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A dumbbell model with five parameters describing

nuclear fusion or fission *
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Abstract: We propose a five-parameter dumbbell model to describe the fusion and fission processes of massive

nuclei, where the collective variables are: the distance ρ between the center-of-mass of two fusing nuclei, the neck

parameter ν, asymmetry D, two deformation variables β1 and β2. The present model has macroscopic qualitative

expression of polarization and nuclear collision of head to head, sphere to sphere, waist to waist and so on. The

conception of the “projectile eating target” based on open mouth and swallow is proposed to describe the nuclear

fusion process, and our understanding of the probability of fusion and quasi-fission is in agreement with some previous

work. The calculated fission barriers of a lot of compound nuclei are compared with the experimental data.
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1 Introduction

The fusion and fission of massive nuclei have been a
topic of great interest both experimentally and in theory,
the first of all considerations and assumptions is a bet-
ter choice of parametrical surface equation for describ-
ing nuclear deformation in the macroscopic reaction the-
ory. Until now, there have been several ways to describe
the variation of nuclear shape in the fusion and fission
processes, for instance, the two-center model [1–3], the
{c, h, α} parametrization [4], the dinuclear system [5],
the dumbbell model [6] and so on.

In the dinuclear system, the dynamical evolution
from dinucleus to mononucleus is taken into account
through focusing on the exchange and transport of mass
between the target and projectile nuclei [5]; the coupling
between the radial and mass-asymmetry modes is weak
for almost symmetric configuration but it becomes sig-
nificant as the asymmetry increases [7]; the calculations
of quasi-fission product and their distributions in the ki-
netic energy are in agreement with the recent experimen-
tal data of hot fusion reactions leading to super-heavy
nuclei [8]. Forming the same heavy compound nucleus
with different isotopes of the projectile and target ele-
ments allows nuclear structure effects in the dinuclear
system to be disentangled [9]; the moments of inertia of
hyperdeformed states formed in some reactions are cal-

culated, and the optimal conditions for the experimen-
tal identification of such states are proposed [10]. The
two-center parametrization model allows for the shape
variation and continuous transition from one-center to
two-center shapes with a smooth neck [11]; this model
[12, 13] has been developed for describing the splitting
of a deformed parent nucleus into two ellipsoidaly de-
formed fragments. The model of fusion by diffusion is
applied to calculate the fusion probability of massive nu-
clei through a test particle diffusion over the saddle point
[14, 15], the dynamics of nuclear neck growth are studied
by a two-dimensional Langevin equation [16, 17]. How-
ever, calculations have lacked adequate exploration of
the shape parameterization of sufficient dimensionality
to yield features in the potential-energy surface. For this
reason, Moéller used five deformation parameters of the
nucleus to calculate the potential-energy landscapes in
the fission study [18, 19]. The studies on nuclear shape
such as the multidimensional constrained covariant den-
sity functional theory [20] and the Skyrme-Hartree-Fock
(SHF) approach [21] are both well developed. A variety
of results on fission barriers were discussed in terms of
the two approaches.

The previous dumbbell model [6] supposed that the
shape of the two fusing massive nuclei was a sphere and
was successful in the exciting nuclear fission by introduc-
ing random neck rupturing. Nevertheless, it has been
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found from experimental studies that the projectile and
target are deformed before fusion and may be ellipsoid.
This implies that the two fusing systems should collide
with various shapes and patterns. Therefore, we in-
troduce two deformation parameters to generalize the
dumbbell model to a five-parameter model, which takes
into account the nutritious part for a dinuclear system
and diffusion model. We will focus on the second stage
[22] of fusion of massive nuclei and quasi-fission way in
the five-dimensional parameter space.

In this work, we will calculate the deformation poten-
tial energy surface of fusing nuclei and discuss the ways
of passing over the saddle point or quasi-fission of the
system. The paper is organized as follows. In Section 2,
we describe the evolution of the fusing system. In Sec-
tion 3, we propose the conception of a “projectile eating
target” for studying nuclear fusion and quasi-fission; and
compare the numerical results of the fission barrier with
experimental data [23]. Finally, the concluding remarks
are given in Section 4.

2 The five-parameter dumbbell model

The five-parameter dumbbell model describing fu-
sion and fission is an axis-symmetric shape where two
ellipsoid bodies representing the approaching nuclei are
joined by a cylindrical neck. The geometrical shape of
the fusing system is divided into the asymmetric and
symmetric cases.

2.1 Asymmetric fusion system

The scheme of fusing configuration of two massive nu-
clei in the asymmetric case is shown in Fig. 1. The pair
of nuclei are ellipsoid (including spherical), so we can
describe the two nuclei colliding with each other in var-
ious ways such as head to head, sphere to sphere, waist
to waist, and head to waist. The Ps

2(z) in Fig. 1 is the
square of the radius of the section which is perpendicular
to the z axis, where the symmetric axis is the z axis.

Fig. 1. The scheme of configuration of the asym-
metric fusing system.

The nuclear surface equation in the asymmetric case
reads

Ps
2(z)=











b1
2−β1

2z2, z16z6z2

νkz+νg, z26z6z3

b2
2−β2

2[z−ρ(a1+a2)]
2, z36z6z4.

(1)

where k=tanθ is the slope of the external tangent line,
g is the point of intersection between the external tan-
gent line and the vertical axis, z1, z2, z3, and z4 are the
boundaries of the definitional regions. The five dimen-
sionless quantities in the asymmetric case are defined as
follows:

(1) The distance variable ρ =
r

a1+a2

describes the

change in distance between the center-of-mass of the two
fusing nuclei;

(2) The neck variable ν =
tanθ

tanθmax

describes the

change of the neck size connecting two nuclei;

(3) The asymmetry variable D =
V2−V1

V2+V1

is the ratio

of the volumes of the projectile and target nuclei;

(4) The first deformation variable β1 =
b1

a1

is the ra-

tio of the short axis and long axis of the left ellipsoid
nucleus;

(5) The second deformation variable β2 =
b2

a2

is the

ratio of the short axis and long axis of the right ellipsoid
nucleus.

Among all mentioned above, r is the distance between
the center-of-mass of the two nuclei; a1 and a2 are the
half lengths of the two colliding nuclei which are parallel
to the z axis; b1 and b2 are the half lengths of two nuclei
which are perpendicular to the z axis. The above length
variables are all in the unit of the radius R0 of the com-
pound nucleus. V1 and V2 are the volumes of two fusing
nuclei, respectively; θmax is the semi-opening angle be-
tween the z axis and the external tangent line (the dot
line in Fig. 1); θ is the angle between the z axis and the
boundary line of the neck.

The condition of volume conservation must be satis-
fied, namely, the total volume of two fusing nuclei and the
neck region is equal to the volume of the compound nu-
cleus. We deduce the volume conservation in the asym-
metric case:

a3
1[(ku+x)3−(x+kϕ)3]ν2

k
−a3

1(ϕ−2)(1+ϕ)
2

−a3
1β

2
2 [t(ρ−2)+ρ−u](t−u+ρ+tρ)2=4. (2)

In Eq. (2), x, ϕ, and u are the transitional variables
described by the present five-parameter model and a1.

The ranges of five deformation parameters and the
corresponding nuclear shapes are as follows:

1) The variation range of ρ:

014102-2



Chinese Physics C Vol. 37, No. 1 (2013) 014102

(1) ρ=0 denotes a compound or monomer nucleus;
(2) 0<ρ<1 denotes two nuclei intersecting;
(3) ρ=1 denotes two nuclei touching;
(4) ρ>1 denotes two nuclei separating.
2) The variation range of ν:
0<ν<1 means that the neck size changes from zero

to the maximum, where the maximum is that the blue
dash line and the red line coincide.

3) The variation range of D:

Fig. 2. A series of sectional view of nuclear fusion
in the asymmetric case within various ways. (a)
represents head to head, and (b) represents waist
to waist.

−1 < D < 1 denotes two nuclei changing from the
right nucleus larger than the left one to the right nucleus
smaller than the left one.

4) The variation ranges of β1 and β2:
β1 and β2 have the same variation range, and both

describe the deformation of the fusing nuclei. So we can
consider nuclear fusion in various ways.

(1) β1 < 1 and β2 < 1 represent two nuclei colliding
head to head;

(2) β1 > 1 and β2 > 1 represent two nuclei colliding
waist to waist;

(3) β1 = 1 and β2 = 1 represent two nuclei colliding
sphere to sphere;

(4) β1 < 1 and β2 > 1 or β1 > 1 and β2 < 1 represent
two nuclei colliding head to waist or waist to head.

In Fig. 2, we show the sections of the system in the
asymmetric case which is deduced by the nuclear surface
equation.

2.2 Symmetric fusion system

The scheme of configuration of nuclear fusion in the
completely symmetric case is shown in Fig. 3. In this
case, the volumes and shapes of the two nuclei are iden-
tical (D = 0 and β1 = β2 = β). The five dimensionless
parameters reduce to three. The nuclear surface equa-
tion reads

Fig. 3. The configuration of the symmetric fusing system.

Ps
2(z)=
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(3)
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The three parameters {ρ,ν,β} can be determined as
follows:

(1) The variable ρ=
r

2a
describes the variation of the

distance between the center-of-mass of the two nuclei;

(2) The parameter ν =
y

a
describes the variation of

the neck connecting the two nuclei;

(3) The parameters β =
b

a
= β1 = β2 describe the

shapes of the two nuclei identically.
Among the above expressions, D=0 means that the

volumes of the two nuclei are equal (reduced into one
parameter); r is the distance between the center-of-mass
of two nuclei; a is the half length of each nucleus which
is parallel with the z axis; b is the half length of each
nucleus which is perpendicular to the z axis; y is the half
width of the neck. The above length parameters are also
all in a unit of the radius R0 of the formed compound
nucleus. In this case, the equal-volume condition is also
satisfied:

4a(b3+b2
√

b2−y2−y2
√

b2−y2)

b
+3ry2=4. (4)

The ranges of three deformation parameters and the
corresponding shapes of the compound nucleus are sim-
ilar to the asymmetric fusion system, however, there are
two small differences:

Fig. 4. A series of sectional views of nuclear fu-
sion in the completely symmetric case in various
ways. (a) represents head to head and (b) repre-
sents waist to waist.

(1) νmax=β;
(2) There is only one deformation variable β, which

means that the two nuclei change their shapes identically.
In Fig. 4, we show the sections of nuclear fusion in the

completely symmetric case which is described by Eq. (3).
In Fig. 5, we plot the stereopictures of nuclear fusion in
both cases which are described by Eqs. (1) and (3).

Fig. 5. A series of stereopictures of nuclear fusion
in various ways. (a) represents the asymmetric
system and (b) represents the symmetric system.

3 The potential energy surface

The potential energy surface is extremely important
in nuclear physics. It can be determined by physical
variables and further governs the variation of the phys-
ical variables by the master equations. Further study
is based on the potential energy surface. The calculated
results for the quasifission mass yields and the excitation
function of the evaporation residue cross sections to form
elements are shown to be agreeable with the measured
or available data [24, 25].

The liquid-drop model [26, 27] has been successful in
a series of aspects in explaining a nuclear reaction, so
we use it to calculate the deformation potential energy
surface of two fusing massive nuclei. For a compound
nucleus, the spherical nucleus has the lowest energy, so
the energy of the spherical compound nucleus is used as
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the basic standard. The deformation potential energy is
given by

E(q1,q2,··· ,qn)=Es−Es0+Ec−Ec0

=

[(

Es

Es0

−1

)

+2χ

(

Ec

Ec0

−1

)]

Es0.

(5)

In Eq. (5), qi(i=1,2,···,5) represent the correspond-
ing deformation parameters; Es0 and Ec0 are the surface
energy and the Coulomb energy of the spherical nuclei;
Es and Ec are the surface energy and the Coulomb energy

of the deformed nucleus, respectively; χ=
Ec0

2Es0

is the fis-

sionable parameter. According to the Myers-Swiatecki
formula [28–30], we have

Es0=4πR0
2σ=17.944

[

1−1.7826

(

N−Z

A

)]

A
2

3 . (6a)

Ec0=
3

5

Z2e2

R0

=0.7053
Z2

A
1

3

. (6b)

Bs=
Es

Es0

=
S

4πR0
2 =

1

4

∫
b

a

√

4Ps
2+

(

∂Ps
2(z)

∂z

)2

dz. (6c)

Bc=
Ec

Ec0

=
1

2
ρ0

2

∫∫
1

|~r1−~r2|
d~r1d~r2

=
15

4

∫
b

a

dz

∫
z

a

dz′

∫
π

0

dφ
Ps

2(z)Ps
2(z′)sin2φ

z−z′+f
. (6d)

f=
√

(z−z′)2+Ps
2(z)+Ps

2(z′)−2Ps(z)Ps(z′)cosφ.

(6e)

In Eq. (6), σ is the surface energy of the unit area of
the nuclear surface; R0, A, Z, and N are the radius of the
compound nucleus, mass number, protons number, and
neutrons number, respectively; ρ0 is the charge density
of the nucleus, and S is the area of nuclear surface.

For nuclear fusion, when the compound nucleus is
formed from heavy-ion reaction, there will be angular
momentums. Therefore, rotational energy is needed in
the calculation of deformation potential energy of the
rotational nucleus. The potential energy can be deter-
mined as follows:

E(q1,q2,...,qn)=

[(

Es

Es0

−1

)

+2χ

(

Ec

Ec0

−1

)]

Es0+Er.

(7)

Er=
~

2

[L(L+1)−K2]

I⊥
+

~

2

[K2]

I‖
. (8a)

I‖=
1

2
πρm

∫
b

a

Ps
4(z)dz. (8b)

I⊥=πρm

∫
b

a

(

1

4
Ps

4(z)+Ps
2(z)z2

)

dz. (8c)

In Eqs. (7) and (8), Er is the rotational energy; L~

is the total angular momentum of the compound nucleus
and K~ is its shadow in the z axis; I‖ and I⊥ are the ro-
tational inertia of parallel and are perpendicular to the
z axis, respectively.

We conduct a series of calculations on the deforma-
tion potential energy at zero angular momentum and
mostly take 210Po as a product compound nucleus for
example.

3.1 The process of “open and swallow”

In our model, the spherical area in the ground state
corresponds to ρ< (a1−a2) in the asymmetric case and
ρ = 0 in the symmetric case. Without microscopic cor-
rection, the spherical state is not a point but an area,
and the borderline of the forbidden area on the potential
energy surface is not smooth. However, this does not
affect our discussion and may be verified in our further
work.

In Fig. 6, we discuss nuclear fusion due to “open
mouth and swallow” from the viewpoint of the deforma-
tion potential energy surface, and hope to understand
qualitatively the fusing path and energy variation of the
nuclear system in three-dimensional spatial graphs. We
separate nuclear fusion into three processes:

(1) Ready stage: two nuclei overcome the Bass bar-
rier with the push of external energy along Path 1 to
centrally collide without a neck and reach the touched
state. It should be noticed that the potential energy of
the fusing system in the touched state is higher than that
of the conditional saddle point.

(2) Separate again stage: on one hand, two nuclei
may separate along Path 2 without a neck.

(3) Open mouth stage: on the other hand, two nuclei
slip into the saddle point along Path 3. A rapid initial
growth of a neck brings the reaction system from a dinu-
clear regime to a mononuclear regime. The energy of the
system changes from radial kinetic energy along collision
direction into deformation energy of the growth of the
neck.

(4) Quasi-fission stage: the neck of a nuclear system
may fracture randomly and split into two nuclei again
along Path 4.

(5) Swallow stage: the two fusing nuclei will swallow
each other and form a compound nucleus along Path 5.
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Fig. 6. (color online) Three-dimensional potential
energy surface in the symmetric case. (a) repre-
sents two nuclei colliding head to head, (b) repre-
sents two nuclei colliding waist to waist.

Eventually, the excited compound nucleus will evap-
orate x neutrons in the cooling process or fission. In
Fig. 6, we investigate fusion with “head to head” and
“waist to waist” collisions of two massive nuclei. Obvi-
ously, the barrier in the “head to head” fusion is lower
than that in the “waist to waist” case. In other words,
the system can enter into the mononuclear regime with
lower external energy in the “head to head” case but fis-
sions again easily, because the fusing nuclei can open a
mouth easily. The compound nucleus will be more stable
due to swallowing all and open a mouth with difficultly
when the system enters into the ground state with higher
external energy. This is in agreement with the previous
study [31, 32] which shows that collisions with the tips
of the deformed target nuclei lead to quasi-fission, while
collisions with the sides result in fusion-fission with con-
clusive evidence.

Figure 7 shows the potential energy surface of super-
heavy nucleus Z =110 at D=0, the saddle point is not
very obvious and the energies of the ground state and the
touched state are higher than those of the saddle point.

The potential energy between the ground state and the
distant state has a steep slope, so the corresponding com-
pound nucleus can split into two equal pieces extremely
easily along the red path of this figure. It states that
super-heavy nucleus tends to quasi-fission. On the con-
trary, the small projectile can “open a big mouth to eat”
the large target breezily. In other words, the probability
of nuclear fusion may be higher with extremely high ex-
ternal energy at D =0.9 due to the higher barrier from
the ground state to the conditional saddle point. The
above discussion can explain why nuclear fusion needs
large asymmetry in the experiments.

Fig. 7. (color online) The stereopictures of the po-
tential energy of the nucleus Z =110 at D=0 or
D=0.9.

3.2 The calculated fission barrier

In order to test the rationality of our model, we con-
duct a series of calculations on the potential energy sur-
face of several compound nuclei and find the fission barri-
ers. In Fig. 8, we compare the calculated fission barriers
as a function of χ with experimental data. It is seen
that the fission barrier of U isotopes increases monoton-
ically with neutron number N . The trend of the calcu-
lated barrier is in good agreement with the experimental
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Fig. 8. Picture (a) is that the fission barriers of some nuclei vary with fissionable parameter χ. Picture (b) is that
the fission barrier of U isotopes varies with the neutron number N .

results. The reason for a difference is that the present
model is still a macroscopic classical one and lacks the
microscopic shell correction which may be verified in the
future. The calculated value of the fission barrier height
becomes gradually higher from “head to head” to “waist
to waist”. It is noticed that when the number of proton
Z is larger than 90, the saddle point becomes not very
obvious in our five-parameter dumbbell model.

4 Conclusion

We have proposed a five-parameter dumbbell model

to study the fusion and fission processes of massive nu-
clei. With the help of two deformation variables β1 and
β2, we can describe nuclear collisions in various ways
such as head to head, sphere to sphere, waist to waist
and so on. We have suggested a conception of “open
mouth and swallow” and “projectile eating target” to
understand alternatively the dynamics of nuclear fusion
and quasi-fission, which is consistent with some previ-
ous studies to some extent. Finally, we have calculated
the fission barriers of a lot of compound nuclei and com-
pared the theoretical results with the experimental data
and shown that the trends of each agree well.
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