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general principle *
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Abstract: We report that a general principle of physical independence of mathematical background manifolds

brings a replacement of common derivative operators by co-derivative ones. Then we obtain a new Lagrangian

for the ordinary minimal standard model with supplementary terms containing the Lorentz invariance violation

information measured by a new matrix, denoted as the Lorentz invariance violation matrix. We thus provide

a new fundamental theory to study Lorentz invariance violation effects consistently and systematically.
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1 Introduction

Lorentz symmetry is one of the most significant

and fundamental principles in physics, and it contains

two aspects, namely Lorentz covariance and Lorentz

invariance. Currently, there is an increasing interest

in Lorentz invariance violation (LV or LIV) both the-

oretically and experimentally [1]. We report here a

fundamental theory to describe the LV effects based

on a basic principle. Similar to the principle of rel-

ativity, which requires that the equations describing

the laws of physics have the same form in all admis-

sible frames of reference, we propose a physical inde-

pendence principle that the equations describing the

laws of physics have the same form in all admissible

mathematical manifolds. We show that such a princi-

ple leads to the following replacement of the ordinary

partial ∂α and the covariant derivative Dα

∂α
→Mαβ ∂β, Dα →MαβDβ, (1)

where Mαβ is a local matrix. We first introduce the

general principle, and then show that such a principle

leads to new supplementary terms violating Lorentz

invariance in the Standard Model.

2 Principle of independence

Principle: under any one-to-one transformation

X → X ′ = f(X) of background mathematical mani-

folds, the corresponding transformation ϕ(·) → ϕ′(·)

of an arbitrary physical field ϕ(X) should satisfy

ϕ′(X ′) =ϕ(X). (2)

This statement actually makes the field ϕ(X) repre-

sent a physical distribution rather than a mathemat-

ical function. A unique reality can be described in

many ways ϕ(X),ϕ′(X ′),ϕ′′(X ′′), . . . mathematically,

but the physical essence remains unchanged, saying

independence or invariance of mathematical descrip-

tions. So (2) just claims Physical Independence or

Physical Invariance (PI) of mathematical background

manifolds. What we do here is put a physical require-

ment on a mathematical expression ϕ(X).

For a given field ϕ(X) satisfying (2), its derivative

field is ordinarily defined as

π(X) = ∂X ϕ(X). (3)

When π(X) is a physical field, we should require the

condition π
′(X ′) = π(X) according to PI. Therefore

we need to check whether the definition (3) of the
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derivative field satisfies (2). One easily finds

π(X) = ∂X ϕ(X) = ∂X ϕ
′(X ′)

= ∂X f(X)∗∂X′ ϕ′(X ′)

= F (∂X′)ϕ′(X ′),

in which F (·) = ∂X f(X) ∗ ·, where F (·) is linear to

“·”. From the definition (3), π
′(X ′) = ∂X′ ϕ′(X ′),

we see that π
′(X ′) 6= π(X). So this definition of the

derivative field π(X) of a physical field ϕ(X) does not

satisfy PI. The reason is due to the derivative with re-

spect to the manifold X . So we define the derivative

field as

π(X) =M(∂X)ϕ(X), (4)

which indicates that M(·) is local and has the trans-

formation property

M(·)→M ′(·) =M(F (·)), (5)

thus we have

π(X) = M(∂X)ϕ(X)

= M(∂X f(X)∗∂X′)ϕ′(X ′)

= M(F (∂X′))ϕ′(X ′)

= M ′(∂X′)ϕ′(X ′)

= π
′(X ′).

According to (2), π(X) is indeed a physical field with

the new definition (4). The covariant derivative DX

has the same problem as ∂X and can be handled in a

similar manner. Thus we obtain our replacement for

the ordinary ∂X and the covariant derivative DX by

∂X →M(∂X), DX →M(DX),

whose explicit matrix form is

∂K
→MKJ ∂J , DK →MKJDJ .

We need to point out that the above derivation is

handled in Geometric Algebra G (or Clifford Algebra)

and Geometric Calculus (see, e.g., Refs. [2, 3]), where

the general element is called a multivector. Addition

and various products of two multivectors are still a

multivector, i.e., Geometric Algebra is closed. Differ-

ent variables in physics, such as scalar, vector, tensor,

spinor, twistor, matrix, etc., can be described by the

corresponding types of multivectors in a unified form

in Geometric Algebra (see Ref. [4] for a more detailed

argument). So ϕ(X)∈G is a multivector-valued func-

tion of a multivector variable X ∈G. In the following

discussions, when we consider the space-time, which

is part of the general Geometric Algebra space, x is

adopted instead of X , and the indices are denoted by

α,β instead of K,J .

The result (1) is similar to the gauge idea by Yang

and Mills [5] from a basic consideration. When a

local symmetry is considered, one has to replace a

common partial ∂α with a covariant derivative Dα to

retain the invariance of a Lagrangian under the local

gauge transformation. Requiring the property (2) for

an arbitrary field, we must introduce the local matrix

Mαβ to make the common ∂α
a physical co-derivative

operator Mαβ ∂β . The combination of the above two

general considerations brings about the new covariant

co-derivative operator Dα →MαβDβ , which is essen-

tial for the natural introduction of LV terms in the

Standard Model.

3 Standard model supplement

With the above considerations, we focus on the

physical implications and consequences from the new

introduced co-derivative Mαβ ∂β and covariant co-

derivative MαβDβ . The effective Lagrangian LSM of

the minimal standard model is composed of four parts

LSM = LG +LF +LH +LHF, (6)

LG = −
1

4
F aαβF a

αβ , (7)

LF = iψ̄γαDαψ, (8)

LH = (Dαφ)†Dαφ+V (φ), (9)

where we omit the chiral differences, the summa-

tion of chirality and gauge scripts. ψ is the fermion

field, φ is the Higgs field, and V (φ) is the Higgs

self-interaction. F a
αβ = ∂αA

a
β − ∂βA

a
α − gfabcAb

αA
c
β ,

Dα = ∂α +igAα and Aα = Aa
αt

a, with Aa
α being the

gauge field. g is the coupling constant, and f abc and

ta are the structure constants and generators of the

corresponding gauge group respectively. LHF is the

Yukawa coupling between the fermions and the Higgs

field, and is not related to derivatives, thus it remains

unchanged under the replacement (1).

Under (1) and a decomposition Mαβ = gαβ +∆αβ

which will be discussed later, the Lagrangians in (7)-

(9) become

LG = −
1

4
(Mαµ ∂µA

aβ −Mβµ ∂µA
aα−gfabcAbαAcβ)

×(Mαµ ∂µ
Aa

β −Mβµ ∂µ
Aa

α−gf
abcAb

αA
c
β)

= −
1

4
F aαβF a

αβ +LGV, (10)
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LF = iψ̄γαM
αβDβψ= iψ̄γαDαψ+LFV, (11)

LH = (MαµDµφ)†MανD
νφ+V (φ)

= (Dαφ)†Dαφ+V (φ)+LHV, (12)

with Mαβ being the real matrix to maintain the

Lagrangian hermitian. The last three terms LGV,

LFV and LHV of the equations mentioned above are

the supplementary terms for the ordinary Standard

Model. The explicit forms of these terms are

LGV = −
1

2
∆αβ∆µν(gαµ ∂βA

aρ ∂νA
a
ρ −∂βA

a
µ ∂νA

a
α)

−F a
µν∆

µα ∂αA
aν , (13)

LFV = i∆αβψ̄γα ∂βψ−g∆αβψ̄γαAβψ, (14)

LHV = (gαµ∆
αβ∆µν +∆βν +∆νβ)(Dβφ)†Dνφ. (15)

Thus we obtain a new effective Lagrangian for

the Standard Model with new supplementary terms

(SMS), denoted by LSMS

LSMS = LSM +LLV, (16)

LLV = LGV +LFV +LHV, (17)

where LSMS satisfies the Lorentz covariance

(SO+(1,3)), the gauge symmetry invariance of

SU(3)×SU(2)×U(1) and invariance under the re-

quirement of PI (2), under which LSM cannot remain

unchanged in a general situation.

We can have a better view of SMS here. The ele-

ments of Mαβ are mass dimensionless, natural for the

sign of testifying the Lorentz invariance, and they are

not global constants generally. All of the LV terms

are expressed in LLV, and the LV information [6] is

measured by a single concise matrix ∆αβ , which is

convenient for a systematic study of the LV effects.

To determine whether the Lorentz invariance holds

exactly (see (19)), further work is needed to ana-

lyze the effective Lagrangian (16) of QED, QCD and

EW (ElectroWeak) fields, and more experiments are

needed to determine the magnitude of the elements

in the matrix Mαβ.

4 Lorentz violation matrix

Now, let us focus on the new local matrix Mαβ , of

which the vacuum expectation value is used for the

coupling constants in (13), (14) and (15). We divide

Mαβ into two parts

Mαβ = gαβ +∆αβ , (18)

with gαβ being the space-time metric. The remaining

∆αβ contains the information to judge whether the

Lorentz invariance is kept or not

∆αβ =















0 no LV,

→ 0 small LV,

otherwise large LV.

(19)

So ∆αβ represents to what degree the Lorentz invari-

ance is exact, and we call it the Lorentz invariance

Violation Matrix (LVM). Intuitively, the smaller the

elements of ∆αβ are, the better the physics law holds

Lorentz invariant. In this way, the LVM is similar

to the CKM matrix which signals generation mixing

and CP violation [7, 8], and it signals LV.

Generally, ∆αβ might be particle-type dependent.

If we use the vacuum expectation value of ∆αβ for

the coupling constants in the corresponding effective

Lagrangian, not all of the 16 degrees of freedom of

Mαβ are physical. For the derivative field M(∂x)ϕ(x)

(4) of an arbitrary given field, ϕ(x) can be rescaled to

absorb one of the 16 degrees of freedom so that only

15 are left. When more fields are involved, there is

only one degree of freedom that can be reduced from

a rescaling consideration for all fields. Thus for gen-

erality, we may keep all 16 degrees of freedom in Mαβ

for a specific particle in our study.

With the rapid development of laboratory ex-

periments [9] and astronomical observations [10–16],

there will be more and more ways to determine the

LVM ∆αβ phenomenologically. For example, we can

get the dynamical equations of fields such as mod-

ified Maxwell equations, the Klein-Gordon equation

and the Dirac equation as well as various dispersion

relations from the effective Lagrangian. As a prelim-

inary test for our construction, we consider the Dirac

equation for the fermion ψ(x) through the substitu-

tion (1) or the Lagrangian (11)

(iγαM
αβ ∂β −m)ψ(x) = 0. (20)

Multiplying both sides by (iγαM
αβ ∂β +m), we obtain

(gαµM
αβMµν ∂β ∂ν +m2)ψ(x) = 0, (21)

which is also a Klein-Gordon equation. So the dis-

persion relation is

p2 +gαµ∆
αβ∆µνpβpν +2∆αβpαpβ =m2, (22)

with the Fourier transformation ψ(x) =

∫
ψ(p)e−ip·xdp

and (18). The last two items of the left side of (22)

contain LV information. It is an extension of the ordi-

nary mass-energy relation p2 =m2. Systematic anal-

ysis of LV here can be offered by adopting the general
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expression for ∆αβ . A special case is

∆αβ = diag(0, ξ,ξ,ξ), (23)

where we consider first only the diagonals for simplic-

ity. Then (22) and (23) give

E2 = (1−δ)~p 2 +m2, (24)

δ = −ξ2 +2ξ.

The photopion production of the nucleon in the GZK

cutoff observations gives an available energy thresh-

old E ≈ 1019 eV [17]. For the proton, it can be used

here to determine the magnitude of the upper limit

of ξ, which is 10−23 from a rough estimate [18]. The

details of analysis, which are presented in Ref. [4], are

omitted here.

From the Lagrangian for free photons

LG = −
1

4
F αβFαβ −Fµν∆

µα ∂αA
ν

−
1

2
∆αβ∆µν(gαµ ∂βA

ρ ∂νAρ−∂βAµ ∂νAα),(25)

we get the modified Maxwell equation (or motion

equation)

ΠγρAρ = 0, (26)

where Πγρ is also the inverse of the photon propaga-

tor

Πγρ = −gγρ ∂2
+∂γ ∂ρ

+∆γα ∂ρ ∂α +∆ρα ∂γ ∂α +∆γβ∆ρν ∂β ∂ν

−gγρ(2∆µα ∂µ ∂α +gαµ∆
αβ∆µν ∂β ∂ν). (27)

The term ∂γ ∂ρ
is symmetric for the indices γ and ρ.

So are∆γα ∂ρ ∂α and∆ρα ∂γ ∂α. Hence the above three

terms can be omitted under the constraint of the

Lorentz gauge condition ∂α
Aα = 0 for the gauge field.

With the Fourier decomposition Aρ =

∫
dpAρ(p)e

−ip·x

and the Lorentz gauge condition we can re-write

Eq. (26) as

Πγρ(p)Aρ(p) = 0,

where

Πγρ(p) = gγρ(p2 +gαµ∆
αβ∆µνpβpν +2∆αβpαpβ)

− ∆γβ∆ρνpβpν ,

which is the inverse of the free photon propagator

in the momentum space. A general parametrization

for pα can be done with spherical coordinates, so pα

can be expressed as (E, −|~p |sinθ cosφ, −|~p |sinθ sinφ,

−|~p |cosθ), where the light speed constant c = 1 is

adopted. We find that there is a zero eigenvalue

and a corresponding eigenvector Aρ(p) for the ma-

trix Πγρ(p). So the determinant must be zero for the

existence of the solution Aρ(p)

det(Πγρ(p)) = 0. (28)

Then we have the equation

8
∑

i=0

λi(∆
αβ ,θ,φ)Ei|~p |8−i = 0.

The coefficient λi(∆
αβ ,θ,φ) is a variable with respect

to the LVM ∆αβ and the angles θ and φ. So there

are 8 real solutions for E(|~p |) at most, and in general

there are no analytical solutions to a general high

order linear equation. But for some simple cases

of the LVM ∆αβ , we expect some analytical solu-

tions for E. Anyway, E can be solved formally as

E = fi(∆
αβ ,θ,φ)|~p |, for i = 1 · · ·N , and 1 6 N 6 8.

fi(∆
αβ ,θ,φ) is a real variable and is independent of

the momentum magnitude |~p | because the photon is

massless in the Lagrangian of Eq. (25). So the free

photon velocity is

cγi ≡
dE

d|~p |
= fi(∆

αβ ,θ,φ), for i= 1 · · ·N, 1 6N 6 8,

(29)

which means: i) The free photon propagates in the

space with at most 8 group velocities; ii) For each

mode, the light speed cγi might be azimuth dependent

and not a constant. As we know, the light spreads

with different group velocities for different directions

in the anisotropic media in optics. By analogy, we

may view the space-time as a kind of media intu-

itively. However, there are essential differences be-

tween the optical case and the photon case here, be-

cause all the consequences of the N modes and the

light speed anisotropy are the result of the Lorentz

invariance violation or the space-time anisotropy sug-

gested by the new theory.

Phenomenologically, the one-way experiment [19–

22] performed at the GRAAL facility of the European

Synchrotron Radiation Facility (ESRF) in Grenoble,

reported results on the light speed anisotropy by

Compton scattering of high-energy electrons on laser

photons. A detailed analysis, which will be given else-

where [23], shows that the azimuthal distribution of

the GRAAL data can be elegantly explained by our

new theory.

5 Conclusion

In summary, with a general requirement of physi-

cal independence or physical invariance of mathemat-

ical background manifolds, we introduce a replace-

ment of common derivative operators by co-derivative

ones. This naturally brings about Lorentz invariance
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violation terms in the Standard Model, and we get a

Lorentz invariance violation matrix ∆αβ , which can

describe the Lorentz invariance violation effects in a

systematic and consistent manner. The novel Lorentz

invariance violation matrix in this article has the fol-

lowing merits: i) it is natural, because we introduce

it under a general consideration which makes a field

indeed a physical field without adding Lorentz invari-

ance violation terms by hand; ii) it is systematic, since

the information of Lorentz invariance violation can

be extracted from it uniquely; iii) it is simple, since

the Lagrangian LSMS provides a fundamental frame-

work for elegant applications to experimental prob-

lems. We thus provide a new fundamental theory to

study the Lorentz invariance violation effects consis-

tently and systematically.
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