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Drinfeld-Manin instanton and its

noncommutative generalization *
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Abstract The Drinfeld-Manin construction of U(N) instanton is reformulated in the ADHM formulism,

which gives explicit general solutions of the ADHM constraints for U(N) (N > 2k−1) k-instantons. For the

N < 2k−1 case, implicit results are given systematically as further constraints. We find that this formulism

can easily be generalized to the noncommutative case, where the explicit solutions are also obtained.
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1 Introduction

Instanton solutions in gauge field theory are of

great physical and mathematical interest [1–6]. Many

significant achievements have been made in this area

since their discovery in 1975 [7].

Because of the great significance of instanton solu-

tions in various aspects of physics and mathematics, it

is necessary to obtain all these solutions in gauge field

theory. This task was almost accomplished in 1978,

when Atiyah, Hitchin, Drinfeld and Manin (ADHM)

established the famous construction of instantons for

almost all gauge groups2) [8, 9]. This ADHM con-

struction essentially reduces the problem of solving a

set of nonlinear partial differential equations, which

defines the instantons, to that of solving a set of

quadratic algebraic equations, called the ADHM con-

straints. It gives the most general instanton config-

urations, and so provides the probability of learning

the whole instanton moduli spaces.

But even algebraic equations are not always solv-

able, so the ADHM constraints remain a difficult

problem. In other words, it is hard to attain satisfac-

tory parametrization of instanton moduli spaces. For

gauge group U(N), or essentially SU(N), during a

rather long time since the presentation of ADHM con-

struction, general solutions of the ADHM constraints

are known only when k = 1 and N is arbitrary, or

k 6 3 and N = 2 [9–11] (except for the Drinfeld-

Manin parametrization explained below), where k is

the topological charge, or equivalently the instanton

number [12], which is an integer classifying the in-

stanton solutions. In 1999, Dorey et al. essentially

rediscovered the Drinfeld-Manin parametrization for

N > 2k [13], of which they seemed unaware.

In recent years, the study of gauge field theory

in noncommutative space time has become an ac-

tive research area [14–16], mostly due to its relevance

to string theory [17]. An interesting phenomenon in

noncommutative gauge field theory is that instanton

solutions survive the space-time noncommutativity,

and the moduli spaces of them become even better

behaved [18]. Correspondingly, the ADHM construc-

tion has been generalized to the noncommutative case

[19, 20]3). The noncommutative ADHM constraints

seem even more difficult to solve: for gauge group

U(N), up to now, only when k = 1 and N is arbi-

trary, or k = 2 and N = 1, have general solutions

been known [24].

Drinfeld and Manin presented another construc-

Received 25 November 2009, Revised 11 January 2010

* Supported by National Natural Science Foundation of China (10605005) and President Fund of GUCAS

1)E-mail: ytian@gucas.ac.cn
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tion of instantons [25] shortly after the ADHM con-

struction, from a slightly different point of view. This

construction explicitly gives parametrization of the

U(2k) k-instanton moduli space. In addition, all

U(N) k-instanton configurations can be indirectly ob-

tained. Their original description of this construc-

tion was in a vector-bundle language. In this arti-

cle we will translate it into the more familiar ADHM

language and see how they give explicit general so-

lutions of the ADHM constraints with gauge group

U(N) (N > 2k−1) and topological charge k. For the

N < 2k−1 case, the further constraints are hard to

solve explicitly, but our systematic discussion may be

useful for the indirect way to the collective coordinate

integral [13], in this case. Moreover, fortunately, a

noncommutative generalization of this ADHM formu-

lation of Drinfeld-Manin instanton is straightforward.

In fact, translating other constructions of instantons

into the ADHM construction has been proved an effi-

cient way to generalize them to the noncommutative

case1).

This paper is organized as follows. In Sec. 2 and

Sec. 3, we recall the definition of instantons and the

ADHM construction, in the commutative case and

the noncommutative case, respectively. In Sec. 4, the

Drinfeld-Manin construction is briefly reviewed and

reformulated in the ADHM formulism. This construc-

tion is generalized to the noncommutative case in

Sec. 6. Sec. 5 gives the explicit solution of the ADHM

matrix, which can be applied to both the commuta-

tive and the noncommutative cases. In Appendix A,

the conditions for a Hermitian matrix of restricted

rank are given. These conditions are needed in the

discussion of the N < 2k case.

2 Instantons and (ordinary) ADHM

construction

Instanton solutions in (Euclidean) gauge field the-

ory were discovered by Belavin, Polyakov, Schwartz

and Tyupkin (BPST) in 1975 [7]. They are defined

by the so-called (anti-)self-dual equations,

F̃mn =±Fmn, (m,n = 1,2,3,4), (1)

and the solutions are known as self-dual (SD, for “+”

sign) and anti-self-dual (ASD, for “−” sign) instan-

tons. The definition of dual field F̃mn is familiar in

electrodynamics, which is

F̃mn =
1

2
εmnpqFpq , (2)

when the standard Euclidean metric gmn = δmn is as-

sumed. We note that the notions of SD and ASD

are interchanged by a parity transformation. With-

out loss of generality, we will consider only the ASD

instantons.

All the (ASD) instanton solutions can be obtained

by the ADHM construction [8, 9], as follows. In this

construction we introduce the following ingredients

(for U(N) gauge theory with instanton number k):

1) k× k matrix B1,2, k×N matrix I and N × k

matrix J , 2) the following quantities:

µr = [B1,B
†
1 ]+[B2,B

†
2 ]+I I†−J†J, (3)

µc = [B1,B2]+I J. (4)

The claim of ADHM is as follows:

1) Given B1,2, I and J such that µr = µc = 0, an

ASD gauge field can be constructed.

2) All ASD gauge fields can be obtained in this

way.

It is convenient to introduce a quaternionic nota-

tion for the 4-dimensional Euclidean space-time in-

dices,

x≡xnσn, x̄≡xnσ̄n = x†, (5)

where σn ≡ (i~τ,1) and τ c, c = 1,2,3 are the three Pauli

matrices, and the conjugate matrices σ̄n ≡ (−i~τ ,1) =

σ†
n. Then the basic object in the ADHM construction

is the (N +2k)×2k matrix ∆, which is linear in the

space-time coordinates,

∆ = a+bx̄≡ a+b(x̄⊗1k), (6)

where the constant matrices

a =









I† J

B†
2 −B1

B†
1 B2









, b =









0N×k 0N×k

1k 0

0 1k









. (7)

It is easy to check that the ADHM constraints (3)

and (4) are equivalent to the so-called factorization

condition,

∆†∆ =

(

f−1 0

0 f−1

)

, (8)

where f(x) is a k× k Hermitian matrix. From the

above condition, we can construct a Hermitian pro-

jection operator P ,

P = ∆f∆†. (9)

Here and after we use the following abbreviation for

expressions with f :

∆f∆† ≡∆

(

f 0

0 f

)

∆† = ∆(12⊗f)∆†.

1)See Appendix A of Ref. [20] for the generalization of ’t Hooft construction to the noncommutative case through its ADHM

data.
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Obviously, the null space of ∆†(x) is of N dimen-

sions for generic x. The basis vector for this null space

can be assembled into an (N +2k)×N matrix U(x),

∆†U = 0, (10)

which can be chosen to satisfy the following orthonor-

mal condition,

U †U = 1. (11)

The above orthonormal condition guarantees that

UU † is also a Hermitian projection operator. Now

it can be proved (see Ref. [20]) that the completeness

relation

P +UU † = 1 (12)

holds if U contains the whole null space of ∆†. In

other words, this completeness relation requires that

U consists of all the zero modes of ∆†.

The (anti-Hermitian) gauge potential is con-

structed from U by the following formula,

Am = U †∂mU. (13)

Then we get the corresponding field strength,

Fmn = ∂[m An] +A[mAn] ≡ ∂m An−∂n Am +[Am,An]

= ∂[m(U † ∂n] U)+(U † ∂[m U)(U † ∂n] U) = ∂[m U †(1−UU †)∂n] U

= ∂[m U †∆f∆† ∂n] U = U † ∂[m ∆f ∂n] ∆
†U = U †bσ̄[mσn]fb†U

= 2iη̄c
mnU †b(τ cf)b†U. (14)

Here, η̄c
mn is the standard ’t Hooft η-symbol,

which is anti-self-dual,

1

2
εmnpq η̄

c
pq =−η̄c

mn. (15)

3 Noncommutative ADHM construc-

tion

First let us recall briefly the gauge field theory

on noncommutative Euclidean space (time)1). For

a general noncommutative R4, we mean a space

with Hermitian-operator coordinates xn, n = 1, · · · ,4,

which satisfy the following relations,

[xm,xn] = iθmn, (16)

where θmn are real constants. If we assume the stan-

dard (Euclidean) metric for the noncommutative R4,

we can use the orthogonal transformation with pos-

itive determinant to change θmn into the following

standard form,

(θmn) =













0 θ12 0 0

−θ12 0 0 0

0 0 0 θ34

0 0 −θ34 0













. (17)

By using this form of θmn, the only non-vanishing

commutators are

[x1,x2] = iθ12, [x3,x4] = iθ34, (18)

and the other two obtained by using the anti-

symmetric property of commutators.

The full noncommutative gauge field theory de-

mands most of the abstract notions from noncommu-

tative geometry, such as differential forms and vec-

tor bundles on noncommutative spaces [27, 28]. But

for the U(N) gauge theory on noncommutative Eu-

clidean space, things will be much simpler: in fact,

the final effect is almost to replace all the coordinates

in ordinary U(N) gauge theory with the above op-

erator coordinates. However, a definition of deriva-

tives in the noncommutative case is necessary for any

gauge field theory. We define

∂m f ≡−iθmn[xn,f ], (19)

where θmn is the matrix inverse of θmn. For our stan-

dard form (17) of θmn we have

∂1 f =
i

θ12
[x2,f ], ∂2 f =−

i

θ12
[x1,f ], (20)

and similar relations for ∂3,4.

Now we recall the noncommutative ADHM con-

struction [19] briefly here. By introducing the same

data as above but considering the coordinates as non-

commutative, we see that the factorization condition

(8) still gives µc = 0, but µr no longer vanishes. It is

easy to check that the following relation holds,

µr = ζ ≡ 2θ12 +2θ34. (21)

The form (8) of ADHM constraints is invariant

whether the space time is commutative or not.

The space-time noncommutativity brings nontriv-

ial effects on the physics of gauge field theory. A

remarkable example is the mixing between the in-

frared (IR) and the ultraviolet (UV) degrees of free-

dom [29]. Concerning the ADHM construction, in the

noncommutative case the operator ∆†∆ always has

1)For general reviews of noncommutative geometry and field theory, see, for example, [14–16, 26].
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no zero mode (see Ref. [14]) and the moduli spaces of

noncommutative instantons are better behaved than

their commutative counterparts (see, for example, the

lectures by H. Nakajima [18]). A related interesting

fact is that noncommutative U(1) gauge theory al-

lows nonsingular instanton solutions [19, 30], while

in the commutative case the simplest gauge group for

which nonsingular instanton solutions exist is SU(2).

Whether in the commutative case or in the non-

commutative case, we find that the above ADHM con-

struction with b in the canonic form (7) is unaffected

by the following transformations,

∆→

(

1N 0

0 12⊗u

)

∆(12⊗u†), (22)

where u ∈ U(k). This is called the auxiliary symme-

try of the ADHM construction, which acts on a, f

and U as

B1 → uB1u
†, (23)

B2 → uB2u
†, (24)

I → uI, (25)

J → Ju†, (26)

f → ufu†, (27)

U →

(

1N 0

0 12⊗u

)

U. (28)

Now we can do a parameter counting for the

(commutative or noncommutative) ADHM U(N) k-

instanton. a in the form (7) contains 4k2 +4Nk real

parameters. The ADHM constraints (3,4) impose 3k2

real conditions on them, and the auxiliary symmetry

removes further k2 real degrees of freedom. In total

we have 4Nk real parameters left, which is expected

according to physical analysis [9].

The above ADHM construction is also unaffected

by the following transformations,

∆→

(

U 0

0 12k

)

∆, U ∈SU(N), (29)

which can be regarded as the global gauge rotations of

the instanton configuration. This global gauge sym-

metry leaves B1,2 and f unchanged and acts on I , J

and U as

I → IU†, (30)

J → UJ, (31)

U →

(

U 0

0 12k

)

UU†. (32)

If we wish to eliminate this global gauge symmetry

from the 4Nk real parameters and retain the “purely”

physical degrees of freedom, the number of indepen-

dent real parameters will be 4Nk−N 2+1 for k > N/2,

and 4Nk−N 2 +(N −2k)2 +1 = 4k2 +1 for K 6 N/2,

because in this case only N 2 − (N −2k)2−1 degrees

of freedom in the SU(N) group act nontrivially on I

and J .

4 ADHM formulation of the Drinfeld-

Manin construction

Shortly after the ADHM construction was estab-

lished, Drinfeld and Manin successfully constructed

all instanton solutions from a so-called “instanton

bundle” point of view [25], which we call the Drinfeld-

Manin construction. In this construction, the Eu-

clidean space time is compactified by a point to S4

and the instanton gauge potentials are considered

as Levi-Civita connections on some nontrivial vector

bundles, named instanton bundles, on this S4. The

instanton bundles are complex bundles (for the case of

U(N) gauge group) orthogonally complementary, un-

der some metrics, to a trivial vector bundle M . The

(anti-)self-duality of the Levi-Civita field strength im-

poses some conditions on the metric, which are actu-

ally the ADHM constraints.

We can always perform a complex linear trans-

formation (on the basis vectors of the fibre space)

to make the (Hermitian) metric standard. If we have

done so, then the column vectors of ∆ in the ADHM

construction constitute a basis of the section space of

M . So the matrix U consists of orthonormal basis

vectors of the section space of the instanton bundle

L, and UU † is the projection operator corresponding

to L. As is familiar to us, the gauge potential (13)

is natural as the Levi-Civita connection on L. The

above statements briefly explain how the instanton

bundle can be related to the familiar ADHM objects.

To formulate the Drinfeld-Manin construction in

the ADHM language, we first concentrate on the

U(2k) k-instanton case. Now

h =
(

b a
)

(33)

is a 4k×4k square matrix, and

∆ = hX, (34)

where

X ≡

(

x̄⊗1k

12k

)

. (35)

Thus we have

∆†∆ = X†h†hX = X†

(

12k a

a† a†a

)

X ≡X†QX, (36)
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where

a≡

(

B†
2 −B1

B†
1 B2

)

(37)

is the lower blocks of a.

In fact, the column vectors of X constitute a basis

of the section space of M (before we perform the com-

plex linear transformation mentioned above) and Q

is the corresponding metric. From the ADHM point

of view now, to make ∆†∆ of the factorized form (8),

it is easy to see that Q must satisfy the following

factorization condition,

a†a =





R 0

0 R



 , (38)

where R is a k×k constant Hermitian matrix. Using

the auxiliary symmetry transformation (22), we can

make R diagonalized,

R = diag(r1, r2, · · · , rk), r1 6 r2 6 · · ·6 rk. (39)

On the one hand, we can assume the above form of

R to fix the auxiliary symmetry, which is nonphys-

ical; on the other hand, even assuming this cannot

completely fix the auxiliary symmetry: for generic R

this residual symmetry is U(1)×k/U(1), and if some of

the ri are equal, this residual symmetry is even larger.

Further, for generic R, this residual symmetry can be

completely fixed by requiring (k−1) of the off-diagonal

elements of B1 or B2, say (B1)ik (i = 1,2, · · · ,k−1), to

be real; special cases of coincident ri can be carefully

treated as well.

To sum up, we can choose a and R of the form (39)

as the collective coordinates of the U(2k) k-instanton,

while removing some of the degrees of freedom in a.

Obviously, the number of independent real parame-

ters is 4k2+k−(k−1) = 4k2+1, which coincides with

the parameter counting in last section. Noting that

a†a = a†a+K†K, (40)

where

K ≡
(

I† J
)

(41)

is the upper blocks of a, a and R must satisfy the

condition that

S ≡ 12⊗R−a†a (42)

is a positive semidefinite matrix. This condition in-

troduces a boundary to the span of the parameters

in a and R. Thus we have obtained parametriza-

tion of the U(2k) k-instanton moduli space, though

the complicated boundary makes it a little imperfect,

which is an inevitable consequence of the highly non-

trivial topology of the instanton moduli space. This

parametrization (also for the following N > 2k case)

was, in fact, rediscovered by Dorey et al. in 1999 [13],

but they did not point out the relation between their

work and [25].

Now the matrix K can be expressed in terms of a

and R due to

K†K = S. (43)

Because in the present case K is a square matrix, one

may naturally take K = K† = S1/2, which automati-

cally eliminates the global gauge degrees of freedom.

This expression of K seems simple and explicit, but

it includes three steps: diagonalizing, extracting the

square root, and undoing the diagonalization. In fact,

to diagonalize S we need to solve an equation of de-

gree k, which we must avoid if we have better choices.

Fortunately, a better choice does exist. We may have

in mind the simplification of quadratic forms via con-

gruent transformations in basic linear algebra,

BTEB = A, (44)

where E is the canonical form of A. If A is nonsin-

gular, E will be the identity matrix. Otherwise, E

will have the form diag(1, · · · ,1,0, · · · ,0), which can

be considered, from a different point of view, as E

always being the identity while allowing B to be sin-

gular,

BTB = A. (45)

The transformation matrix B can be easily obtained

by completing squares or by simultaneous row and

column transformations, without solving any nonlin-

ear equations. Now S here is a Hermitian form, not

a quadratic one, but the method is similar. By com-

pleting squares to simplify S, we will give the explicit

solution to Eq. (43) in Sec. 5.

Next we can consider the N 6= 2k cases. These are

very simple. If N > 2k, it is easy to find, as has been

shown in much of the literature, a natural embedding

of the above U(2k) solution K in the U(N) solution

K ′,

K ′ =





0(N−2k)×2k

K



 . (46)

This gives the 4k2 + 1 “purely” physical degrees

of freedom of the U(N) k-instanton. To get all

the “ADHM” degrees of freedom, i.e., including the

global gauge rotations, we only need to perform the

following transformations,

K ′ →UK ′, U ∈
U(N)

U(1)×U(N −2k)
, (47)

which add N 2−(N−2k)2−1 more parameters to the

“purely” physical degrees of freedom and make the

total number of real parameters 4Nk.
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If N < 2k, we can simply restrict the rank of S

not greater than N . Then from Eq. (43) it is easy to

see that K can take the following form,

K =

(

K ′

0(2k−N)×2k

)

, (48)

where the N × 2k matrix K ′ is the ADHM matrix

for the U(N) k-instanton. Linear algebra tells us

that for an l× l Hermitian matrix H the condition

rank(H) 6 l−r is equivalent to r2 real conditions on

the elements of H . So the number of “purely” physi-

cal parameters is 4k2 +1−(2k−N)2 = 4Nk−N 2+1,

which again coincides with the parameter counting

in last section. The global gauge rotations are intro-

duced as

K ′ →UK ′, U ∈SU(N), (49)

which supply the other N 2−1 real parameters for all

the “ADHM” degrees of freedom. So far, everything

seems fine, but in fact the (2k−N)2 real conditions

cause another problem. The appendix A of this paper

will show how to explicitly write down these condi-

tions on elements of a and R. There we will see that

for N < 2k−1 they are too complicated to solve, so this

formulism is not appropriate for giving explicit solu-

tions for this case. However, these systematic con-

ditions may be useful for an indirect method for the

instanton collective coordinate integral [13], which is

left for future work.

Only the N = 2k−1 case is simple. In this case,

there is only one condition,

det(S) = 0, (50)

which from Eq.(42) can be regarded as a quadratic

equation of one of the ri, say rk. So we can take the

same free parameters as in the N = 2k case except

rk, and express rk in terms of the other parameters.

The quadratic equation (50) has two roots. A little

thought will make it clear that one of the eigenval-

ues of S has been negative when we take the smaller

root. Thus we can only take the greater one as rk,

which accomplishes parametrization of the U(2k−1)

k-instanton moduli space.

5 Explicit solution of the ADHM ma-

trix

Let Z be the column vector














z1

z2

...

z2k















. (51)

Then the Hermitian form that we wish to simplify is

Z†SZ =

2k
∑

i,j=1

z∗
i Sijzj . (52)

The first step is to complete the square with respect

to z1,

Z†SZ = S11

∣

∣

∣

∣

∣

z1 +

2k
∑

j=2

S1j

S11

zj

∣

∣

∣

∣

∣

2

−S−1
11

2k
∑

i,j=2

z∗
i Si1S1jzj

+

2k
∑

i,j=2

z∗
i Sijzj . (53)

Now the combination of the last two terms in the

above equation is a Hermitian form of z2,z3, · · · ,z2k,

which can be recast as

S−1
11

2k
∑

i,j=2

z∗
i (S11Sij −Si1S1j)zj

= S−1
11

2k
∑

i,j=2

z∗
i S11;ijzj , (54)

with S11;ij the second-order minor (with diagonal ele-

ments S11 and Sij) of S. Then completing the square

with respect to z2 gives

Z†SZ = S11

∣

∣

∣

∣

∣

z1 +
2k
∑

j=2

S1j

S11

zj

∣

∣

∣

∣

∣

2

+S−1
11 S11;22

∣

∣

∣

∣

∣

z2 +
2k
∑

j=3

S11;2j

S11;22

zj

∣

∣

∣

∣

∣

2

+S−1
11

(

−S−1
11;22

2k
∑

i,j=3

z∗
i S11;i2S11;2jzj +

2k
∑

i,j=3

z∗
i S11;ijzj

)

. (55)

Further simplification of the last term in the above

equation needs the following formula to hold for an

arbitrary square matrix M ,

MN;mnMN;ij −MN;inMN;mj = MNMN;mn;ij , (56)

where N is a square sub-matrix of M , MN;mn the mi-

nor (with respect to N plus Mmn) of M and so on.

In fact, we have the most general formula
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det















MN;i1j1 MN;i1j2 · · · MN;i1jl

MN;i2j1 MN;i2j2 · · · MN;i2jl

...
...

. . .
...

MN;ilj1 MN;ilj2 · · · MN;iljl















= M l−1
N MN;i1j1;i2j2;··· ;iljl

, (57)

which is proved in Appendix B. Applying Eq. (56) to

Eq. (55) gives

Z†SZ = S11

∣

∣

∣

∣

∣

z1 +

2k
∑

j=2

S1j

S11

zj

∣

∣

∣

∣

∣

2

+S−1
11 S11;22

∣

∣

∣

∣

∣

z2 +

2k
∑

j=3

S11;2j

S11;22

zj

∣

∣

∣

∣

∣

2

+S−1
11;22

2k
∑

i,j=3

z∗
i S11;22;ijzj . (58)

So we can iterate the above procedure of complet-

ing squares to the last term of the above equation,

which finally leads to

Z†SZ =

2k
∑

i=1

Si

Si−1

∣

∣

∣

∣

∣

zi +

2k
∑

j=i+1

Si−1;ij

Si

zj

∣

∣

∣

∣

∣

2

, (59)

where we have defined

Si = S11;22;··· ;ii (60)

the i-th principal minor of S, and

Si−1;ij = S11;22;··· ;(i−1)(i−1);ij , S0 = 1. (61)

We know that the condition for the Hermitian ma-

trix S to be positive semidefinite is

S1 > 0, S2 > 0, · · · , S2k > 0. (62)

In the above discussion, we have assumed that all the

Sis are non-vanishing, which is not always the case.

If we encounter a vanishing Si at some step, we must

adjust the ordering of the rest zjs, so that Si is non-

vanishing. Is it always possible for us to achieve a

non-vanishing Si in this way? We prove in Appendix

C that a non-vanishing Si can be so achieved for an

arbitrary positive semidefinite Hermitian matrix S,

unless it is of rank i−1. Furthermore, if S is of rank

l, then the series in Eq. (59) will be truncated after

the l-th term. After that, we should undo the reorder-

ing of zjs, and finish the simplification of the original

Hermitian form (52). Anyway, in the generic (i.e.,

positive definite) case, Eq. (59) is the explicit result

of this simplification, which means that

Kij =
Si−1;ij

S1/2
i−1S

1/2
i

(i 6 j)

Kij = 0 (i > j) (63)

is an explicit solution of Eq.(43).

6 Noncommutative Drinfeld-Manin

instanton

How to establish the Drinfeld-Manin construction

in the noncommutative case is an interesting prob-

lem. Appealing to the well-developed ADHM con-

struction may be much easier than considering non-

commutative instanton bundles. The commutative

ADHM construction can be regarded as a special case

(ζ = 0) of the noncommutative ADHM construction.

So we can anticipate that it is straightforward to gen-

eralize the ADHM formulism of the Drinfeld-Manin

construction to the noncommutative case.

In fact, like Eq. (38), the factorization condition

(8) in the noncommutative case gives the following

condition on a,

a†a =

(

R+ζ 0

0 R

)

= diag(r1 +ζ, · · · , rk +ζ,r1, · · · , rk). (64)

So we can similarly choose a and ri (i = 1,2, · · · ,k)

as the collective coordinates of the noncommutative

U(2k) k-instanton (while removing some of the de-

grees of freedom in a as in the commutative case).

Now Eq. (42) becomes

S ≡

(

R+ζ 0

0 R

)

−a†a, (65)

and the following things are the same as in the com-

mutative case.

To be more clear, our solution of the noncommu-

tative ADHM U(2k) k-instanton is

a =

(

S1/2

a

)

, (66)

where S is defined in Eq. (65) and a defined in

Eq. (37). And we must keep in mind that the square

root here is understood in the sense of the simpli-

fication of Hermitian forms, as explained in the last

section, with the explicit expression (63). It is easy to

check that this solution does satisfy the corresponding

ADHM constraints, and it has the correct number of
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free parameters, as we have mentioned above.

The techniques to deal with the N 6= 2k cases

in the noncommutative case and that in the com-

mutative case are exactly the same. In fact, the

global gauge rotations in gauge field theory are unaf-

fected by the space-time noncommutativity. Again,

the N = 2k−1 case is simple enough to solve. So we

also obtain parametrization of the noncommutative

U(N) (N > 2k−1) k-instanton moduli space.

To end this paper, let us focus on the two-

instanton case. For k = 2, we essentially obtain

explicit general solutions of the (commutative or non-

commutative) ADHM constraints for U(N) (N > 3)

gauge groups. Counting the U(2) two-instanton solu-

tion already known [9, 11], we have general solutions

of all the commutative U(N) two-instantons. How-

ever, the general solution of the noncommutative

U(2) two-instanton, which may be of much interest,

is yet to be found.

I would like to thank Prof. Chuan-Jie Zhu and

Prof. Xing-Chang Song for helpful discussions.

Appendix A

Conditions for a Hermitian matrix of restricted

rank

Consider an l× l Hermitian matrix H. We introduce

the following decomposition of H,

H =

(

Fr×r C

C† H(l−r)×(l−r)

)

, (A1)

and define an (l−r+1)× (l−r+1) matrix

H
′
ij =

(

Fij Ci

C
†
j H

)

, (A2)

where Ci is the ith row of C. Assuming det(H) 6=0, then

the following two propositions are equivalent:

1) rank(H)= l−r;

2) det(H ′
ij) =0 for all i, j = 1,2, · · · , r.

It is apparent that the latter can be deduced from the

former. Now we explain how the former can be deduced

from the latter.

First, for a fixed j, the (l−r)× (l−r+1) matrix

H
′ ≡
(

C
†
j H

)

(A3)

is obviously of rank l − r. Then det(H ′
ij) = 0 means

that the rank will not increase when we append a row

C′
i ≡

(

Fij Ci

)

to H′, so C′
i is a linear combination of

the row vectors of H ′. This is the case for all i, so we can

conclude that the following matrix,

Hj ≡

(

Fj C

C
†
j H

)

, (A4)

is of rank l−r, where Fj is the jth column of F .

Next, the l× (l−r) matrix

H
′ ≡

(

C

H

)

(A5)

is again of rank l−r. Thus rank(Hj) = l−r means that

the rank will not increase when we append a column

Ĉj ≡

(

Fj

C
†
j

)

(A6)

to H ′, so Ĉj is a linear combination of the column vectors

of H ′. Again, this is the case for all j, so we attain the

desired result rank(H)= l−r.

Because H is Hermitian, det(H ′
ij) = 0 are in fact r2

real conditions. The combination of det(H) 6= 0 and these

conditions is a sufficient condition for rank(H)6 l−r. Of

course, it is not necessary. If det(H)= 0 for the decompo-

sition (A1), we must take another (l−r)×(l−r) submatrix

of H as H and obtain another r2 real conditions. If H has

no nonsingular (l−r)×(l−r) submatrix, the rank of H is

less than l−r. Altogether, the requirement rank(H)6 l−r

is achieved.

Appendix B

Proof of the determinant formula

In order to prove the determinant formula (57), we

use the familiar formula of determinant decomposition,

det

(

A B

C D

)

=det(A)det(D−CA
−1

B). (B1)

We have

MN;ij = MN (Mij −Mi∗N
−1

M∗j) (B2)

according to Eq. (B1), where Mi∗ is the row vector corre-
sponding to the block C in Eq. (B1) and M∗j the column

vector. Thus,
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















MN;i1j1 MN;i1j2 · · · MN;i1jl

MN;i2j1 MN;i2j2 · · · MN;i2jl

...
...

. . .
...

MN;ilj1 MN;ilj2 · · · MN;iljl

















= MN















Mi1j1 Mi1j2 · · · Mi1jl

Mi2j1 Mi2j2 · · · Mi2jl

...
...

. . .
...

Milj1 Milj2 · · · Miljl















−MN















Mi1∗

Mi2∗

...

Mil∗















N−1
(

M∗j1 M∗j2 · · · M∗jl

)

.

Taking determinants of both sides of the above equation then gives Eq. (57).

Appendix C

A property of positive semidefinite Hermitian ma-

trices

Suppose that we have non-vanishing S1, S2, · · · , Si−1,

as stated in Sec. 5, so the rank of S is at least i − 1.

If Si = Si−1;ii is zero, then Si−1;ij = S∗
i−1;ji for any

i+16 j 6 2k must also be zero, since otherwise

Si−1;ii;jj =S
−1
i−1(SiSi−1;jj −|Si−1;ij |

2) < 0, (C1)

contradicting the fact that S is positive semidefinite. In-

terchanging the index i with any other index l (i < l 6 2k)

and applying again the above argument, if all the result-

ing Sis are zero, then all the Si−1;mn (i 6m,n 6 2k) must

vanish identically. From the discussion in the Appendix

A, we have to conclude that the rank of S is exactly i−1.
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