfy (36). There is a class of
Finsler spacetime that does not satisfy (36). For exam-
ple, the Randers spacetime [32]

F (x,y)=
√

aµνyµyν+bµyµ . (37)

The space structure of the Bullet Cluster may be one of
this class, and its Finslerian gravitational behavior may
account for the observations of the Bullet Cluster.

We would like to thank M. H. Li, S. Wang, Y. G.

Jiang and H. N. Lin for useful discussions.
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