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Optimal design of a 7 T highly homogeneous

superconducting magnet for a Penning trap *
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Abstract A Penning trap system called Lanzhou Penning Trap (LPT) is now being developed for precise mass

measurements at the Institute of Modern Physics (IMP). One of the key components is a 7 T actively shielded

superconducting magnet with a clear warm bore of 156 mm. The required field homogeneity is 3×10−7 over

two 1 cubic centimeter volumes lying 220 mm apart along the magnet axis. We introduce a two-step method

which combines linear programming and a nonlinear optimization algorithm for designing the multi-section

superconducting magnet. This method is fast and flexible for handling arbitrary shaped homogeneous volumes

and coils. With the help of this method an optimal design for the LPT superconducting magnet has been

obtained.

Key words Penning trap, linear programming, magnet design, nonlinear optimization methods, pattern

search.
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1 Introduction

Penning traps are devices that use both a mag-

netic field and an electric field to trap ions. At

present, some Penning trap systems are already in

use, such as HITRAP, LEBIT, MLLTRAP [1–3]. A

Penning trap system called LPT (Lanzhou Penning

Trap) is now developed for precise mass measure-

ments in Institute of Modern Physics (IMP).

The uniformity, the strength and the stability of

the magnetic field strongly affect the accuracy and the

sensitivity of the Penning trap system. So a supercon-

ducting magnet which provides a highly homogeneous

magnetic field is the key component of the penning

trap. The specifications for the LPT magnet which

is under design in IMP are summarized in Table 1.

The central field is 7 T with a uniformity of 3×10−7

in the two regions of interest (ROI), lying 220 mm

apart. However, due to the manufacturing and wind-

ing tolerances, it is impractical to achieve such a high

homogeneity only with the main coils. So we first

design the main coils with a lower homogeneous field

(10−5) and then the superconducting shim coils and

passive shim pieces are used to reach the required

homogeneity.

Table 1. Specification of the LPT magnet.

items value

central field 7 T

homogeneity 3×10−7 within 1 cm3

stray field(5×10−4 T line) 2 m away from the center

warm bore φ156 mm

field stability 10−8/h

Linear programming (LP) [4, 5] and several non-

linear optimization algorithms [6–8] have already

been applied to superconducting magnet design. The

linear programming method allows complete flexibil-

ity in arbitrary geometric constraints on both location

and the shape of the homogeneous volume; it guaran-
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tees a globally optimal solution and has a high com-

putation speed; but the nonlinear constrains, such

as the characteristics of a superconductor (e.g. B-

J characteristics), the Lorentz force, the stabiliza-

tion and protection against a quench, cannot be con-

sidered. However, the nonlinear optimization algo-

rithms, such as the genetic algorithm (GA) and the

sequential quadratic programming (SQP) can intro-

duce these nonlinear constrains. But they have not

been applied very often to direct shape optimization

(topology optimization), because of the severe com-

putational costs and their difficulty in dealing with

large numbers of design parameters. To take advan-

tage of the two algorithms, we propose a two-step

method which combines the linear programming and

nonlinear optimization methods to design the magnet

efficiently.

2 Method

As a first step Linear Programming is used to

carry out the topology optimization to get the coils’

initial location and shape. Then the nonlinear opti-

mizing methods are used as the second step to further

simplify the coils’ shape.

2.1 First step: the linear programming

method

A system of cylindrical coordinates (r,z,φ) is de-

fined and a superconducting magnet that is rotation-

ally symmetric with respected to the z axis is consid-

ered. The current density is parallel to the φ direction

and can be specified by a function J(r,z). J(r,z) is

allowed to be nonzero only in the specified domain

called feasible coil space. For a multi-section mag-

net the feasible coil space can be divided into several

sections Sl(l = 1,2, · · · ,L) as shown in Fig. 1.

Fig. 1. The multi-sections feasible coil space

with numerical grid.

With an introduction of the numerical grid

(Fig. 1), the l-th feasible coil space is divided into

a set of Nl(l = 1,2, · · · ,L) rectangular subregions

Dl,n(n = 1,2, · · · ,Nl). The number of subregions de-

termines the precision of the calculation. We typically

use 1000–2000 subregions to ensure an adequate spa-

tial resolution. The current density of each section

is assumed to be uniform, i.e. Jl for l-th section.

According to the Bio-Savart law, the magnetic field

generated by the magnet is expressed as [9]

Br(r,z) = 2π

L
∑

l=1

Nl
∑

n=1

Jl

∫
Dl,n

r′dr′dz′Gr(r,r
′,z−z′),

Bz(r,z) = 2π

L
∑

l=1

Nl
∑

n=1

Jl

∫
Dl,n

r′dr′dz′Gz(r,r
′,z−z′),

Bφ(r,z) = 0. (1)

The function Gz and Gr are defined by

Gr(ra, rb,z) =
µ0z

4π2rarb

√

(ra +rb)2 +z2
×

[

−K(k)+
r2

a +r2
b +z2

(ra−rb)2 +z2
E(k)

]

,

Gz(ra, rb,z) =
µ0

4π2rb

√

(ra +rb)2 +z2
×

[

K(k)−
r2

a−r2
b +z2

(ra−rb)2 +z2
E(k)

]

, (2)

where µ0 = 4π× 10−7 T ·m/A is the free space per-

meability, K(k) and E(k) are the complete elliptic

integrals, and

k =

√

4rarb

(ra +rb)2 +z2
. (3)

The integral over each rectangular subregion can be

calculated with a numerical integration routine. How-

ever, the field generated by each subregion with small

cross section can be approximated by the field from

an ideal current loop (with zero cross-sectional area).

Eq. (1) then simplifies to

Br(r,z) = 2π

L
∑

l=1

Nl
∑

n=1

Jlal,nr′

l,nGr(r,r
′

l,n,z−z′

l,n),

Bz(r,z) = 2π

L
∑

l=1

Nl
∑

n=1

Jlal,nr′

l,nGz(r,r
′

l,n,z−z′

l,n),

Bφ(r,z) = 0, (4)

where al,n is the area of the subregion Dl,n.

An arbitrarily shaped homogeneous volume is

specified by a set of Mh target points ((rm,zm),m =

1,2, · · · ,Mh) (Fig. 1) on the surface of the volume.

In order to control the magnet’s fringe field, an ad-

ditional set of Mf target points ((rm,zm),m = Mh +

1,Mh +2, · · · ,Mh +Mf ) are introduced (Fig. 1). We
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note that the current of a loop can be expressed as

IN1+···+Nl−1+n = |Jl|al,n, (5)

so the magnetic field at a target point (rm,zm) will

be:

Bz(rm,zm) =

L
∑

l=1

Nl
∑

n=1

ZmnelIN1+···+Nl−1+n,

Br(rm,zm) =

L
∑

l=1

Nl
∑

n=1

RmnelIN1+···+Nl−1+n,

Zmn = 2πr′

l,nGz(rm, r′

l,n,zm−z′

l,n),

Rmn = 2πr′

l,nGr(rm, r′

l,n,zm−z′

l,n), (6)

where el has two values: 1 and −1, corresponding to

positive and negative current direction.

For the superconducting magnet we would like to

minimize the costs of the magnet, which are mostly

determined by the superconductor volume. Since we

assume that the current density within each section

is uniform, it is possible to write the coil volume as

Vcoils = 2π

L
∑

l=1

Nl
∑

n=1

1

Jl

r′

l,nIN1+···+Nl−1+n . (7)

Our goal is to find a current distribution that gen-

erates the desired field with minimum volume. It can

be produced by solving the optimization problem:

Minimize: Vcoils

Subject to: |Bz(rm1,zm1)−B0|6 εB0, (8)

|Bz(rm2,zm2)|6 Bz,shield, (9)

|Br(rm2,zm2)|6 Br,shield, (10)

0 6 IN1+···+Nl−1+n 6 Icl, (11)

l = 1, · · · ,L,

m1 = 1, · · · ,Mh,

m2 = Mh +1, · · · ,Mh +Mf .

Eq. (8) are the field homogeneity constraints.

Usually the homogeneous volume is centered on the z

axis, where Br can be neglected [10]. So it is sufficient

to only constrain Bz. In Eq. (9) and Eq. (10) we con-

strain two field components of the stray field. The

inequality constraint Eq. (11) is added to limit the

current allowed in l-th section, which is determined

by the critical current of the superconductor. This

minimization problem is a standard form LP prob-

lem which can be solved with a standard LP software

package, such as GLPK, PCx and Matlab. Typically,

it takes less than 100 s for 1200 candidate coils in a

2.66 GHz processor with 3 GB of RAM.

2.2 Second step: rectangular coils with the

nonlinear optimizing method

After the first step, the coil domains are usually

non-rectangular. It is difficult to fabricate a magnet

with non-rectangular coils, so we have to find a solu-

tion that can be implemented with only rectangular

coils. The non-rectangular domain is then divided

into a set of geometrically simple parts. These parts

are replaced with rectangular regions whose shape

and location parameters can be determined by using

the nonlinear optimizing method. A software toolkit

called DAKOTA (Design Analysis Kit for Optimiza-

tion and Terascale Applications)1) developed by the

Department of Energy’s Sandia National Laborato-

ries is used in the second step. DAKOTA provides

a flexible and extensible interface between simula-

tion codes and contains algorithms for optimization

with gradient and nongradient-based methods such as

MOGA (Multi-objective Genetic Algorithm), pattern

search method, etc [11]. A C++ in-house code based

on a nonsingular integration method has been devel-

oped for the magnetic field calculation of the multi-

section magnets. It is linked with DAKOTA through

the use of script languages (Bourne shell and Perl).

The flowchart of the optimizing iteration is shown in

Fig. 2.

Fig. 2. Flowchart of the optimizing procedure

DAKOTA coupled with the in-house code.

1)DAKOTA is a GNU General Public License (GPL) software for Large-Scale Engineering Optimization and Uncertainty

Analysis. http://www.cs.sandia.gov/DAKOTA
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3 Results

In order to reduce the winding volume, two types

of conductors with different cross sectional areas are

chosen. The multi-section feasible coil domain is pre-

set according to the specifications of the magnet. In-

deed, considering the critical current density of the

superconducting wire and the thickness of the wind-

ing formers, iterative adjustment of the domain and

its division is usually needed. Fig. 3 shows the fi-

nal design using the LP method. This design has six

primary coils and three shielding coils. The current

density of the innermost section is 100 A/mm2 which

is half of the outer section. The current direction is

opposite in three outermost shielding coils.

Fig. 3. The resulting coil domains after the LP

optimization.

The result of the LP search consists of non-

rectangular coils. In order to obtain a design with

rectangular coils, we chose seven rectangular coils to

replace the non-rectangular ones (Fig. 3). Consider-

ing the symmetry, there are twelve design variables

(Three variables for each coil). There are two objec-

tive functions because we want to minimize both the

inhomogeneity and the fringe field of the magnet. A

single objective function f is set as a weighted sum of

the inhomogeneous objective function and the stray

field objective function:

f = ω

Mh
∑

i=1

(Bzi
−7.0)2 +

Mh+Mf
∑

j=Mh+1

(|B|j
2
), (12)

where ω represents the importance of the inhomo-

geneous function. Using this method the multi-

objective problem is reduced to a single-objective op-

timization.

The pattern search method has been used to get

the optimal design. Fig. 4 shows a graph of the ob-

jective function value versus iteration number during

the optimization. The total run lasted 360 s and com-

pleted 2800 iterations on a 1.2 GHz processor with

1 GB of RAM. Fig. 5 shows the optimal design using

the pattern search method.

Fig. 4. Plot of the objective function values vs.

iteration number.

Fig. 5. Obtained optimal design using the pat-

tern search method.

The design was also simulated with the OPERA-

3D software from Cobham Technical Services. The

results shows that the peak-to-peak inhomogeneity is

less than 1.5× 10−5 (Fig. 6) over a 2 cm diameter

spherical volume. As shown in Fig. 7, the 5×10−4 T

line is limited to a distance of 2 m from the magnet’s

center. The specifications of the main coils are shown

in Table 2.

Fig. 6. The peak-to-peak inhomogeneity.
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Fig. 7. Stray field distribution.

4 Conclusion

In this paper a two-step optimization method for

the design of a multi-section superconducting mag-

net was introduced. This method uses linear pro-

gramming to obtain an initial ideal coil arrangement

and then adjusts this solution with the optimization

software toolkit DAKOTA and the in-house magnetic

field calculation code. Using the proposed method, an

optimal design for LPT superconducting magnet has

been obtained.

Table 2. Specification of the main coils.

parameter value

central field 7.0001 T

homogeneity 1.5×10−5

5×10−4 T line

radial distance from magnet center 1.5 m

axial distance from magnet center 2.0 m

peak field

coil 1 7.75 T

coil 2–9 6.47 T

Cu/Sc ratio

coil 1 3.0

coil 2–9 4.33

current density(Jop)

coil 1 100 A/mm2

coil 2–6 200 A/mm2

coil 7–9 −200 A/mm2

current margin(|Jop/Jc|)

coil 1 0.5

coil 2–9 0.5
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