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Characterizing variable for the critical point

in momentum space *
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Abstract The possible experimentally observable signal in momentum space for the critical point, which

is free from the contamination of statistical fluctuations, is discussed. It is shown that the higher order

scaled moment of transverse momentum can serve as an appropriate signal for the critical point, provided the

transverse momentum distribution has a sudden change when energy increases passing through this point. A

2-D percolation model with a linear temperature gradient is constructed to check this suggestion. A sudden

change of third order scaled moment of transverse momentum is observed.
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1 Introduction

Heavy-ion collision experiments at the relativistic

heavy ion collider BNL-RHIC have found evidence

that a phase transition from hadron gas to quark

gluon plasma (QGP) has occurred[1]. Theoretical

studies predict the existence of a critical point, or crit-

ical end point (CEP) — a point which separates the

first order phase transition at high baryon chemical

potential, low temperature from the smooth crossover

at low baryon chemical potential, high temperature[2].

Theoretical estimation strongly indicates that, if the

critical end point does exist, it is within the region of

the phase diagram probed by the heavy ion collision

experiments. Most probably it will appear on the

quark-gluon phase transition boundary in the range

of baryon chemical potential of 100—500 MeV, which

corresponds to heavy ion collisions at
√

sNN = 5—

50 GeV[3]. The RHIC experiments have already be-

gun their procedure of low energy scan to observe the

critical point[4].

In order to locate the critical point we must have

some variable as an appropriate signal. This variable

should be determined by the thermodynamic proper-

ties of the critical point. Two distinct properties of

the critical point are:

(A) Some quantities have large fluctuations at the

critical point.

A well-known example is the critical opalescence,

which appears at the critical point of a liquid-gas sys-

tem, indicating the existence of large density fluctu-

ations.

(B) Some quantities change from zero to non-zero

at the critical point.

For example, in a ferro-magnetic system the global

magnetization changes from zero to non-zero at the

critical point.

These two properties are closely related in thermo-
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dynamics, but phenomenologically they have differ-

ent representations and lead to different experimental

observables.

In the study of relativistic heavy ion collision the

above-mentioned property A has been widely utilized

by many authors to propose signals for the criti-

cal point[5]. It is expected that large fluctuations

exist at the critical point for many variables, such

as transverse momentum, K/π ratio, etc. What is

important is that these variables have to be mea-

sured event by event. Due to the limited number

of particles in a single event, they have the disadvan-

tage of being inevitably contaminated by the statis-

tical fluctuations[6—8]. There is no reliable method to

eliminate the statistical fluctuations and it is unclear

whether any fluctuation signal for the critical point

can survive after eliminating the statistical fluctua-

tions.

In the present letter we will discuss the possibil-

ity of finding some signal for the critical point, based

on its property B. Such a signal, if it exists, will be

measured in the whole event sample instead of event

by event. Therefore, it is free from the troublesome

problem of statistical fluctuations. The statistical er-

rors can be reduced by enlarging the statistics, i.e.

increasing the number of events in the sample.

The layout of the paper is as follows: In Sec. 2, we

discuss the moments of final particle momentum dis-

tribution, which may be candidates for the character-

izing variable of property B of the critical point men-

tioned above. Then, in Sec. 3, a 2-dimensional site-

percolation model with temperature gradient, which

can be used to exhibit this characterizing variable, is

presented and discussed. Finally, the summary and

conclusion are presented in Sec. 4.

2 Moments of final particle momen-

tum distribution

In trying to find a measure basing on property B

of the critical point it should be noticed that the only

quantities that are observable in relativistic heavy

ion experiments are the momentum, mass, charge,

strangeness etc. of final state particles. On the con-

trary the variables that change from zero to non-zero

at the critical point are usually in the coordinate

space. The aim of this letter is to find a variable

in momentum space that can characterize the critical

behavior in coordinate space.

Let us ask a question: what information can be ex-

tracted from the transverse momentum of final-state

particles? The answer is: all the available informa-

tion about transverse momentum is contained in its

probability distribution, or equivalently, in the mo-

ments of the distribution of all orders. Among them

are:

The first order moment 〈pt〉 which gives the aver-

age transverse momentum, where 〈· · ·〉 means average

over the whole event sample.

The second order moment 〈p2
t 〉 which describes the

width of the distribution. Measuring in each event it

is used in the various definitions of event-by-event pt-

fluctuation[6—8].

The third order moment 〈p3
t 〉 which indicates the

peak of the distribution.

The fourth and other higher order moments which

describe the detailed shape of the distribution.

As discussed above the event-by-event fluctuation

σ2 = p2
t −pt

2 has been suggested by many authors as

a possible signal for the critical point. It has the dis-

advantage of being contaminated by statistical fluc-

tuations. So we turn to the first order and the higher

than second order moments. The present available

experimental data on 〈pt〉 of the φ particle show a

clear rise and subsequent saturation with the increa-

sing of colliding energy, as depicted in Fig. 1. This

monotonic behavior, if it also exists for other identi-

fied particles, e.g. pions, is encouraging. It indicates

that possibly an abrupt jump has occurred at a cer-

tain energy.

Fig. 1. The average transverse-momentum of φ

in A+A collisions at different colliding ener-

gies. Data taken from Ref. [9].

Let us define the scaled n-th order moment and

its reciprocal as

Cn =
〈pn

t 〉
〈pt〉n

, Dn = (Cn)
−1

=
〈pt〉n

〈pn
t 〉

. (1)

Both of them are dimensionless and are, therefore,

more suitable to serve as a characterizing variable.
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The higher than second order scaled moments por-

tray the shape of transverse momentum distribution.

If there were a sudden change in the shape of the

transverse momentum distribution when the energy

increases passing through the critical point, then the

higher order scaled moments of pt might have a visi-

ble jump. If this phenomenon exists, it can serve as

a good candidate of the critical-point signal.

Here comes another advantage of this approach in

comparison with the usual one based on the large fluc-

tuations at the critical point. As we know, the first

round of energy scan will be performed with large

steps between different colliding energies. If it is not

by occasion that some energy used in the first round

just locates at the vicinity of the fluctuation peak, we

will see nothing in the first round and the subsequent

scan has to be carried out in finer steps over the whole

energy range. On the contrary, if the higher order

scaled pt moments have a sudden rise when passing

through the critical point, then already in the first

round of energy scan we will observe a rise of these

moments, and most probably the critical point is lo-

cated in the region of the moment-rising. Then the

further scan could be concentrated in this region and

the critical point, signaled by the abrupt jump of the

scaled moments, can be caught easily in this way.

3 2-dimensional site-percolation mo-

del with temperature gradient

Let us use a simple well-defined model that has

known critical behavior to exhibit the above argu-

ment. The model is a 2-dimensional site-percolation

model[10] with temperature gradient. We take a big

circle of radius R and randomly locate in it n little

circles of radius r (r � R). These little circles will

be referred to as cells. If the number of cells is large

enough, two or more cells may overlap. In this case, a

connection is built among these cells and a cluster is

formed. Clusters can be of various sizes. If there is a

cluster extending from one side of the big circle to the

other side, then it is referred to as an infinite cluster.

The appearance of an infinite cluster is considered as

the appearance of a new phase.

The size of the system (in the percolation-model

sense) is defined as the radius of the big circle with

that of the small circle as unit:

L =
R

r
. (2)

The model parameter is chosen to be the sum of the

area of all the small circles and the area of the big

circle:

η =
nπr2

πR2
=

n

L2
. (3)

In the real physical system the parameter η corre-

sponds to the energy density of the system.

Figure 2 is the dependence of the probability P
∞

of the appearance of an infinite cluster on parameter

η. It can be seen from the figure that, when η is small,

an infinite cluster almost does not appear, but as η

increases when η goes near to a certain value ηc, the

probability P
∞

of an infinite cluster increases gradu-

ally to unity. The bigger the system, the sharper the

rising of P
∞

. When L →∞, the value of P
∞

jumps

suddenly from 0 to 1. The value of η where this jump

appears marks the critical point and is denoted by ηc.

In our system, ηc is about 1.12. It is noticeable that

all the values of P
∞

for various system sizes intersect

at η = ηc. This is a basic property of the percolation

model and can be utilized to locate the critical value

ηc.

Fig. 2. The dependence of P∞ on η.

The step-function singularity of P
∞

1) is the crit-

ical phenomenon in the model. This phenomenon in

coordinate space can be observed in the momentum

space provided the transverse momentum distribu-

tion has a sudden change when energy increases pass-

ing through the critical point. In order to show this

explicitly through a simple example we construct a

toy model by adding a temperature gradient into the

above-mentioned precolation model, assuming that

the center of the big circle is at a higher tempera-

ture Tmax = 400 MeV, and the fringe gets a lower

1)A real singularity appears only for an infinite system. For a finite-size system it is smoothed to a rapid rise, cf. Fig. 2.
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Fig. 3. The distribution of cell temperature for different η.

temperature Tmin = 150 MeV. A linear temperature

gradient is assumed along the radius of the big circle.

We further assume that each cluster has arrived

at thermal equilibrium and all the cells in it have the

same temperature. The temperature of the ith clus-

ter is determined by the distance to the center of the

big circle of its center of mass defined as

rcm
i =

1

ni

∑

j

rij , (4)

where rij is the distance of the jth cell in cluster i

to the center of the big circle, and ni is the number

of cells in cluster i, Thus, the temperature of all the

cells in cluster i is:

Ti = Tmax−
rcm

i

R
(Tmax−Tmin) . (5)

Figure 3 is the distributions of the number of cells

at different temperatures. In this and the following

figures, we will fix the size of the system and assign

L the value 500.

From the figures we can see that, with increasing

η, when η≈ 1.12 a peak appears suddenly in the dis-

tribution around T = 233 MeV, and the height of the

peak increases very fast.

The transverse momentum of the cells in a clus-

ter can be calculated from the thermal equilibrium

momentum distribution, i.e. the Boltzmann distribu-

tion,
dN

2πptdpt

=
N

2πmkT
exp

( −p2
t

2mkT

)

, (6)

where k is the Boltzmann constant, and m is the mass

of the cell. In our calculation, we assume the mass of

cell to be the mass of pion, equal to 135 MeV. Cal-

culating the transverse momentum of each cell from

this distribution, the pt distributions are obtained

and shown in Fig. 4.

It can be seen from Fig. 4 that the pt distribu-

tions for η < 1.15 and η > 1.2 fall in two groups with

a gap in between. This indicates that there is an

abrupt change in the shape of pt distribution when η

increases passing through the critical point.

In order to find a variable that characterizes this

abrupt change of pt distribution, we calculate the

moments of pt distribution of first, second and third
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Fig. 4. (Color online) The distribution of cell

transverse-momentum for different η (from

η = 0.8 to η = 1.4).

orders, as shown in Fig. 5. It can be seen from the fig-

ures that both the first and the third order moments

〈pt〉 and 〈p3
t 〉 change abruptly at the critical point,

while the second order moment 〈p2
t 〉 does not.

Although the changes of the first and third order

moments 〈pt〉 and 〈p3
t 〉 are in the reverse direction,

they occur at one and the same point, i.e. the critical

point. The dependence of D3 defined in Eq. (1) on

η, shown in Fig. 6, represents a clear step-function

shape. In this figure the abscissa η can be changed to

the energy density ε and the latter in turn is related

to the colliding energy
√

sNN in heavy ion collision

experiments. We see that a sudden jump of D3 as

the increasing of
√

sNN can be used as an appropriate

signal of the critical point in momentum space.

As stated above a strict step-function singularity

exists only in an infinite system. In the real case of

heavy ion collisions the system is of finite size. The

Fig. 5. The dependence on η of the 1st (a), 2nd (b) and 3rd (c) order moments of pt distribution.

Fig. 6. The dependence of D3 on η.

rise of the characteristic variable, D3, may not be

very sharp and may be hard to be recognized. To

solve this problem we can run the experiments with

nuclei of various sizes. The intersection of the ex-

perimental results will mark the place of the critical

point, cf. Fig. 2.

4 Summary and conclusion

In this letter we try to utilize the sudden change

of some variable(s), instead of the large fluctuations,

at the critical point to find an appropriate variable

for locating this point. The advantage of such an ap-

proach is that it is free from the trouble on the elimi-

nation of statistical fluctuations and that the possible
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region where the critical point locates can easily be

fixed already in the first rounds of the energy scan.

Using a site-percolation model with temperature gra-

dient we found that the third order scaled moment of

pt distribution (or its reciprocal) can possibly serve

for this purpose.

The model used in this letter is far from a realistic

model of relativistic heavy ion collisions, but the fi-

nal result is largely model-independent. Checking the

whole derivation carefully we can see that the essen-

tial point for D3 to serve as an appropriate signal for

the critical point is the fact that the shape of pt dis-

tribution changes abruptly at the critical point. The

higher order scaled moments (or their reciprocal) rep-

resent the shape of pt distribution and, therefore, can

serve as an appropriate signal. An abrupt change in

the pt-distribution shape when temperature increases

passing through the critical point is probable for the

system produced in relativistic heavy ion collisions.

The higher order scaled moment or its reciprocal is,

therefore, a possible candidate for the critical point

signal in these collisions.
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