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Expanding the thermodynamical potential and

analysis of the possible phase diagram of

deconfinement in the FL model *
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Abstract: Deconfinement phase transition is studied in the FL model at finite temperature and chemical

potential. At MFT approximation, phase transition can only be first order in the whole µ-T phase plane.

Using a Landau expansion, we further study the phase transition order and the possible phase diagram of

deconfinement. We discuss the possibilities of second order phase transitions in the FL model. From our

analysis, if the cubic term in the Landau expansion could be cancelled by the higher order fluctuations, second

order phase transition may occur. By an ansatz of the Landau parameters, we obtain a possible phase diagram

with both the first and second order phase transitions, including the tri-critical point which is similar to that

of the chiral phase transition.
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1 Introduction

It is generally believed that at sufficiently high

temperatures and densities, there is a QCD phase

transition from normal nuclear matter to QGP [1, 2].

Theoretically, there are two kinds of phase transi-

tions associated with different symmetries for two

opposite quark mass limits. For Nf = 2 + 1 mass-

less quark flavors, the QCD lagrangian posses a chi-

ral symmetry SU(Nf)R ×SU(Nf)L, which is associ-

ated with the chiral phase transition. In the heavy

quark limit, QCD reduces to a pure SU(Nc) gauge

theory which is invariant under a global Z(Nc) center

symmetry. This symmetry is associated with decon-

finement phase transition. The orders of these phase

transitions have been studied extensively [3–5], and

still remain an interesting problem [6–9]. For chiral

phase transition at finite temperature in the chiral

limit, the quark-antiquark condensate 〈q̄RqL〉 serves

as a good order parameter. The order of the phase

transition depends on the quark flavors. For Nf = 3

massless quark flavors it is a first order phase tran-

sition, and for Nf = 2 massless quark flavors it is

a second order phase transition. At finite densities,

chiral phase transition has been studied by many ef-

fective models [10–12]. It is generally regarded that

at high densities it is a first order phase transition.

In the µ-T phase diagram of chiral phase transition,

from the first order phase transition to the second

order phase transition there exists a tri-critical point

(TCP). For deconfinement phase transition, this does

not have good order parameter, except for the infinite

quark mass limit at which the Polyakov loop serves

as an order parameter [13, 14]. In recent studies, the

Polyakov loop has been combined into chiral models

such as the Nambu-Jona-Lasinio model [15, 16] and

the linear sigma model [17–19], which allows us to in-

vestigate deconfinement phase transition within the

chiral models. Though the Polyakov loop is not a

good order parameter, it still serves as an indicator

of a rapid crossover towards deconfinement. As we

know in Landau theory, for the study of phase tran-

sition and transition order, one should find a good

order parameter. Once it is identified, the thermody-
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namic functions could be expanded over this order pa-

rameter and the transition order could be well stud-

ied. For deconfinement phase transition, besides the

Polyakov loop, one can also search for other proper

order parameters in the effective field models. In ear-

lier studies of deconfinement, bag models have often

been used to investigate the confinement mechanics

and thermodynamics of deconfinement phase transi-

tion. In this paper, we use the effective bag model

to study deconfinement phase transition, and mainly

focus on the study of the transition order and the pos-

sible phase diagram of the deconfinement, especially

the possible influence of fluctuations on the phase di-

agram.

The model we use here is the Friedberg-Lee (FL)

soliton bag model. The FL model has been widely

discussed in the past few decades [20–22]. It has been

very successful in describing, phenomenologically, the

static properties of hadrons and their behaviors at low

energy. The model consists of quark fields interacting

with a phenomenological scalar field σ. The σ field

is introduced to describe the complicated nonpertur-

bative features of QCD vacuum. It naturally gives

a color confinement mechanism in QCD theory. The

model has also been extended to finite temperatures

and densities to study deconfinement phase transition

[23–27]. Here we will try to identify the proper or-

der parameter in this model and make an analysis of

deconfinement phase transition.

The organization of this paper is as follows: in

Section 2 we give a brief introduction to the FL

model. The thermodynamic potential is derived and

deconfinement phase transition is discussed at fi-

nite temperatures and densities at mean field theory

(MFT) approximation. In Section 3, we make a Lan-

dau expansion of the thermodynamic potential. In

this way the transition order is studied by analyzing

the Landau coefficients. By an ansatz of Landau co-

efficients, we discuss the possible phase diagram of

deconfinement in the FL model. The last section is

the summary.

2 Thermodynamic potential and de-

confinement phase transition in the

FL model at MFT

We start from the Lagrangian of the FL model,

L= ψ̄(iγµ ∂µ−gσ)ψ+
1

2
(∂µσ)(∂µ

σ)−U(σ), (1)

where

U(σ) =
1

2!
aσ2 +

1

3!
bσ3 +

1

4!
cσ4 +B. (2)

ψ represents the quark field and σ denotes the phe-

nomenological scalar field. a, b, c, g and B are the

constants, which are generally fitted in with the pro-

duction of the properties of hadrons appropriately at

zero temperature. We shift the σ field as σ→ σ̄+σ′,

where σ̄ and σ′ are the vacuum expectation value and

the fluctuation of the σ field, respectively. Then the

lagrangian becomes

Leff = ψ̄(iγµ ∂µ−mq)ψ+
1

2
(∂µσ

′)(∂µ
σ′)

−1

2
m2

σσ
′2−U(σ̄), (3)

where

U(σ̄) =
1

2!
aσ̄2 +

1

3!
bσ̄3 +

1

4!
cσ̄4 +B. (4)

mq = gσ̄ and m2
σ = a+ bσ̄ + 1

2
cσ̄2 are the effective

masses of the quark and σ fields, respectively. The

interactions associated with the fluctuation σ′, such

as σ′3, σ′4 and ψ̄σ′ψ, are neglected in the MFT ap-

proximation.

According to finite temperature field theory, the

partition function is

Z=

∫
[dψ̄][dψ][dσ′] exp

[∫β

0

dτ

∫
d3x(Leff +µψ

†ψ)

]

,

(5)

where µ is the chemical potential of the quarks.

Completing the integration in partition function Z,

together with the thermodynamic potential Ω =

−T lnZ, at mean field level, we could obtain

Ω = U(σ̄)+
1

β

∫
d3p

(2π)3
ln(1−e−βEσ)

−γ
β

∫
d3p

(2π)3
[

ln(1+e−β(Eq−µ))

+ln(1+e−β(Eq+µ))
]

, (6)

where β is the inverse of the temperature T and γ is a

degenerate factor that γ= 2(spin)×2(flavor)×3(color).

In addition, Eσ =
√

~p 2 +m2
σ and Eq =

√

~p 2 +m2
q.

In our calculation, the parameters are chosen to

be a = 17.7 fm−2, b = −1457.4 fm−1, c = 20000,

g = 12.16. The effective mass of the σ field is fixed

at mσ=550 MeV [25]. Then one could plot Ω ver-

sus σ̄ for different T , as shown in Fig. 1. At zero

temperature, where Ω=U(σ̄), there are two minima

of the thermodynamic potential: one corresponds to

the perturbative vacuum at σ̄ = 0, and another cor-

responds to the physical vacuum at σ̄ = σv . The

system is stabled at the physical vacuum at σ̄ = σv.

It is well known that at this time the quarks are con-

fined in a soliton bag and the system is in a hadronic
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phase. With the temperature increased, the physical

vacuum σ̄= σv is lifted up, while the quarks are still

confined until the two vacuums degenerate. At this

time, the deconfinement phase transition occurs and

the phase transition temperature is T = Tc. After

that, the system is stabled at the perturbative vac-

uum σ̄= 0, where the quarks are deconfined and the

system is in a deconfined phase. This is a first order

phase transition.

Fig. 1. The thermodynamical potentials for dif-

ferent temperatures and zero chemical poten-

tial: T0=0 MeV, T1=100 MeV, Tc=121 MeV

and T2=130 MeV.

One can also plot Ω versus σ̄ at different µ for

T=50 MeV, as shown in Fig. 2. The deconfinement

phase transition takes place at µ=µc, where the two

vacuums degenerate. The analysis of deconfinement

phase transition at finite chemical potential is similar

to that at finite temperature.

Fig. 2. The thermodynamical potentials for

different chemical potentials and fixed tem-

perature at T=50 MeV: µ1=100 MeV, µ2=

200 MeV, µc=255 MeV and µ3=300 MeV.

One can then obtain the µ-T phase diagram as

shown in Fig. 3. In the whole µ-T phase plane, the

transition is first order.

Fig. 3. The µ-T phase diagram of deconfine-

ment at MFT in the FL model.

3 Landau expansion and the possible

phase diagram of the deconfinement

phase transition

In the above discussion, we know at MFT approxi-

mation in the FL model that the deconfinement phase

transition is first order. One can plot the σ̄ as a func-

tion of T , as shown in Fig. 4. It can be seen that at

T = Tc, σ̄ jumps from nonzero value σ̄ = σv to zero

value σ̄ = 0. In the confined phase σ̄ 6= 0; and in

the deconfined phase σ̄ = 0. Here, σ̄ can be viewed

as an order parameter of the deconfinement phase

transition in the FL model, so we can do a Landau

expansion of Ω based on σ̄ and make a thorough in-

vestigation of the phase transition order.

Fig. 4. σ̄ as a function of T at zero chemical

potential in the FL model.

At the MFT approximation, from Eq. (6), the

thermodynamic potential could be power expanded

by σ̄ with σ̄2, σ̄3 and σ̄4. However, the analytical

forms of the coefficients of the expansion are difficult

to obtain. Here we will write down the effective form

of the expansion as

Ω=
1

2
A(T,µ)σ̄2 +

1

3!
B(T,µ)σ̄3 +

1

4!
C(T,µ)σ̄4, (7)
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where A(T,µ), B(T,µ) and C(T,µ) are the effective

parameters which could be determined by a numer-

ical fitting process. This means that at certain T

and µ from the configuration of the Ω versus σ̄, one

could fit the curve by the σ̄2, σ̄3 and σ̄4 to obtain the

values of A(T,µ), B(T,µ) and C(T,µ). By Eq. (7),

from Landau theory, it is clear that the cubic term σ̄3

plays a crucial role in the determination of the transi-

tion order. At MFT approximation, the fitting results

indicate that B(T,µ), as a negative value, will keep

decreasing with an increase of temperature and/or

chemical potential. This means that this term will

never be zero, and therefore the transition order of

deconfinement at MFT approximation can only be

first order.

Now we suppose Eq. (7) is the general form of the

expansion of the thermodynamical potential by or-

der parameter σ̄ in the FL model. And we expect the

corrections coming from the fluctuations to effectively

modify parameters A(T,µ), B(T,µ) and C(T,µ). In

principle, they could be calculated by self-consistently

resuming the higher order loop diagrams led by the

fluctuations of σ′. However, it is very difficult to eval-

uate these corrections in this way. In the following we

will treat the coefficients A(T,µ), B(T,µ) and C(T,µ)

as free parameters and make a general study of the

phase transition order on the FL model by Landau

theory.

In Landau theory, one can make a derivative of

the thermodynamic potential to σ̄ as

dΩ

dσ̄
=A(T,µ)σ̄+

1

2
B(T,µ)σ̄2 +

1

3!
C(T,µ)σ̄3 = 0. (8)

One can then obtain three solutions:

σ̄1 = 0, σ̄2,3 =
−3B±

√
9B2−24AC

2C
. (9)

In our case, we assume C > 0, which guarantees that

the vacuums are the minima. When 3B2 6 8AC,

there is only one minimum at σ̄ = 0. When 3B2 >

8AC, there are two minima. They correspond to the

perturbative vacuum at σ̄ = 0 and the physical vac-

uum at σ̄ = σv . When the two minima degenerate,

one can obtain the condition that: B2 = 3AC, when

the deconfinement phase transition takes place. Thus

one can draw the critical line of the deconfinement

phase transition in the plane of B versus A as shown

in Fig. 5. The phase plane has been divided into two

parts: the left area beside the line in the plane rep-

resents the confined phase, while the right area is the

deconfined phase. By analyzing the variation of the

vacuum, one can find that the deconfinement phase

transition can be either first or second order. If the

system goes across the critical line at B 6= 0, the tran-

sition is first order. If the system goes across the line

at B= 0, the transition is second order.

From the above discussion by Landau theory, we

know there may be a second order phase transition in

the FL model, while at the MFT level the deconfine-

ment phase transition can only be first order. But

if we consider fluctuations beyond MFT, there are

maybe additional terms which cancel the cubic σ̄3

term, and the second order phase transition may be

possible. That means the parameter B(T,µ) will go

to zero before the transition takes place. The sys-

tem will evolve from the left area to the right area

across the critical line by the axis origin in Fig. 5. In

our former calculation at MFT, the fluctuations of σ′

in the Lagrangian have been neglected. These terms

are possibly important in the cancellation of the cu-

bic term. However, it is very difficult to calculate the

thermodynamic potential including these fluctuations

from the Lagrangian in the FL model. In the follow-

ing, we will make an ansatz based on the form of the

Landau expansion of the thermodynamic potential to

mimic the deconfinement phase transition, which has

both first and second order phase transition.

Fig. 5. Phase diagram of deconfinement on the

A-B plane in the FL model.

We can devise a possible variation pattern of

A(T,µ), B(T,µ) and C(T,µ). We suppose at finite

temperature and zero chemical potential that the ab-

solute value of B(T,µ) keeps decreasing and tends to

zero with increasing temperature, while A(T,µ) first

decreases to a negative value and then increases with

increasing temperature. C(T,µ) remains positive in

all the cases. By this kind of variation, from Fig. 5,

one can see that the system will evolve from the con-

fined phase to the deconfined phase across the origin

of the axis, and the transition will be second order.

Thus we make the following ansatz of A(T,µ), B(T,µ)

and C(T,µ) as

A(T,µ) = a

[

(T −Tc)

(

k1T − 1

Tc

)

+λ1µ
2

]

, (10)
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B(T,µ) = b exp

[

−k2

(

T +Tc

Tc

)6

+k2 +λ2µ

]

, (11)

C(T,µ) = c, (12)

where a, b and c are the parameters of the FL

model which have already been given in Section 2.

k1 = 4 fm2, k2 = 0.15, λ1 = 0.5 fm2 and λ2 = 0.1 fm

are the effective parameters of the ansatz. Tc is the

critical temperature of the transition at zero chemi-

cal potential, which can be seen in a later analysis.

It also serves as a temperature scaling factor, whose

value can be taken as Tc=180 MeV. When T =µ= 0,

it is clear that A(0,0) = a, B(0,0) = b and C(0,0) = c.

One should notice that in our ansatz, with the in-

creasing temperature, the parameter B(T,µ) will be

infinitely close to zero but not zero. However, when

the second order phase transition takes place, the

absolute value of B(T,µ) will be sufficiently small.

At zero chemical potential, from Eq. (10), one can

see at T = Tc, A(Tc,0) = 0. At the same time,

B(Tc,0) ≈ 0. Thus the deconfinement phase tran-

sition at zero chemical potential and finite tempera-

ture takes place at T = Tc=180 MeV and the transi-

tion order is second order. At zero temperature, from

Eq. (11), one can see that B(0,µ) will never be zero

with increasing chemical potential, which means that

the transition will be first order at zero temperature

and finite chemical potential.

Fig. 6. The thermodynamical potentials for dif-

ferent temperatures and zero chemical poten-

tial. The temperatures are 100, 150, 180 and

200 MeV from bottom to top.

We can also evaluate the thermodynamic poten-

tial for different chemical potentials and tempera-

tures. At finite temperature and zero chemical po-

tential, the thermodynamic potential as a function of

σ̄ is plotted in Fig. 6. It is clear that the phase tran-

sition is second order. At zero temperature and finite

chemical potential, it can be seen from Fig. 7 that

the transition is first order. The deconfinement phase

transition can be presented in a µ-T phase diagram,

as shown in Fig. 8. From the first order phase transi-

tion to the second order phase transition there exists

a TCP. The phase diagram is qualitatively consistent

with that of the chiral phase transition. However,

how we obtain a credible phase diagram of decon-

finement through direct calculations, including the

fluctuations from the Lagrangian of the FL model,

deserves further investigation.

Fig. 7. The thermodynamical potentials for dif-

ferent chemical potentials and zero tempera-

ture. The chemical potentials are 350, 392,

420 and 470 MeV from bottom to top.

Fig. 8. µ-T phase diagram of deconfinement

with TCP in the FL model.

4 Summary

In this paper we have discussed the possible phase

diagram of deconfinement in the FL model. From the

calculation in only the MFT approximation and with-

out fluctuations, deconfinement phase transition can

only be first order at finite temperature and chemical

potential. Using the Landau expansion of the ther-

modynamic potential and analysis through Landau

theory, we show that deconfinement phase transition

can also be second order, which will not appear in the
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MFT approximation but possibly will when nonlinear

fluctuations are considered. Thinking of the difficul-

ties in calculating the fluctuations, we have not done

the calculation here, but made the ansatz that the

Landau coefficients are certain functions of tempera-

ture and chemical potential. By this ansatz we obtain

the possible µ-T phase diagram of deconfinement in

the FL model, which is similar to that of the chi-

ral phase transition. This means that deconfinement

phase transition is first order at low temperature and

high chemical potential, whereas it is second order at

high temperature and low chemical potential. From

the first order to the second order phase transition

there exists a TCP.
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