Low－energy $D^{*+} \bar{D}_{1}^{0}$ scattering and the nature of resonance－like structure $\mathrm{Z}^{+}(4430){ }^{*}$

GONG Ming（宫明）$)^{1 ; 1)}$ CHEN Ying（陈莹）${ }^{2}$ MENG Guo－Zhan（蒙国站）${ }^{1} \quad$ HE Song（何颂）${ }^{1}$
LI Gang（李刚）$)^{2}$ LIU Chuan（刘川 $)^{1}$ LIU Yu－Bin（刘玉斌）$)^{3} \quad$ MA Jian－Ping（马建平）${ }^{4}$
MENG Xiang－Fei（孟翔飞）${ }^{3}$ NIU Zhi－Yuan（牛志元）${ }^{1}$ SHEN Yan（沈言）${ }^{1}$
ZHANG Jian－Bo（张剑波）${ }^{5}$ ZHANG Yuan－Jiang（张远江）${ }^{2}$
（CLQCD collaboration）
${ }^{1}$ School of Physics，Peking University，Beijing 100871，China
${ }^{2}$ Institute of High Energy Physics，Academia Sinica，P．O．Box 918，Beijing 100049 China
${ }^{3}$ Department of Physics，Nankai University，Tianjin 300071，China
${ }^{4}$ Institute of Theoretical Physics，Academia Sinica，Beijing 100080，China
${ }^{5}$ Department of Physics，Zhejiang University，Hangzhou 310027，China

Abstract

Low－energy scattering of D^{*+} and $\overline{\mathrm{D}}_{1}^{0}$ meson is studied using quenched lattice QCD with improved lattice actions on anisotropic lattices．The threshold scattering parameters，namely the scattering length a_{0} and the effective range r_{0} ，for the s－wave scattering in $J^{P}=0^{-}$channel are extracted：$a_{0}=2.52(47) \mathrm{fm}$ and $r_{0}=0.7(1) \mathrm{fm}$ ．It is argued that，albeit the interaction between the two charmed mesons being attractive，it is unlikely that they can form a shallow bound state in this channel．Our calculation provides some useful information on the nature of the newly discovered resonance－like structure $\mathrm{Z}^{+}(4430)$ by the Belle Collaboration．

Key words $\mathrm{D}^{*}-\overline{\mathrm{D}}_{1}$ scattering，resonance－like structure $\mathrm{Z}^{+}(4430)$ ，lattice QCD
PACS 12．38．Gc，11．15．На

1 Introduction

Recently，a charged resonance－like structure $\mathrm{Z}^{+}(4430)$ has been observed at Belle in the $\pi \psi^{\prime}$ in－ variant mass spectrum of $B \rightarrow K \pi^{+} \psi^{\prime}$ decays［1］．This has triggered many theoretical investigations on the nature of this structure［2－10］，one possible interpre－ tation is a shallow bound state formed by the D^{*} and $\overline{\mathrm{D}}_{1}$ mesons $[3,4]$ ．To further investigate this possi－ bility，the interaction between a D^{*} and a $\overline{\mathrm{D}}_{1}$ meson near the threshold becomes crucial．

In this paper，we briefly report our results on the scattering threshold parameters，i．e．scattering length a_{0} and effective range r_{0} ，of $\mathrm{D}^{*}-\overline{\mathrm{D}}_{1}$ sys－ tem using quenched lattice QCD within the so－called Lüscher＇s formalism［11］．Details of the calculation can be found in Ref．［12］．Within this approach，it is also feasible to investigate the possible bound state of the two mesons［11，14］．We have used improved
gauge and fermion lattice actions on anisotropic lat－ tices．The usage of anisotropic lattices with asym－ metric volumes has enhanced our resolution in en－ ergy and the momentum．The computation is car－ ried out in all possible angular momentum channels， although only the $J^{P}=0^{-}$channel yields definite re－ sults．We find that，in this particular channel，the interaction between a D^{*} and a $\overline{\mathrm{D}}_{1}$ meson is attrac－ tive in nature．The scattering length after continuum and chiral extrapolation is $a_{0}=2.52(47) \mathrm{fm}$ while the effective range is $r_{0}=0.7(1) \mathrm{fm}$ ．Our simulation re－ sults suggest that the two－particle system resembles more like an ordinary scattering state rather than a bound state．

2 Theoretical framework，hadron op－ erators and correlation functions

Consider two interacting particles with mass m_{1}

[^0]and m_{2} enclosed in a cubic box of size L, with periodic boundary conditions. The spatial momentum \boldsymbol{k} is quantized according to:
$$
\boldsymbol{k}=\left(\frac{2 \pi}{L}\right) \boldsymbol{n}
$$
with \boldsymbol{n} being a three-dimensional integer. By taking the center-of-mass frame of the system, the two particles then have three-momentum \boldsymbol{k} and $-\boldsymbol{k}$. The exact energy of the two-particle system in this finite volume is denoted as: $E_{1.2}(\boldsymbol{k})$. We now define a variable $\overline{\boldsymbol{k}}^{2}$ via:
\[

$$
\begin{equation*}
E_{1 \cdot 2}(\boldsymbol{k})=\sqrt{m_{1}^{2}+\overline{\boldsymbol{k}}^{2}}+\sqrt{m_{2}^{2}+\overline{\boldsymbol{k}}^{2}} \tag{1}
\end{equation*}
$$

\]

It is also convenient to further define a variable q^{2} as: $q^{2}=\overline{\boldsymbol{k}}^{2} L^{2} /(2 \pi)^{2}$ which differs from \boldsymbol{n}^{2} due to interaction. Lüscher's formula then says [11]:

$$
\begin{equation*}
\tan \delta(q)=\frac{\pi^{3 / 2} q}{\mathcal{Z}_{00}\left(1 ; q^{2}\right)} \tag{2}
\end{equation*}
$$

where $\mathcal{Z}_{00}\left(1 ; q^{2}\right)$ is the zeta-function. Therefore, by extracting the exact two-particle energy $E_{1.2}(\boldsymbol{k})$ from numerical simulations, one could infer the elastic scattering phase shift $\delta(q)$.

In the case of attractive interaction, one obtains the phase $\delta(q)$ by analytic continuation: $\tan \sigma(q)=$ $-i \tan \delta(q)[11,14]$. In this case we have: $\tan \sigma(q)=$ $\pi^{3 / 2}(-\mathrm{i} q) / \mathcal{Z}_{00}\left(1 ; q^{2}\right)$. The condition for a bound state at that particular energy requires: $\tan \sigma(q)=-1$ in the infinite volume and continuum limit.

In order to access more low-momentum modes, it is advantageous to use asymmetric volumes in the study of hadron scattering [15-17]. If the rectangular box is of size $L \times\left(\eta_{2} L\right) \times\left(\eta_{3} L\right)$, Eq. (2) is modified to:

$$
\begin{equation*}
\tan \delta(q)=\frac{\pi^{3 / 2} q \eta_{2} \eta_{3}}{\mathcal{Z}_{00}\left(1 ; q^{2} ; \eta_{2}, \eta_{3}\right)} \tag{3}
\end{equation*}
$$

where $\mathcal{Z}_{00}\left(1, q^{2} ; \eta_{2}, \eta_{3}\right)$ is the modified zeta-function defined in Refs. [15, 16].

For the D^{*} and $\overline{\mathrm{D}}_{1}$ mesons, we use the local operators $Q_{i}=\left[\bar{d} \gamma^{i} c\right](x)$ and $P_{i}=\left[\bar{c} \gamma^{i} \gamma^{5} u\right](x)$ respectively. The Fourier transform of these operators yields the single meson operators with definite threemomentum: $Q_{i}(t, \boldsymbol{k})$ and $P_{i}(t, \boldsymbol{k})$. The two-particle operator in the A_{1} channel is given by:

$$
\begin{align*}
O^{\left(A_{1}\right)(1)}(t)= & \sum_{R \in G}\left[Q_{1}(t+1,-R \circ \boldsymbol{k}) P_{1}(t, R \circ \boldsymbol{k})\right. \\
& +Q_{2}(t+1,-R \circ \boldsymbol{k}) P_{2}(t, R \circ \boldsymbol{k}) \\
& \left.+Q_{3}(t+1,-R \circ \boldsymbol{k}) P_{3}(t, R \circ \boldsymbol{k})\right] \tag{4}
\end{align*}
$$

where $R \in G$ is an operation of the symmetry group G. Single meson (with and without threemomentum) correlation functions can be constructed
as usual using the operators $Q_{i}(t, \boldsymbol{k})$ and $P_{i}(t, \boldsymbol{k})$. For the two-meson operator, the following correlation matrix is constructed:

$$
\begin{equation*}
C_{m n}^{\left(A_{1}\right)(1)}(t)=\left\langle O_{m}^{\left(A_{1}\right)(1) \dagger}(t) O_{n}^{\left(A_{1}\right)(1)}(0)\right\rangle \tag{5}
\end{equation*}
$$

where n and m designates different momentum modes. Applying Wick's theorem, the single- and double-meson correlation functions defined above are transformed into quark propagators which are then measured using the gauge field configurations generated in our simulation.

3 Simulation results and discussions

The gauge action use in this study is the tadpole improved gauge action on anisotropic lattices [18-20]: while the fermion action used is the tadpole improved clover Wilson action on anisotropic lattice [21, 22]. Lattices with three different lattice spacings are used in the calculation. The lattice spacing a_{s} in physical units is determined from a Wilson loop calculation [23]. Relevant parameters for these lattices can be found in Table 1. For each set of lattice, the calculation is done for several light quark and heavy quark hopping parameters: $\left(\kappa^{\text {ud }}, \kappa^{\mathrm{c}}\right)$.

The mass of $\mathrm{D}^{*}, \overline{\mathrm{D}}_{1}$ and the dispersion relations for them are checked carefully to make sure that single charmed meson states are properly realized in the finite box [12].

The two-meson correlation matrix (5) is first diagonalized using Lüscher-Wolff method [13] with the eigenvalue $\lambda_{i}\left(t, t_{0}\right)$ obtained. To enhance the signal to noise ration, the following ratio was formed:

$$
\begin{equation*}
\mathcal{R}\left(t, t_{0}\right)=\frac{\lambda_{i}\left(t, t_{0}\right)}{C_{\mathrm{D}^{*}}(t) C_{\mathrm{D}_{1}}(t)} \propto \mathrm{e}^{-\delta E_{i} \cdot t} \tag{6}
\end{equation*}
$$

where $C_{\mathrm{D}^{*}}(t)$ and $C_{\mathrm{D}_{1}}(t)$ are the one-particle correlation functions with zero momentum for the respective mesons. Then, $\delta E_{i}=E_{i}-m_{\mathrm{D}^{*}}-m_{\mathrm{D}_{1}}$ is extracted from the following effective mass:

$$
\begin{equation*}
M_{\mathrm{eff}}(t)=\ln \left(\frac{\mathcal{R}(t)}{\mathcal{R}(t+1)}\right) \tag{7}
\end{equation*}
$$

With the energy difference δE_{i} extracted from the simulation data, one utilizes the modified Lüscher's formula (3) to obtain the quantity $k / \tan \delta(k)$ which has the following known expansion near threshold:

$$
\begin{equation*}
\frac{k}{\tan \delta(k)}=\frac{1}{a_{0}}+\frac{1}{2} r_{0} k^{2}+\cdots \tag{8}
\end{equation*}
$$

with a_{0} and r_{0} being the scattering length and the effective range. Fitting the data for $k / \tan \delta(k)$ obtained from the simulation according to the above formula yields the desired parameters a_{0} and r_{0}.

After getting the values of a_{0} and r_{0} for each pair of quark mass parameter $\left(\kappa^{\text {ud }}, \kappa^{\mathrm{c}}\right)$, the results are interpolated versus κ^{c} to the physical charm quark mass which is determined by the experimental value of

$$
\frac{1}{4} m_{\mathfrak{\eta}_{\mathrm{c}}}+\frac{3}{4} m_{\mathrm{J} / \psi} .
$$

The interpolated data are then taken for the chiral extrapolation. In this step, the results for a_{0} and r_{0} are extrapolated versus m_{π}^{2} towards the chiral limit using a quadratic function in m_{π}^{2}. Finally, the continuum limit is taken by a linear extrapolation in a_{s}^{2} (since we are using an improved lattice action) for the results of a_{0} and r_{0} obtained after chiral extrapolation. After these extrapolations, we obtain the scattering length a_{0} and the effective range r_{0} in the A_{1} channel:

$$
\begin{equation*}
a_{0}=2.53 \pm 0.47 \mathrm{fm}, r_{0}=0.70 \pm 0.10 \mathrm{fm} \tag{9}
\end{equation*}
$$

To check the possibility of a bound state, the values of $\cot \sigma(q)$ corresponding to the lowest (negative) q^{2} are obtained as listed in Table 1. It is seen that our results for $\cot \sigma(q)$ are all positive, far from the bound state value (-1). Thus, this result is more consistent with a scattering state than a bound state.

Table 1. Lattice parameters and results for $\cot \sigma(q)$ at the lowest q^{2}.

β	$a_{\mathrm{s}} / \mathrm{fm}$	Volume	$\mathrm{N}_{\text {conf. }}$	q^{2}	$\cot \sigma\left(q^{2}\right)$
2.5	0.20	$8^{2} \cdot 12 \cdot 40$	700	$-0.026(3)$	$5.23(0.65)$
2.8	0.14	$12^{2} \cdot 20 \cdot 64$	500	$-0.064(5)$	$0.16(0.18)$
3.2	0.09	$16^{2} \cdot 24 \cdot 80$	200	$-0.053(16)$	$0.92(0.93)$

One could investigate this possibility from the values of scattering length a_{0}. Since we are studying the scattering near the threshold, it is appropriate to study the problem using non-relativistic quantum mechanics. Within non-relativistic quantum mechanics,
it is known that if the potential acquires an infinitely shallow bound state, the scattering length should approach negative infinity [14]. Our lattice results for the scattering lengths indicate that it is quite large but positive. This usually happens when the potential is on the verge of developing a shallow bound state. Note that this argument is generally valid for a wide variety of potentials. If we further approximate the potential by a square-well potential with range R and depth V_{0}, we find that, $R=r_{0}=0.70(10) \mathrm{fm}$ and $V_{0}=73(21) \mathrm{MeV}$. These values for a squarewell potential also gives no bound states. If we fix $r_{0}=R=0.7 \mathrm{fm}$, the first bound state will occur at about $V_{0} \simeq 92 \mathrm{MeV}$.

4 Conclusions

We briefly report our quenched anisotropic lattice study for the scattering of D^{*} and $\overline{\mathrm{D}}_{1}$ mesons near the threshold in the channel $J^{P}=0^{-}$. After the chiral and continuum extrapolations, we obtain: $a_{0}=2.53(47) \mathrm{fm}$ and $r_{0}=0.70(10) \mathrm{fm}$ for the scattering length and effective range, indicating that the interaction between the two mesons is attractive. Our results also suggest that it is unlikely that D^{*} and $\overline{\mathrm{D}}_{1}$ can form a genuine bound state right below the threshold. The lowest two-particle state found in the simulation is likely to be a scattering state. This result might shed some light on the nature of the recently discovered $\mathrm{Z}^{+}(4430)$ state by Belle. However, we should emphasize that, our lattice calculation is done in a particular channel only and it is within the quenched approximation. Obviously, to further clarify the nature of the structure $\mathrm{Z}^{+}(4430)$, lattice studies in other symmetry channels and preferably with dynamical fermions are much welcomed.

References

[^1][^2]
[^0]: Received 19 January 2010
 ＊Supported by National Natural Science Foundation of China（10835002，10675005，10721063）
 1）E－mail：gongmingpku＠gmail．com
 © 2010 Chinese Physical Society and the Institute of High Energy Physics of the Chinese Academy of Sciences and the Institute of Modern Physics of the Chinese Academy of Sciences and IOP Publishing Ltd

[^1]: Choi K S et al. Phys. Rev. Lett., 2008, 100: 142001
 Rosner J L. Phys. Rev. D, 2007, 76: 114002
 LIU X et al. Phys. Rev. D, 2008, 77: 034003
 LIU X et al. Phys. Rev. D, 2008, 77: 094015
 Bugg V D, J. Phys. G, 2008, 35: 075005
 QIAO C F, J. Phys. G, 2008 35: 075008
 LEE H S et al. Phys. Lett. B, 2008, 661: 28-32
 Braaten E, MENG Lu. Phys. Rev. D, 2009, 79: 051503
 LIU X H et al. Phys. Rev. D, 2008, 77: 094005
 Godfrey S, Olsen S L. Ann. Rev. Nucl. Part. Sci., 2008, 58: 51-73

[^2]: 11 M LÜSCHER. Nucl. Phys. B, 1991, 354: 531
 MENG G Z et al. Phys. Rev. D, 2009, 80: 034503
 M LÜSCHER, Wolff U. Nucl. Phys. B, 1990, 339: 222
 Sasaki S, Yamazaki T. PoS LAT2007, 2007, 131
 LI X, LIU C. Phys. Lett. B, 2004, 587: 100
 FENG X et al. Phys. Rev. D, 2004, 70: 014505
 LI Xin et al. JHEP, 2007, 06: 053
 18 Morningstar C, Peardon M. Phys. Rev. D, 1999, 60: 034509
 19 LIU C. Phys. Lett., 2001, 18: 187
 20 CHEN Y et al. Phys. Rev. D, 2006, 73: 014516
 21 ZHANG J H, LIU C. Mod. Phys. Lett. A, 2001, 16: 1841
 22 SU S Q et al. Int. J. Mod. Phys. A, 2006, 21: 1015
 23 LIU W et al. Mod. Phys. Lett. A, 2006, 21: 2313

