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Unruh-Verlinde temperature and energy of

(2+1)-dimensional matter coupled black hole via

entropic force *
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Abstract: Verlinde’s recent work, which shows that gravity may be explained as an entropic force caused

by the changes in information associated with the positions of material bodies, is extended to study the

Unruh-Verlinde temperature and energy of a static spherically symmetric charged black hole. The results

indicate that the Unruh-Verlinde temperature is equal to the Hawking temperature at the event horizon. The

energy is dependent on the radius of the screen, which is also a consequence of the Gauss’ laws of gravity and

electrostatics.
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1 Introduction

Over the past few decades, Hawking radiation

of black holes has been a hot spot of theoretical

physics. Hawking radiation is one of the most impor-

tant productions of quantum field theory in curved

space time. It provides a link between general rela-

tivity, statistical physics, thermodynamics, and quan-

tum field theory, and it is generally believed that the

deep investigation of Hawking radiation may shed

light on the setup of a satisfactory quantum grav-

ity theory. Many valuable models, such as Kraus-

Parikh-Wilczek’s quantum tunnel method [1–3] and

Robinson-Wilczek’s gravitational anomalies method

[4], which tried to explain the action of the parti-

cles tunnel across the event horizon, are put forward

[5–13]. Their assumptions are directly motivated by

Hawking’s original thought experiment from which

he discovered that quantum particle creation effects

result in an effective emission of particles from a

black hole with a blackbody spectrum at tempera-

ture [14, 15]

T = ~κ/2π. (1)

A line element of a general static spherically symme-

tric black hole can be expressed as

ds2 =−f(r)dt2 +g(r)dr2 +r2dΩ2. (2)

The surface gravity of the event horizon is easily eval-

uated as

κ =
1

2
∂r f(r)

√

f(r)g(r)
∣

∣

∣

rH

. (3)

An important thermodynamical quantity correspond-

ing to a black hole is the Hawking temperature TH,

which is given by

TH =
~

4π

∂r f(r)
√

f(r)g(r)
∣

∣

∣

rH

. (4)

Recently, Verlinde [16] presented a new idea that

gravity can be explained as an entropic force caused

by the information changes when a material body

moves away from the holographic screen. With the

holographic principle and the equipartition theorem,

Verlinde showed that Newton’s law of gravitation can

arise naturally and unavoidably in a theory in which

space is emergent through a holographic scenario,

and a relativistic generalization leads to the Einstein

equations. Subsequently, with the idea of entropic

force, the Newtonian gravity in loop quantum gravi-
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ty [17, 18], and the holographic dark energy [19] were

derived from the entropic force formula. The Fried-

mann equations and the modified Friedmann equa-

tions for the Friedmann-Robertson-Walker universe

in Einstein gravity [20] were also discussed from the

viewpoint of entropic force. These similar ideas were

also applied to the construction of holographic actions

from black hole entropy [21]. Ref. [22] shows that

gravity has a quantum informational origin. Likewise,

for a general static spherically symmetric black hole,

we can define its Unruh-Verlinde temperature.

In this paper, we have extended Verlinde’s idea

to a (2+1)-dimensional matter coupled black hole

and calculated the Unruh-Verlinde temperature and

the energy associated with holographic screens.

Throughout this paper, the units (G ≡ c ≡ 1) are

used.

2 Unruh-Verlinde temperature and

the energy of a (2+1)-dimensional

BTZ black hole coupled with non-

linear electrodynamics

The action describing the (2+1)-dimensional Ein-

stein theory coupled with nonlinear electrodynamics

is given by [23]

S =

∫√
g

(

1

16π

(R−Λ)+L(F )

)

d3x. (5)

The field equations via variational principle read as

Gab +Λgab = 8πTab, (6)

Tab = gabL(F )−FacF
c
bL,F, (7)

∇a(F
abL,F) = 0, (8)

in which L,F stands for the derivative of L(F ) with

respect to F = (FabF
ab)/4. The nonlinear field is cho-

sen such that the energy momentum tensor (8) has a

vanishing trace. The trace of the tensor gives

T = Tabg
ab = 3L(F )−4FL,F. (9)

Hence, to have a vanishing trace, the electromagnetic

Lagrangian is obtained as

L = c |F |3/4
, (10)

where c is an integration constant. With reference

to the paper [23], the complete solution to the above

action is given by the metric

ds2 =−f(r)dt2 +f(r)−1dr2 +r2dθ2, (11)

where the metric function f(r) is given by

f(r) =−m+
r2

l2
+

4q2

3r
. (12)

Here m is the mass, l2 = Λ−1 the case Λ > 0(Λ < 0),

corresponds to an asymptotically de-Sitter (anti de-

Sitter) space-time, and q is the electric charge. This

metric represents the BTZ black hole in nonlinear

electrodynamics.

Based on Verlinde’s idea [16], the holographic

screens locate at equipotential surfaces, where the po-

tential φ is defined by a time-like Killing vector ξα

φ =
1

2
lg(−ξαξα), (13)

and ξα satisfies the Killing equation

∇αξβ +∇β∇α = 0. (14)

Its exponent eφ represents the redshift factor that re-

lates the local time coordinate to that at a reference

point with φ = 0, which will be taken to be infinity.

The potential φ is used to define a foliation of space,

and the holographic screens are put at surfaces of con-

stant redshift. So the entire screen has the same time

coordinate. Then the local temperature on a screen

can be defined by the acceleration of a particle that

is located very close to the screen. The energy on the

screen is calculated by the holographic principle and

the equipartition rule of energy with the bit density

on the screen.

The four-velocity uα of the particle and its accel-

eration aβ = uα∇αuβ can be expressed in terms of

the Killing vector ξβ as

uβ = e−φξβ, aβ = e−2φξα∇αξβ =−gαβ∇βφ. (15)

Note that just like in the non-relativistic situation,

the acceleration is perpendicular to screen =. So we

can turn it into a scalar quantity by contracting it

with a unit outward pointing vector nβ normal to the

screen = and to ξβ.

The local temperature T on the screen is now in

analogy with the non-relativistic situation defined by

T =
~

2π

eφnβ∇βφ, (16)

where a redshift factor eφ is inserted because the tem-

perature T is measured with respect to the reference

point at infinity. We will call the temperature defined

in (16) as Unruh-Verlinde temperature.

Assuming that the change in entropy at the screen

is 2π for a displacement by one Compton wavelength

normal to the screen, we have

∇αS =−2π

m

~
nα. (17)

For a fixed particle near the screen, the entropic force

now follows from

Fα = T∇αS =−meφ∇αφ, (18)
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where the additional factor eφ arises from the redshift,

and ∇αφ is the relativistic analogue of Newton’s ac-

celeration a.

Consider a holographic screen on a closed surface

of constant redshift φ, the number of bit N of the

screen is assumed to be proportional to the area of

the screen and is given by

dN = dA/~. (19)

Now, by assuming that each bit on the holographic

screen contributes energy T/2 to the system, and by

using the equipartition law of energy, one has

E =
1

2

∫
=

TdN. (20)

Inserting the identifications for T and dN , we can

rewrite Eq. (20) as

E =
1

4π

∫
=

eφ∇φdA. (21)

By using the Killing equation,

∂α ξβ +∂β ξα−2Γ λ
αβ = 0, (22)

and the static and spherically symmetric properties

of the black hole,

∂t ξα = 0, (23)

we can solve the time-like Killing vector field ξα(x)

with the condition ξαξα = −1 at infinity, which can

be expressed as

ξα =

(

m− r2

l2
− 4q2

3r
,0,0,0

)

. (24)

Obviously, for the (2+1)-dimensional BTZ black

hole, the Killing vector field ξα is a zero vector at the

horizon.

The acceleration and Unruh-Verlinde temperature

associated with the screen are calculated, respec-

tively, as

aα =

(

0,−2r

l2
+

4q2

3r2
,0,0

)

, (25)

T =
~

2πr2

(

−r3

l2
+

2q2

3

)

. (26)

The Unruh-Verlinde temperature can be expressed in

terms of the event horizons as

T |
r=rh

=
~

2πrh

(

−r3
h

l2
+

2q2

3

)

, (27)

which is equal to the Hawking temperature Th. Con-

sidering a zero cosmological constant Λ = 0, we find

that a (2+1)-dimension BTZ black hole has just one

event horizon at

rh =−4q2

3m
. (28)

Substituting Eq. (28) into Eq. (27), we can obtain

the Hawking temperature at the event horizon as

Th =
3~

16π

m2

q2
. (29)

This result in Ref. [23] is consistent. From Eq. (21),

this energy is dependent on the radius of the screen,

which is also a consequence of the Gauss’ laws of grav-

ity and electrostatics. To the 2+1-dimension BTZ

black hole, the energy on the event horizon r = rh is

E|
r=rh

=
32q6

27m3l2
+

q2

3
. (30)

3 Unruh-Verlinde temperature and

the energy of a (2+1)-dimensional

BTZ black hole with linear electro-

dynamics

The metric for the charged BTZ black hole in lin-

ear electrodynamics is given by [24]

ds2 =−f(r)dt2 +f(r)−1dr2 +r2dθ2, (31)

with the metric function

f(r) =−m+
r2

l2
−2q2 ln

(r

l

)

, (32)

where q is the electric charge, m is the mass and

l2 = Λ−1. By using the Killing equation (22) and

∂t ξµ = 0, ξαξα =−1 at infinity for the Killing vector

of the charged BTZ black hole, we can also solve the

time-like Killing vector ξµ. The result is of the form

ξα =

(

m− r2

l2
+2q2 ln

(r

l

)

,0,0,0

)

, (33)

which is also zero at the horizon. The acceleration

and Unruh-Verlinde temperature are read as

aα =

(

0,
2r

l2
+

2q2

r
,0,0

)

, (34)

T =
~

2πr

(

r2

l2
+q2

)

. (35)

The Unruh-Verlinde temperature associated with the

event horizon r = rh is just the Hawking temperature

Th,

T |
r=rh

=
~

2πrh

(

r2
h

l2
+q2

)

. (36)

The energy on the screen is

E =
r3

l2
+q2r. (37)

The energy on the event horizon r = rh is

E|
r=rh

=
r3
h

l2
+q2rh. (38)
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4 Conclusion

Verlinde’s theory states that the space-time can

be described as an information device made of holo-

graphic surfaces (screens) on which the information

about the physical systems can be stored. The rel-

evant information about the physical dynamics can

be recovered by analyzing the variation in the infor-

mation on the screens and it is independent of the

details of the particular theory used to describe the

physical system. In this paper, with the holographic

principle and the equipartition theorem, we investi-

gate the Unruh-Verlinde temperatures and energies

on a holographic screen from the (2+1)-dimensional

BTZ black hole and the charged BTZ black hole. The

results show that the Unruh-Verlinde temperature is

equal to the Hawking temperature on the event hori-

zon of these black holes. The energy is dependent on

the radius of the screen, which is also a consequence

of the Gauss’ laws of gravity and electrostatics. Our

result supports Verlinde’s theory.
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