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Bunch transverse emittance increase

in electron storage rings *
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Abstract In this paper a theoretical framework to estimate the bunch transverse emittance growing in

electron storage rings due to short range transverse wakefield of the machine is established. New equilibrium

emittance equations are derived and applied to explain the experimentally obtained results in ATF damping

ring. This equation will be useful for linear collider damping ring design.
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1 Introduction

Required by the future e+e− linear colliders,

damping rings[1] are needed to provide the main linacs

with extremely small transverse emittance. In an

electron storage ring it is observed that with the in-

creasing bunch current a bunch suffers not only from

bunch lengthening, and increase in energy spread, but

also from transverse emittance growth. The usual ex-

planation to the transverse emittance growth is based

on the intrabeam scattering theory[2—4] according

to H. Bruck’s idea[5]. Comparison of the emittance

growth with the results of the intrabeam scattering

theory shows, however, that in the vertical plane the

agreement is not satisfactory[6, 7]. In this paper we

will draw attention to another important physical

cause for the transverse emittance growth in addi-

tion to the intrabeam scattering, i.e. the short range

transverse wakefield of the machine. It is not difficult

to imagine that if the closed orbit is distorted and (or)

the vacuum chambers are misaligned from the ideal

geometric center, the particles in a bunch will suffer

from transverse deflections due to single bunch short

range wakefield which results in an emittance growth

similar to that in a linac when the axes accelerating

structures do not coincide with the trajectory of the

passing bunch[8]. In fact, it is also due to this trans-

verse wakefield that there exists a threshold bunch

current beyond which the transverse motions of par-

ticles inside the bunch will become unstable[9, 10]. In

this paper we will estimate this single bunch emit-

tance growth induced by the short range wakefield,

restricting ourselves to lepton storage rings. To start

with, in section 2, we make a brief recall of the intra-

beam scattering theory and point out that the intra-

beam scattering phenomenon is not always the dom-

inating physical process for the bunch energy spread

and emittance growth in an electron storage ring. In

section 3 a Langevin type differential equation for the

transverse motion of the particles is established. By

solving the Langevin equation one gets the increase

of the bunch emittance induced by the short range

transverse wakefield and new equilibrium emittance

equations. Finally, in section 4 this theory is applied

to the analysis of the experimental results obtained

from ATF damping ring at KEK[7].

2 Intrabeam scattering

In this section we follow the analysis on intrabeam

scattering given in Ref. [4]. The relative r.m.s. en-

ergy spread of a bunch due to intrabeam scattering

is expressed as

(

σe,s(Ne)
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)2
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Received 1 September 2008, Revised 10 February 2009

* Supported by NSFC (10525525, 10775154)
©2009 Chinese Physical Society and the Institute of High Energy Physics of the Chinese Academy of Sciences and the Institute

of Modern Physics of the Chinese Academy of Sciences and IOP Publishing Ltd



No. 7 GAO JieµBunch transverse emittance increase in electron storage rings 573

f(χm) =

∫
∞

χm

1

χ
ln

(

χ

χm

)

exp(−χ)dχ , (2)

χm =
reβ

2
x

bmaxγ2σ2
x

, (3)

where σe,s denotes the energy spread induced by intra

beam scattering, E0 is the particle energy, Ne is the

particle population inside a bunch, re is the classical

electron radius, βx is the average beta function, τe

is the synchrotron radiation damping time, γ is the

normalized particle energy, σx,y,z are the r.m.s. bunch

dimensions, bmax ≈ 1/n−1/3, and n =
Ne

23
π

3/2σxσyσz

.

Concerning the application of the intrabeam scatter-

ing theory to explain the increase in bunch energy

spread and bunch transverse emittance growth, we

make two observations. Firstly we notice that σx,y,z

in Eq. (1) should be functions of Ne. To illustrate

this point clearly, we take the ATF damping ring at

KEK as an example[7]. In Fig. 1, we show the exper-

imentally measured relative bunch energy spread vs

bunch population by dots. The dashed line gives the

theoretical result from Eq. (1) by fixing the bunch

dimensions to their natural values at zero current.

The solid line is the theoretical result from Eq. (1)

with bunch dimensions varying with bunch popula-

tion (this information is obtained from the experi-

mentally measured values[7, 11, 12]). It is obvious that

the real contribution of the intrabeam scattering to

the bunch energy spread is not as large as usually

believed. As for the second observation, using again

the ATF damping ring as an example[7], we recall the

experimental results of the vertical emittances vs the

bunch population: the experimental value at the de-

sign current is three times larger than that at zero

current, which is very difficult to be explained by the

intrabeam scattering theory[12, 13]. Based on the two

observations we will in the next section examine an-

other physical process which also contributes (even

Fig. 1. ATF damping ring single bunch energy

spread vs bunch population.

in a dominating way) to the bunch transverse emit-

tance growth. As for the increase of the bunch en-

ergy spread, the physical process is discussed in great

detail in Ref. [14], where the nonlinear single-bunch

short-range wake potential has been regarded as the

main physical cause.

3 Equation for the transverse motion

The differential equation for the transverse mo-

tion of a bunch with zero transverse dimension is ex-

pressed as

d2y(s,z)

ds2
+

2

τyc

dy(s,z)

ds
+k(s,z)2y(s,z) =

1

m0c2γ(s,z)
e2NeW⊥,y(s,z)Y (s,z), (4)

where y(s,z) is the particle’s transverse deviation

from the closed orbit, s is the longitudinal coordi-

nate of the particle located at the center of a bunch,

z denotes a particle’s longitudinal position inside the

bunch with respect to the bunch center, k(s,z) de-

scribes the linear lattice focusing strength, c is the ve-

locity of light, τy is the synchrotron radiation damp-

ing time in transverse y direction, m0 is the rest mass

of the electron, e is the electron charge, and Y (s,z)

is the deviation of the particles from the geometric

center of the vacuum chamber.

W⊥,y(s,z) =

∫
∞

z

ρ(z′)W⊥,y(s,z
′−z)dz′ ,

where W⊥,y(s,z) is the point charge wakefield. The

bunch line charge density ρ(z) is normalized as∫
∞

−∞

ρ(z′)dz′ = 1. Due to synchrotron radiation ef-

fect one can treat the particles in a bunch on the

same footing by multiplying Eq. (4) with ρ(z) and

integrate from −∞ to ∞ over z. As a result one gets

d2y(s)

ds2
+Γ

dy(s)

ds
+k(s)2y(s) = Λ , (5)

where

Γ =
2

τyc
, Λ =

e2Nek⊥,y(σz)Y (s)

m0c2γls
,

ls is the circumference of the storage ring,

k⊥,y(σz) =

∫ ls

0
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∞
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}

ds ,

and
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1√

2πσz

e
−

z
2

2σ
2
z .

Y (s) is a random variable due to vacuum chamber

misalignment error and close orbit distortion with
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〈Y (s)〉 = 0 (〈 〉 denotes the average over s). Eq. (5)

can be regarded as Langevin equation similar to that

governing the Brownian motion of a molecule.

To make an analogy between the movement of

the transverse motion of an electron and that of a

molecule, we define P =
e2Nek⊥,y(σz)

m0c2γ
, and regard

Y (s)P as the particle’s ”velocity” random increment
(

∆
dy

ds

)

over the distance ls. We assume that the

random variable Y (s) follows Gaussian distribution:

f(Y (s)) =
1√

2πσY

exp

(

−Y (s)2

2σ2
Y

)

(6)

and the velocity (u) distribution of the molecule fol-

lows Maxwellian distribution:

g(u) =

√

m

2πkT
exp

(

−mu2

2kT

)

, (7)

where m is the molecule’s mass, k is the Boltzmann

constant, and T is the absolute temperature. The

fact that the molecule’s velocity follows Maxwellian

distribution permits us to get the distribution func-

tion for Λls
[15]:

φ(Λls) =
1√

4πqls
exp

(

−Λ2l2s
4qls

)

, (8)

where

q = Γ
kT

m
. (9)

By comparing Eq. (8) with Eq. (6), one gets:

2σ2
Y =

4qls
P 2

, (10)

or
kT

m
=

σ2
Y P 2

2lsΓ
. (11)

Till now one can use all the analytical solutions con-

cerning the random motion of a molecule governed by

Eq. (5) by a simple substitution described in Eq. (11).

Under the condition, k2(s) � Γ 2

4
(adiabatic condi-

tion), one gets[15]:
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where k1 =

√

k(s)2− 1

4
Γ 2. The asymptotical values

for 〈y2〉, 〈y′2〉, and 〈yy′〉 for s→∞ are easily obtained:

〈y2〉=
kT

mk2(s)
=

σ2
Y τy

4T0k2(s)

(

e2Nek⊥,y(σz)

m0c2γ

)2

, (15)

〈y′2〉= k2(s)〈y2〉=
σ2

Y τy

4T0

(

e2Nek⊥,y(σz)

m0c2γ

)2

, (16)

〈yy′〉= 0 . (17)

Inserting Eqs. (15, 16), and (17) into the definitions

of the r.m.s. emittance shown in Eq. (18):

εw,y =
(

〈y2〉〈y′2〉−〈yy′〉2
)1/2

, (18)

one gets

εw,y =
σ2

Y τy

4T0k(s)

(

e2Nek⊥,y(σz)

m0c2γ

)2

, (19)

or

εw,y =
σ2

Y τy〈βy(s)〉
4T0

(

e2Nek⊥,y(σz)

m0c2γ

)2

, (20)

where 〈βy(s)〉 is the average beta function of the ma-

chine in y plane. Before proceeding further we remind

the reader that we had assumed a zero transverse di-

mension of the bunch (the bunch is represented as

a soft line). In reality, however, a bunch has finite

transverse dimension. A particle inside the bunch can

move like a molecule in a gas due to quantum effect

of synchrotron radiation. In electron storage rings

the “banana” shape of the bunch cannot be sustained

due to “mixing”; quite different from what happens

in a linac and a hadron storage ring where there is

no or little synchrotron radiation. To take this fact
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mathematically into account one rewrites Eq. (20) as

follows

εw,y =
σ2

Y τy〈βy(s)〉
4T0R3

ε,y

(

e2Nek⊥,y(σz)

m0c2γ

)2

, (21)

where Rε,y = εtotal,y/ε0,y, εtotal,y is the final emittance

for a given bunch population Ne, ε0,y is the emittance

zero current and the cubic functional dependence on

Rε,y can be regarded as an Ansatz. Finally we find

the expression for the emittance of a bunch corre-

sponding to a given bunch population

εtotal,y = ε0,y +εw,y =

ε0,y +
σ2

Y τy〈βy(s)〉
4T0

(

e2Nek⊥,y(σz)

m0c2γ

)2

. (22)

If we distinguish now the horizontal plane denoted by

the subscript x and the vertical plane denoted by the

subscript y, one gets the two emittance equations

Rε,x =
εtotal,x

ε0,x

= 1+
σ2

Xτx〈βx(s)〉
4T0ε0,xR3

ε,x

(

e2Nek⊥,x(σz0)

m0c2γRΘ
z

)2

,

(23)

Rε,y =
εtotal,y

ε0,y

= 1+
σ2

Y τy〈βy(s)〉
4T0ε0,yR3

ε,y

(

e2Nek⊥,y(σz0)

m0c2γRΘ
z

)2

.

(24)

where σz0 is the bunch length for zero current, Rz =

σz/σz0, and Θ = 0.7, which corresponds to SPEAR

scaling for transverse loss factor[10]. Since Rz is also a

function of Ne, it is obvious that one can start to solve

Eqs. (23) and (24) only if Rz(Ne) has been solved

from the bunch lengthening equation[14].

4 Application to the analysis of ATF

damping ring experimental results

The ATF damping ring is a machine dedicated to

feasibility studies of future e+e− linear colliders[16].

By applying the theory established above and ne-

glecting intrabeam scattering effects we try to explain

the ATF damping ring experimental results[7] with

the following machine parameters: E0 = 1.3 GeV,

〈βx〉 = 4.2 m, 〈βy〉 = 4.6 m, τx = 18.2 ms, τy =

29.2 ms, εx0 = 1.1 × 10−9 mrad, εy0 = 5.8× 10−11

mrad. The information about the bunch lengthening

with respect to Ne can be obtained either from ex-

perimental results[11, 12] or from analytical results[14]

shown in Fig. 2. Assuming k⊥,x(σz0) = k⊥,y(σz0) =

1020 V/pC/m (for comparison, in BEPC, k⊥,y(σz0) =

215 V/pC/m at σz0 = 1.53 cm[17]), for σz0 = 6.8 mm,

σX = 0.42 mm and σY = 0.163 mm the assumed

values of σX and σY are reasonable as compared

with BEPCII quadrupole installation miss-alignment

errors1), 0.2 mm required and 0.5 mm measured,

here we assume that the vacuum chamber’s installa-

tion miss-alignment errors are the same as that of

quadrupoles, by using Eqs. (23) and (24) one fits

the experimentally measured emittance growths vs

the bunch population as illustrated in Figs. 3 and 4,

where the experimental results correspond to the val-

ues denoted in Ref. [7] as “Wire scanner 2001/2/8”.

It is obvious that both the horizontal and vertical

emittances’ functional dependence on the bunch po-

pulation can be well fitted to the experimental re-

sults. We stress that σ2
X,Y = σ2

x,y,chamber + σ2
x,y,co,

where σx,y,chamber are the vacuum chamber misalign-

ment errors and σx,y,co are the closed orbit distortion

errors. It is obvious that to avoid excessive emittance

growth, both the closed orbit distortions and the

vacuum chamber misalignment errors should be care-

fully controlled with the same rigour.

Fig. 2. Bunch lengthening vs bunch population.

Fig. 3. Horizontal emittance vs bunch popula-

tion. The dots and solid line correspond to

the experimental and theoretical values, re-

spectively.

1)YU C H. private communication
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Fig. 4. Vertical emittance vs bunch popula-

tion. The dots and solid line correspond to

the experimental and theoretical values, re-

spectively.

To further check the validity of this theory and

to obtain more accurate values for k⊥,x(σz0) and

k⊥,y(σz0) one has to do more experiments by vary-

ing σX,Y .

5 Conclusion

In this paper we have established a theoretical

framework to explain the bunch transverse emittance

growth vs the bunch population in an electron stor-

age ring taking into account the transeverse wakefield

effect, which is supplementary to intrabeam scatter-

ing theory. New equilibrium emittance equations are

given and applied to explain the experimental results

from the ATF damping ring.

The author thanks J. Haissinski for discussions.
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