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Hamiltonian analysis of a Green-Schwarz sigma model

on a supercoset target with Z4m grading*
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Abstract: We perform a Hamiltonian analysis of the Green-Schwarz sigma model on a supercoset target with

Z4m grading. The fundamental Poisson brackets between the spatial component of the flat currents depending

on a continuous parameter, which can be thought of as a first step in the complete calculation of the algebra

of the transition matrices, are obtained. When m = 1, our results are reduced to the results of the type IIB

Green-Schwarz superstring on AdS5×S5 background obtained by Das, Melikyan and Sato.
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1 Introduction

The motivation to study non-linear sigma mod-

els on supermanifolds is its appearance in string the-

ory and condensed matter physics. String theory on

AdSd ×Sd (d = 2,3,5), AdSp(p = 2,4,6), AdS5 × S1

and AdS4 ×CP3 background are described by super-

space sigma models with Z4 grading [1–10] and the

Z4 grading is a key element for demonstrating the

classical integrability of the underlying models. It

is shown [11–13] that similar constructions hold for

sigma models on coset spaces G/H with general Z2n

grading. In their construction, the kinetic terms of

the action contain both the target space bosons and

fermions. This choice of the action is called the “hy-

brid action” and the sigma model is called the ”hybrid

sigma model”. It is proved in Ref. [14] that the flat

currents of hybrid sigma models [11] satisfy the equa-

tions of motion and the Virasoro constraint. This

means that one can generate a series of classical solu-

tions from an existing one. The other choice of action

is the “Green-Schwarz action” which has a kinetic

term only for the bosons. The action and the flat

currents of a Green-Schwarz type sigma model with

Z4m grading were investigated in Ref. [15]. This type

of sigma model can be used to describe the Green-

Schwarz superstring. When m = 1, the model given

in Ref. [15] is reduced to the well-known model given

by Metsaev and Tseytlin.

The Green-Schwarz sigma models with Z4m grad-

ing are models generalized from the Green-Schwarz

sigma models with Z4 grading. The classical integra-

bility of the superstring on AdS5 × S5 has led to a

lot of interesting studies recently. Bena, Polchinski

and Roiban [16] constructed a one-parameter fam-

ily of flat currents of a Green-Schwarz superstring in

AdS5×S5, which would naturally lead to a hierarchy of

classical conserved non-local charges. Chen et al [6]

extended the Bena, Polchinski and Roiban’s results

to the superstring on AdS3×S3 and AdS5×S1 back-

ground. Das, Melikyan and Sato [17] investigated the

Hamiltonian analysis and the Poisson algebra of the
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transition matrices of the AdS5 × S5 string sigma

model. Later they [18] calculated the algebra of the

flat currents for the model in the light-cone gauge

with fixed κ symmetry. Mikhailov and Schafer-

Nameki [19] studied the product of transfer matrices

in the near flat space expansion of the AdS5×S5 string

theory in the pure spinor formalism and Magro [20]

presented the exchange algebra of the model both in

pure spinor formalism and Green-Schwarz formalism.

The Green-Schwarz sigma models whose targets are

quotients of supergroups G by subgroups H defined

by gradings of order greater than 4 may have applica-

tions in condensed matter physics, string theory and

other domains in physics. Thus it is important to

continue the analysis of these sigma models.

In this paper, we carry out the Hamiltonian anal-

ysis of the Green-Schwarz sigma model on a super-

coset target with Z4m grading given in Ref. [15]. We

also present the Poisson brackets between the spa-

tial components of the flat currents with a spectral

parameter.

The structure of this paper is as follows: in Sec-

tion 2 we introduce some notation and write down

the sigma model action of the model. In Section 3

we formulate the Hamiltonian formalism of the model

and calculate the Poisson bracket of the left-invariant

currents and the Poisson bracket of the constraints.

We determine the total Hamiltonian of the model and

compute the algebra between the spatial component

of the flat currents with a spectral parameter.

2 Formulation of the sigma model on

supercoset targets

Let g be a Lie superalgebra admitting a Z4m grad-

ing. That is, g may be written as a direct sum

g =
4m−1
∑

k=0

g(k) of vector subspaces where g(0) = h and

this decomposition satisfies the algebra
[

g(r),g(s)
]

⊂

g(p) with p = r + s mod 4m. The generators of

g(2s),s = 0,1,2, . . . ,2m − 1 are even while those of

g(2s+1),s = 0,1,2, . . . ,2m are odd. The supertrace is

compatible with the Z4m grading, which means that

if Xi ∈ g(i), Yj ∈ g(j) then StrXiYj = 0 unless i+j = 0

mod 4m, and if Str(XiY ) = 0 for any Xi then Y = 0.

For simplicity, in this paper, we will employ an index

free tensor notation defined as A1 = A⊗1,B2 = 1⊗B,

and (A⊗B)ij,km = AikBjm. The quadratic Casimir is

defined by

C12 = ηABTA⊗TB = ηi0j0Ti0 ⊗Tj0

+

4m−1
∑

r=1

ηirjrTir
⊗Tjr

= C(00)
12 +

4m−1
∑

r=1

C(r4m−r)
12 .(1)

Here ηAB = Str(TATB), we denote generically TA as

the generator of the Lie algebra g and for each grad-

ing Ti0 ∈ g(0), i0 = 1,2, · · · , dimg(0), Tir
∈ g(r), ir =

1,2, · · · , dimg(r), r = 1,2, · · · ,4m−1. For any M (k) ∈

g(k), the quadratic Casimir possesses the property

[C(i4m−i)
12 ,M (i+j)

2 ] =−[C(4m−j j)
12 ,M (i+j)

1 ]. (2)

Let g(xµ) be a field valued in an even faith-

ful matrix representation of a supergroup G, where

x0 = τ,x1 = σ are world-sheet coordinates. The cur-

rent 1 form J = −g−1dg ∈ g can be decomposed as

J =
4m−1
∑

k=0

J (k), here J (k) ∈ g(k),k = 0,1,2, · · · , 4m−1.

The current J satisfies a zero curvature condition

dJ −J ∧J = 0 . (3)

The action of the non-linear sigma model is [15]

S =
1

2

∫
Str(J (2m)∧∗J (2m))

+
1

2

∫ 2m−1
∑

r=1

Str(qrJ
(r)∧J (4m−r)), (4)

where qr = −
r

m
. The star ∗ denotes Hodge dual in

the world-sheet. The one parameter family of flat

currents is constructed in Ref. [15].

J(z) = J (0) +

4m−1
∑

i=1

e(i,z)J (i) +β(z)∗J (2m), (5)

where

e(i,z) =







zi, i < 2m,

zi−4m, i > 2m
,

e(2m,z) =
1

2
(z2m +z−2m),

β(z) =
1

2
(z2m−z−2m),

z is the spectral parameter. As is shown in Ref. [15],

the vanishing curvature condition for the current J(z)

leads to all the equations of motion of the model and

the zero curvature condition (3).

3 The Hamiltonian analysis

In this section we are going to perform the Hamil-

tonian analysis of the action (4). Our analysis is based

on the approach introduced in Ref. [21]. We treat the

space component J1 of the current J as the only inde-

pendent dynamical variable and regard the time com-

ponent J0 of the current J as a function of it through

the relation (3), namely,

J0 =∇−1
1 (∂0 J1) , (6)
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where

∇1 = ∂1−[J1, ·], ∂0 =
∂

∂τ
, ∂1 =

∂
∂σ

, ∇−1
1

is the inverse operator of ∇1. We define the conjugate

momentum as the variation of the action (4) with re-

spect to ∂0 J1 and we get

Π =

4m−1
∑

i=0

Π(i) =−∇−1
1

(

J (2m)
0 −

1

2

2m−1
∑

r=1

qrJ
(r)
1

+
1

2

2m−1
∑

r=1

qrJ
(4m−r)
1

)

, (7)

where we have used the fact that∫
d2xStr [(∇−1

1 G)F ] =−

∫
d2xStr [G(∇−1

1 F )] .

The basic canonical Poisson bracket of the canon-

ical variables can be written as
{

J (0)
11 (σ),Π(0)

2 (σ′)
}

= C(00)
12 δ(σ−σ′), (8)

{

J (i)
11 (σ),Π(4m−i)

2 (σ′)
}

= C(i 4m−i)
12 δ(σ−σ′),

i = 1,2, · · · , 4m−1. (9)

Decomposing the canonical momentum (7) into

the appropriate subspaces, we obtain

J (2m)
0 = −(∇1Π)(2m), (10)

ϕ(0) = −(∇1Π)(0), (11)

ϕ(r) = −(∇1Π)(r) +
1

2
qrJ

(r)
1

≈ 0, r = 1,2, · · · ,2m−1, (12)

ϕ(4m−r) = −(∇1Π)(4m−r)−
1

2
qrJ

(4m−r)
1

≈ 0, r = 1,2, · · · ,2m−1. (13)

Since J (2m)
0 contains time derivatives, Eq. (10) can

be used to express velocities in terms of canonical

momenta. While none of the relations (11)–(13) de-

pends on time derivatives, each of them corresponds

to primary constraints of the theory. In the conformal

gauge, the Virasoro constraints take the forms

ϕ(4m) =
1

2
Str(J (2m)

0 J (2m)
0 +J (2m)

1 J (2m)
1 )≈ 0, (14)

ϕ(4m+1) = Str(J (2m)
0 J (2m)

1 )≈ 0. (15)

The Poisson brackets of the currents are
{

J
(0)
11 (σ),J

(0)
12 (σ′)

}

= 0,

{

J (i)
11 (σ),J (4m−i)

12 (σ′)
}

= 0,

i = 1,2, · · · , 4m−1, (16)

{

J (2m)
01 (σ),J (0)

12 (σ′)
}

=−[C(2m 2m)
12 ,J (2m)

12 (σ′)]

×δ(σ−σ′), (17)
{

J (2m)
01 (σ),J (r)

12 (σ′)
}

=−[C(2m 2m)
12 ,J (2m+r)

12 (σ′)]

×δ(σ−σ′), (18)

{

J (2m)
01 (σ),J (2m)

12 (σ′)
}

=−[C(2m 2m)
12 ,J (0)

12 ]δ(σ−σ′)

+C(2m 2m)
12 ∂1 δ(σ−σ′), (19)

{

J (2m)
01 (σ),J (4m−r)

12 (σ′)
}

=−[C(2m 2m)
12 ,J (2m−r)

12 (σ′)]

×δ(σ−σ′). (20)

{

J
(2m)
01 (σ),J

(2m)
02 (σ′)

}

= [C
(2m 2m)
12 ,(∇1Π)(0)(σ′)]

×δ(σ−σ′). (21)

where r = 1,2, · · · , 2m−1. We note that there is only

one non-ultra local term in the Poisson brackets (19).

The total Hamiltonian density is given as

HT =
1

2
Str(J (2m)

0 J (2m)
0 +J (2m)

1 J (2m)
1 )+Strλ(0)ϕ(0)

+
2m−1
∑

r=1

λ(4m−r)ϕ(r) +
2m−1
∑

r=1

λ(r)ϕ(4m−r), (22)

where λ(0), λ(r) and λ(4m−r) are the Lagrange mul-

tipliers to be determined. Imposing the consistency

conditions dϕr/dτ = 0, dϕ4m−r/dτ = 0, we arrive at

the result

λ(r) = J (r)
1 r = 1,2, . . . ,2m−1, (23)

λ(4m−r) = −J (4m−r)
1 r = 1,2, . . . ,2m−1, (24)

which determinate λ(r) and λ(4m−r). The condi-

tion dϕ(0)/dτ = 0 imposes no further constraints.

ϕ4m, ϕ4m+1 can also be checked to be conserved under

the hamiltonian flow. The Lagrange multiplier λ0 is

undetermined due to the fact that ϕ0 is the generator

of a gauge symmetry of the theory.

With the help of Eqs. (8)–(9), (11)–(13) we obtain

Poisson brackets between the constraints
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{

ϕ(0)
1 (σ),ϕ(0)

2 (σ′)
}

= −[C(00)
12 ,ϕ(0)

2 (σ′)]δ(σ−σ′)≈ 0, (25)

{

ϕ
(0)
1 (σ),ϕ

(r)
2 (σ′)

}

= −[C
(00)
12 ,ϕ

(r)
2 (σ′)]δ(σ−σ′)≈ 0, (26)

{

ϕ(0)
1 (σ),ϕ(4m−r)

2 (σ′)
}

= −[C(00)
12 ,ϕ(4m−r)

2 (σ′)]δ(σ−σ′)≈ 0, (27)

{

ϕ(r)
1 (σ),ϕ(s)

2 (σ′)
}

= −

[

C(r 4m−r)
12 ,

1

2
qr+sJ

(r+s)
12 (σ′)−(∇1Π)(r+s)

2 (σ′)

]

δ(σ−σ′), (28)

{

ϕ(r)
1 (σ),ϕ(4m−s)

2 (σ′)
}

= −[C(r 4m−r)
12 ,ϕ(r−s)

2 (σ′)]δ(σ−σ′)≈ 0, r > s, (29)

{

ϕ(r)
1 (σ),ϕ(4m−r)

2 (σ′)
}

= −[C(r 4m−r)
12 ,ϕ(0)

2 (σ′)]δ(σ−σ′)≈ 0, (30)

{

ϕ(r)
1 (σ),ϕ(4m−s)

2 (σ′)
}

= −[C(r 4m−r)
12 ,ϕ(4m+r−s)

2 (σ′)]δ(σ−σ′)≈ 0, r < s, (31)

{

ϕ(4m−r)
1 (σ),ϕ(4m−s)

2 (σ′)
}

=

[

C(4m−r r)
12 ,

1

2
qr+sJ

(4m−r−s)
12 (σ′)+(∇1Π)(4m−r−s)

2 (σ′)

]

δ(σ−σ′), (32)

here r = 1,2, . . . ,2m− 1,s = 1,2, . . . ,2m− 1. From

(25)–(27), one can conclude that ϕ(0) is a first class

constraint. The algebra among ϕ(r), ϕ4m−r , r =

1,2, . . . ,2m−1, are more complicated and form a non

trivial algebra. They are reducible because of the

constraints (14) and (15). One can decompose ϕ(r)

and ϕ(4m−r), r = 1,2, . . . ,2m−1 into the first and sec-

ond class constraints using some relevant projection.

The second class constraints can be used to define the

Dirac brackets.

The definition of the transition matrix is [21–25]

T (σ1,σ2,z) = P e
�

σ1
σ2

dσ J1(σ,z), (33)

here P means path ordering, J1(σ,z) is the spatial

component of the current (5). As shown in Ref. [21–

25] the Poisson brackets between the transition ma-

trix T1(σ1,σ2,z1) and T2(σ
′

1,σ
′

2,z2) are equal to

{T1(σ1,σ2,z1),T2(σ
′

1,σ
′

2,z2)}

=

∫σ1

σ2

dσ

∫σ′

1

σ′

2

dσ′ (T1(σ1,σ,z1)⊗T2(σ
′

1,σ
′,z2))

×{J11(σ,z1),J21(σ
′,z2)}(T1(σ,σ2 ,z1)

⊗T2(σ
′,σ′

2,z2)). (34)

The above relation shows that one needs to evaluate

{J1(σ,z1),J2(σ
′,z2)} in order to compute the Pois-

son bracket between the transition matrices. Here we

calculate the Poisson bracket between the currents

which can be thought of as a first step in the complete

calculation of the algebra of the transition matrices.

Using the equations (2), (5), (8)–(9) and (10)–(13),

after some tedious calculation, we have

{J11(σ,z1),J12(σ
′,z2)}

=
(

α[C
(2m 2m)
12 ,J11(σ,z1)]+β[C

(2m 2m)
12 ,J12(σ,z2)]

+γ[C(00)
12 ,J11(σ,z1)+J12(σ,z2)]

)

δ(σ−σ′)

+

2m−1
∑

r=1

ξ2(r)
{

J11(σ,z1),ϕ
(r)
2 (σ′)

}

+
2m−1
∑

r=1

χ2(r)
{

J11(σ,z1),ϕ
(4m−r)
2 (σ′)

}

+

2m−1
∑

r=1

ξ1(r)
{

ϕ(r)
1 (σ′),J12(σ,z1)

}

+
2m−1
∑

r=1

χ1(r)
{

ϕ(4m−r)
1 (σ′,z1),J12(σ,z1)

}

+Λ∂σ δ(σ−σ′),

where

α =
β2

2

α2(2m)β1−α1(2m)β2

,

β =
β2

1

α2(2m)β1−α1(2m)β2

,

γ =
β1β2

α2(2m)β1−α1(2m)β2

,

ξ2(r) = γα2(r), ξ1(r) =−γα1(r)
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χ2(r) = γα2(4m−r), χ1(r) =−γα1(4m−r),

Λ = −(α1(2m)β2 +α2(2m)β1)C
(2m2m)
12

−

2m−1
∑

r=1

(α1(4m−r)ξ2(r)

+χ1(r)α2(r))C
(4m−r r)
12

−

2m−1
∑

r=1

(α1(r)χ2(r)

+ξ1(r)α2(4m−r))C(r 4m−r)
12 ,

with

β1 = β(z1),β2 = β(z2),α1(i) = e(i,z1),

α2(i) = e(i,z2), i = 1,2, · · · , 4m−1.

In the above equation, there are additional terms de-

pending on ξi(r), χi(r) and non-ultralocal terms in-

volving Λ. When one separates the constraints into

first class constraints and second class constraints and

calculates the Dirac brackets of the currents, these

terms may be absent and the algebra may have a

closed structure. The relevant work is interesting and

under investigation.
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