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Critical behavior of the XY spin chain with three-site

interaction studied in terms of the Loschmidt echo *
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Abstract: The effect of the three-site interaction (α) on the critical behaviors of the XY spin chain is studied

in terms of the Loschmidt echo (LE). The critical lines can be shifted by α, and the anisotropy parameter of

the XY chain has no effect on the critical lines. The scaling behaviors of the LE reveal that the dynamical

behaviors of the LE are reliable for characterizing quantum phase transition (QPT).
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1 Introduction

Quantum phase transition (QPT), which is dif-

ferent from traditional thermodynamics phase tran-

sition, takes place at zero temperature and is induced

by the variation in an internal parameter to a critical

value [1, 2]. Traditionally, order parameter and sym-

metry breaking with the Landau-Ginzburg paradigm

are used to describe QPT [3, 4]. Recently, many

new perspectives have been put forward to charac-

terize QPT [5–12]. Wu et al. addressed the fact

that the non-analyticities in bipartite entanglement

can characterize QPT [5]. Zanardi and Paunkovic

characterized QPT in terms of the overlap function

between two ground states obtained from two differ-

ent external parameter values [6]. Additionally, fi-

delity or fidelity susceptibility (FS) [7–9], pair-wise

quantum discord [10], the Berry phase [11, 12], the

matrix product state [13] and the photon bunching

effect [14] have also shown a close relationship with

QPT.

Quan et al. found that the Loschmidt echo (LE)

of a coupled system, which consists of a two-level sys-

tem and the surrounding system modeled as an Ising

spin chain in a transverse field, presented a deep val-

ley at the critical point and was invariant at the crit-

ical point under the scaling transformation [15]. Sub-

sequently, the role of the LE in detecting QPT has

also been revealed in many other systems, including

the Dicke model [16], the Bose-Einstein condensate

model [17, 18], XY and XXZ spin models [19, 20],

and so on. In particular, the LE was directly used to

detect the critical points in the Ising model [21]. All

these studies have shown that the LE is powerful in

studying QPT.

Quantum spin chains play a fundamental role in

studying many-body systems. For instance, entangle-

ment in general and in spin chains has attracted much

attention [22–24]. QPT in spin chains is also studied

widely [7, 9, 10]. The three-site interaction is always

present in a real spin system [25–27]. For example,

the three-site interaction is helpful in describing the

magnetic properties of solid 3He [26]. In particular,

the general three-site interaction [28] and four-site in-

teraction [29] have been successfully demonstrated in

experiments recently. Here, the XY spin chain with

three-site interaction is selected and the effect of the

three-site interaction on the critical behaviors is stud-

ied in terms of the LE.

2 The general formalism

We choose an environmental spin chain described

by an XY spin chain with the XZX +Y ZY type of

three-site interaction in a transverse magnetic field.
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A central spin is transversely coupled to the environ-

mental spin chain. The total Hamiltonian H is

H = µSz +νSx +J
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E +HI, (1)

where, HS, Hλ
E and HI are the Hamiltonians of the

central spin, the environmental spin chain and their

interaction, respectively; µ and ν are dimensionless

constants; N is the size of the environmental spin

chain; J is the isotropic XY exchange interaction;

J∗ is the three-site interaction strength; and δ is the

strength of the coupling between the central spin and

the environmental spin chain. As usual, spin opera-

tors Sx
j , Sy

j and Sz
j describe the environmental spin

and Sz describes the central spin; λ is the intensity

of the magnetic field; and γ is the anisotropy in the

in-plane interaction of the environmental spin chain.

It is assumed that the central spin is initially in the

superposition state of the ground and excited states.

In this case, the evolution of the environmental spin

chain is driven by the two different effective Hamilto-

nians, Hλ±g

E , which are given by the replacement of

λ in Hλ
E with λ±g and g=δcosθ/N with tanθ = ν/µ.

At the same time, the environmental spin chain is as-

sumed to be prepared initially in the ground state of

Hλ−g

E . Then, the LE obeys the following expression:

LE(t) =
M
∏

k=1

LEk(t) =
M
∏

k=1

[1−sin2(2Φk)sin2(Λλ+g

k t)].

(2)

Here, k=1, 2, · · ·, M (M =N/2); t is evolution time;

Φk=(θλ+g

k −θλ−g

k )/2 and θλ±g

k =arctan [−γsin(xk)/(λ±

g+cos(xk)− αcos(2xk))], in which α = J∗/J is the

strength of the XZX+Y ZY type of three-site inter-

action in units of J and xk=2πk/N ; and Λλ±g

k =[(λ±

g+cos(xk) − αcos(2xk))
2+(γsin(xk))2]0.5 are energy

spectra of the effective Hamiltonian Hλ±g

E . The de-

duction of the LE expression has been described in

our previous work in detail [30]. In the following, we

will discuss the features of the LE analytically based

on Eq. (2).

Since each factor LEk(t) in Eq. (2) is less than

unity, one can expect the LE(t) to decrease to zero in

the large N limit under some reasonable conditions.

For this purpose, we make a heuristic analysis of the

features of the LE(t) according to the method re-

ported in Ref. [15]. By introducing a cutoff frequency

Kc, we define the partial product for the LE(t) as fol-

lows

LEc ≡

Kc
∏

k=1

LEk > LE(t). (3)

The corresponding partial sum can be readily ob-

tained as S(t)=lnLEc = −
∑Kc

k=1
|lnLEk|. For small

k and large N , we have Λλ±g

k ≈ |λ± g + 1−α| and

sin(2Φk) ≈ (−4πγgk)/N (λ− g+1−α)(λ + g+1−α).

As a result, if N is large enough and k is small, the

approximation of S(t) can be obtained as

S(t)≈−
4E(Kc)γ

2g2 sin2(|λ±g+1−α| t)

(λ−g+1−α)2(λ+g+1−α)2
, (4)

where, E(Kc) = 4π
2Kc(Kc +1)(2Kc +1)/(6N 2). In

the weak coupling regime g � 1, when λ → −1+α,

we have

LEc(t)≈ exp(−ηt2), (5)

where, η = 4E(Kc)γ
2g4/(λ−g+1−α)2(λ+g+1−α)2.

One can see from Eq. (5) that when N is large

enough and λ is adjusted to the critical value of

−1+α, the LEc(t) will decay exceptionally in the

second power of time. Note that LE(t) is less than

LEc(t). It can be expected that the LE(t) has similar

behaviors.

In general, in order to determine the phase tran-

sition regions for a finite size system, one needs to

do the scaling transformation. Here, we investigate

the properties of the LE in the vicinity of QPT

under the scaling transformation. From Eq. (2),

one can notice that only the LE′

ks deviating promi-

nently from unity has a remarkable effect on the

shape and amplitude of the LE. And so the coeffi-

cients sin(2Φk)′s in these LE′

ks should considerably be

nonzero. So we check the values of sin(2Φk). For this

purpose, we introduce the frequency kλ±g
c and make

∣

∣ελ±g

kc

∣

∣ =
∣

∣λ±g+cos(2πkλ±g

kc

/N)−αcos(4πkλ±g

kc

/N)
∣

∣

as small as possible [31]. For the case of small g and

in the vicinity of QPT, one can see that kλ±g
c � M .

We can rewrite the coefficient sin(2Φk) as follows

sin(2Φk) =
−2γg sin(2πk/N)

Λλ+g

k Λλ−g

k

. (6)

In order to make Eq. (6) be considerably nonzero,

the k in Eq. (6) should be close to kλ+g
c and kλ−g

c ,

which makes the value of γsin(2πk/N) comparable

with ελ+g

kc

and ελ−g

kc

. For the small g, the k can ap-

proach kλ+g
c and kλ−g

c at the same time. Because of

kλ±g
c � M , sin(2πk/N) is a small value when k is

approaching kλ+g
c and kλ−g

c . Under these conditions,

one can obtain

Λλ+g

k = Λλ−g

k ≈
√

g2 +4γ2
π

2k2/N 2. (7)



No. 6
LIAN Han-Li: Critical behavior of the XY spin chain

with three-site interaction studied in terms of the Loschmidt echo 481

Combining Eq. (6) and Eq. (7), one can find that the

transformation γ/N → τγ/N and g → τg leads to

Λλ+g

k → τΛλ+g

k and Λλ−g

k → τΛλ−g

k , which makes the

coefficient sin(2Φk) remain invariant. Here, τ is the

scaling factor. So, the LE is invariant in the vicinity

of QPT under the transformation t→ t/τ .

In order to further manifest the quantum critical-

ity of the XY spin chain with three-site interaction,

we resort to the numerical calculation to characterize

the features of the LE in the following sections.

3 Results and discussion

As is well known, in the space of parameters λ

and γ, the XY spin chain without the three-site in-

teraction (for α=0) exhibits two critical lines λ =±1

as γ 6=0. Given the two critical lines, we discuss the

effect of the three-site interaction on the critical be-

haviors by using the dynamical behavior of the LE

in the following.

The changes in LE as functions of α and λ at a

given evolution time t=20 are shown in Fig. 1(a), and

the corresponding contour map is also plotted. It is

found that the dynamical behavior of the LE depends

on α and λ values. There exist two anomaly lines,

|λ−α|=1. As the values of α and λ are away from

the anomaly lines, the LE is characterized by local

oscillatory behavior. While the values of α and λ are

near the anomaly lines, an obvious decay appears and

the LE presents a deep valley. It is well known that

for the pure XY spin chain, corresponding to α=0

in our case, an obvious decay following a deep valley

appears as λ approaches the critical lines λ =±1 [19].

By considering the three-site interaction, i.e., α 6=0,

the positions of the deep valleys shift from |λ|=1 to

|λ−α|=1. Fig. 1(b) shows the dynamical behavior

of the LE as a function of λ for the given typical

three-site interactions. Here, the typical values of α

are given as 0, 0.5 and 1.0, respectively. The corre-

sponding anomaly points are λ =−1 and 1, λ =−0.5

and 1.5 and λ=0 and 2.0, respectively. The anomaly

behaviors characterized by the deep valley are always

closely associated with the QPT of the environmen-

tal spin chain [15]. After introducing the three-site

interaction, the anomaly region of the XY spin chain

is redistributed. Similar anomaly regions were also

reported in studying the QPT of an XY spin chain

with three-site interaction using the FS approach [9].

The effects of the anisotropy parameter γ on the

LE are shown in Fig. 2. The LE as functions of

α and γ for the typical value of λ=0.5 is shown in

Fig. 1. (a) LE as functions of α and λ, and the

corresponding contour map, is plotted. (b)

LE as a function of λ in the case of α=0.0

(dashed line), 0.5 (solid line) and 1.0 (dot-

ted line), respectively. Here, N=1000, γ=1.0

(Ising model), g=0.01 (weak coupling),t=20.

Fig. 2(a). It is easy to see that for the special case of

γ=0, the LE always keeps unity, which can be seen

from Eq. (2). While for the case of γ 6=0, the LE

presents the deep valleys along the lines α = −0.5

and 1.5. The variation in γ cannot change the po-

sitions of the deep valleys. For the typical value of

α=0.5, the variation in the LE as functions of λ and

γ is shown in Fig. 2(b). Similarly, the positions of

the deep valleys along λ = −0.5 and λ=1.5 do not

shift with changing γ values. The results demonstrate

that the anisotropy parameter γ has no effect on the

anomaly lines |λ − α|=1 characterized by the deep

valleys.

The scaling transformation of the LE is analyzed

in the following. The exact numerical results of the

LE for an XY spin chain with α=1 under the scaling

transformation at the anomaly point λ=2.0 is shown

in Fig. 3. The values of the system parameters in

Fig. 3(a) are γ=1.0 and g=0.01 with N=50, 100, 200
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Fig. 2. (a) LE as functions of α and γ for the case of λ=0.5; (b) LE as functions of λ and γ for the case of

α=0.5. Here, N=1000, g=0.01, t=20.

Fig. 3. The scaling behaviors of the LE at the critical point λ=2.0. The values of the system parameters are

(a) γ=1.0, g=0.01, N=50, 100, 200, 300; (b) γ=1.0, g=0.001, N=500, 1000, 2000, 3000; (c) γ=0.5, g=0.001,

N=250, 500, 1000, 1500; (d) γ=0.8, g=0.001, N=400, 800, 1600, 2400.

and 300, respectively. Fig. 3(b) shows the time evo-

lution of the LE at the anomaly point λ=2.0 after

the transformation t→ t/τ , γ/N → τγ/N and g→ τg

with τ=0.1 and γ=1.0. Clearly, the shape of the LE

during its time evolution is invariant under the scaling

transformation at the anomaly point λ=2.0. In order

to explore the effect of anisotropy parameter γ, the

values of γ are changed to γ=0.5 and γ=0.8 during

the scaling transformation. As shown in Fig. 3(c)–

(d), a similar phenomenon is observed, i.e., during

the time evolution, the shape of the LE is unchanged

under scaling transformation at the anomaly point

λ=2.0. The numerical results are in accordance with

the theoretical analyses. For the anomaly point λ=0,

the scaling behaviors are similar to those at λ=2.0

(not shown here). After changing α, similar scaling
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behaviors are found. Therefore, it is reasonable to

expect that the anomaly region characterized by the

deep valley of the LE should be the phase transition

region of the XY spin chain with three-site interac-

tion and γ cannot change the phase transition region.

By changing the positions of the minimum values

of the LE with different spin size N , more informa-

tion can be obtained. Fig. 4 shows the variation in LE

with changing λ for the XY spin chain with α=0.5

and different spin chain size N . There is a dip in

each LE-λ curve and the depth of the dip increases

with increasing N . With increasing N , the accurate

positions of the dips (λm) shift to the critical value

gradually along the positive direction of the λ axis,

i.e., λm approaches λ1 =−0.5 in Fig. 4(a) and λ2=1.5

in Fig. 4(b), respectively. The insets in Fig. 4 show

the fitting curves ln(λc−λm)∼ln(N). Here, λc denotes

λ1 and λ2, respectively. The results demonstrate that

λm approaches λ1 = −0.5 in the way of λm=λ1(1−

const N−1.213), and λm approaches λ2=1.5 in the way

of λm=λ2(1−const N−1.172). In the thermodynamic

limit, N →∞, λm converges towards the critical val-

ues λ1 =−0.5 and λ2=1.5. On the other hand, from

the fitting curves we can see that the convergence

rate is different. For the pure XY spin chain, i.e.,

α=0, we find that the rate approaching the critical

value λc=1 is almost the same as that approaching

λc = −1. It can be expected that the symmetry of

the dynamical behavior for the XY spin chain may

be broken after introducing the three-site interaction.

As the anisotropic parameter changes from γ=0.5 to

γ=1.0, the LE with α=0.5 always converges towards

λ1 =−0.5 and λ2=1.5 with increasing spin chain size,

as shown in Fig. 4(c). The XY spin chain with differ-

ent α values shows similar characteristics. Thus, the

QPT of the XY spin chain with three-site interaction

is reflected faithfully by the dynamical behaviors of

the LE.

Fig. 4. LE as a function of λ for γ=0.5 with different N in the neighborhood of the critical values λc = λ1 =

−0.5 (a) and λc = λ2=1.5 (b). The insets show the fitting curves ln (λc−λm)∼ln(N). (c) LE as a function

of λ for γ=1.0 with different N . Here, α=0.5, g=0.01, t=10.
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4 Conclusions

The effect of the three-site interaction on the crit-

ical behaviors of the XY spin chain is explored in

terms of the LE. After introducing the three-site in-

teraction, the critical lines |λ|=1 shift to |λ−α|=1.

The anisotropy parameter has no effect on the critical

lines. The QPT of the XY spin chain with three-site

interaction can be well characterized by the LE.
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