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Abstract The analytical solution of a multidimensional Langevin equation at the overdamping limit is ob-

tained and the probability of particles passing over a two-dimensional saddle point is discussed. These results

may break a path for studying further the fusion in superheavy elements synthesis.
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1 Introduction

The existence of superheavy elements is a long-

standing prediction based on the theory of the nu-

clear shell structure model since extra-stability would

be reached due to the shell closure of the nucleons[1].

In the last few decades, enormous efforts have been

made both theoretically and experimentally and great

achievements have been obtained in the synthesis of

superheavy elements[2]. More than twenty elements

have been synthesized artificially in the laboratory[3].

So far, however, we are far from completely under-

standing the mechanism of superheavy elements syn-

thesis. The fusion hindrance, which is described

with extra-push energy, is known to exist[4, 5] in the

massive systems. Although a lots of attempts have

been made to solve this forbidding problem and some

achievements have been successfully gained[6, 7], there

are a lot of problems which need to be solved in this

field.

A new theoretical model for the fusion mecha-

nism of massive unclear systems has been proposed

by Y. Abe and his cooperators in Ref. [8,9], in which

the fusion process is divided into two steps: an ap-

proaching phase up to the contact of two incident

ions and shape evolutions from the amalgamated con-

figuration to the spherical shape. In the approach-

ing phase of passing over the Coulomb barrier, the

system can be described as collision processes under

frictional forces. The evolutions of the amalgamated

mono-nuclear system toward the spherical shape are

also under the frictional forces acting in collective

motions of excited nuclei. Since the two steps are

connected successively, the results of the first step

not only give a probability for incident ions to stick

to each other, but also give the initial conditions for

the second step. Because the heat-up processes dur-

ing two-body collisions, the collective shape motions

of the system are under a strong dissipation stem-

ming from frequent interactions with the nucleons at

a finite temperature. Thus the whole process is de-

scribed by dissipation-fluctuation dynamics. That is

to say briefly, the process of synthesis of superheavy

elements via the way of massive nuclear collision is a

dissipation-fluctuation dynamics, in which there is an

additional saddle which must be dealt with carefully.

Under a series of assumptions, for instance, the

internal degrees of freedom are more quickly ther-

malized than the collective ones, and the dynamical

process can be described by the Langevin equation[10].
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However, this equation is not easy to solve for real

nuclear interaction. Therefore, the fusion barrier was

greatly simplified in order to explore the space-time

evolution of the distribution function or the proba-

bility. The most popular form of the fusion barrier

is taken as an inverted parabola and the study for

it has been done in Ref. [11] where the formal so-

lution of the Langevin equation and the probabili-

ties passing over the one-dimensional potential bar-

rier have been gained. Based on the work of Ref. [11],

in the present paper, we try to solve analytically the

Langevin equation with linear external force at the

overdamping limit and try to apply the result to the

two-dimensional barrier. Therefore, we first apply the

method used in Ref. [11] to solve analytically the two-

dimensional Langevin equation under the overdamp-

ing condition in the next section. In the third section,

we use these results to calculate the probability of nu-

cleons passing over a two-dimensional saddle point.

2 Analytical solution of the multidi-

mensional Langevin equation at the

overdamping limit

The spatiotemporal evolution of the many-body

system under the action of random force F(t) and

a linear external force is governed by the dynam-

ical equation with a vector of degrees of freedom

Z ≡ {z1,z2, · · · ,zn}, driven by the mass tensor M ,

the friction tensor G and the spring tensor S they

can be read as

M
d2Z

dt2
+G dZ

dt
−SZ =F(t). (1)

By using a transformation,

Y ≡ O−1M 1/2Z, β≡O−1M−1/2GM−1/2O,

R(t) ≡ O−1M−1/2F(t). (2)

Equation (1) can be transformed into the following

form,
d2Y

dt2
+β

dY

dt
−Ω2Y =R(t), (3)

where O is a orthogonal matrix with which the

matrix M−1/2SM−1/2 can be diagonalized, i. e.

O−1M−1/2SM−1/2O ≡ Ω2. Assuming the random

force is the Gaussian one, the first and second mo-

ments of them have the properties

〈R(t)〉= 0, 〈R(t)RT(t′)〉= 2Tβδ(t− t′). (4)

In general, it is not easy to get the analytical solu-

tion of the above-mentioned equation. However, Pro-

fessor Abe and his collabrators[11] have, fortunately,

paved a way to solve it analytically and the formal so-

lution has been obtained under the assumption that

Yi =
dYn+i

dt
, for i = 1,2, · · · ,n. (5)

In fact, the method proposed by Abe can be directly

used to solve the multidimensional Langevin equation

at the overdamping limit without this assumption.

In the strong friction limit, eliminating the faster

degrees of freedom, the Eq. (3) can been reduced as

β
dY

dt
−Ω2Y =R(t). (6)

This expression is just a dynamical equation of the

Gaussian stochastic processes in the configuration

space under the assumption that the relaxation of mo-

mentum variables is much faster than the coordinate

freedoms in the light of Smoluchowski’s opinion[12, 13].

It is easier to get the solution of Eq. (6) both ana-

lytically and numerically than of Eq. (3) in the same

dimensional cases because not only is the number of

variables less but the order of Eq. (6) is lower than

Eq. (3). For the n-dimensional situation, multiplying

Eq. (6) by β−1/2 and replacing Y with Q = β1/2Y , we

have the following one-order equation

dQ

dt
= β−1/2Ω2β−1/2Q+β−1/2R(t). (7)

Here Q = {q1, q2, · · · , qn}T and β−1/2R(t), β is the

n×n matrix while Ω2 is the n×n diagonalized one.

Diagonizing symmetric matrix β−1/2Ω2β−1/2 with

orthogonal matrix U as U−1β−1/2Ω2β−1/2U = D =
∑

i
|i > λi < i|. And defining

X = U−1Q, R(t) = U−1β−1/2R(t), (8)

then the solutions of Eq. (7), in the component form

are

Xi = eλitXi0 +

∫ t

0

eλi(t−τ)Ri(τ)dτ, (i = 1,2, · · · ,n).

(9)

As has been done in Ref. [11], take R(t) = Γν(t).

Here Γ is a n×n matrix and νi(t) is a n×1 one with

the following properties,

〈νi(t)〉= 0, 〈νi(t)νj(t
′)〉= δijδ(t− t′). (10)

{νi(t)} is the ith element of matrix ν(t). Taking into

account the symmetry of matrix β−1/2, we calculate

the correlation of R(t)R(t′) directly with Eqs. (8) and

(10), the matrix Γ and α≡U−1β−1/2Γ fulfill the fol-

lowing relations

ΓΓ T = 2Tβ, ααT = 2T. (11)

Here T is the temperature while the superscript T

indicates transposition of the matrix.
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For the case of the inverted parabolic potential,

V = −1

2
Ω2Q2, we can readily get the solution by

using the formulae given above. Let

xj(t)≡Xie
−λjt−Xj0 =

∫ t

0

e−λj(τ)Rj(τ)dτ , (12)

the distribution of {xj(t)} taking a set of sharp values

{xj} can be calculated with definition

w({xj}, t;{Xj0}) = 〈δ(x1−x1(t)) · · ·δ(xn−xn(t)〉=∫
dk1

2π
· · ·

∫
dkn

2π
exp{i[k1 · · ·kn]×









x1

· · ·
xn









}〈p(k1 · · ·kn)〉. (13)

With the functional integration technique and the

properties of the Gaussian random force as well as the

natures of the Markovian process, we finally have

w(x1, · · · ,xn, t;X10, · · · ,Xn0) =
1

√

(2π)n
√

DetA(t)
×

exp{−1

2
[x1, · · · ,xn]A−1(t)









x1

· · ·
xn









}, (14)

with

A(t) =
1

2
αD−1αT(1−e−2tD). (15)

The signs are the same as in Eq. (12).

Returning to the original variables, the distribu-

tion of {qi, i = 1,2, · · · ,n} reads

w(q1, · · · , qn, t;q10, · · · , qn0) =
1

√

(2π)n
√

DetA(t)
×

exp{−1

2
[q1−〈q1(t)〉, · · · , qn−〈qn(t)〉]×

A−1(t)









q1−〈q1(t)〉
· · ·

qn−〈qn(t)〉









}, (16)

with

A(t) = etDUA(t)UTetD. (17)

Inserting (4) and (11) in to (17), we have

A(t) = TD−1(e2tD −1). (18)

3 The probability of passing over a

saddle point with multi-parameters

at the overdamping limit

As is well known, in the real problems, a saddle

point has a certain range and complex shape. The rel-

ative height of the saddle point and the correspond-

ing form of the potential barrier are closely related to

the direction in which the particles move. In the pro-

cesses of heavy ion collisions, for instance, the move-

ment of the incident particles has not only the prop-

erties of the directional movement along the incident

direction but also thermal motion in other directions.

Therefore, the number of parameters needed to de-

scribe a saddle point depends both on the form of

the potential barrier and the direction of the particles

motion. In this section, we use the formulae obtained

before to study the probability of a nucleon passing

over a saddle point with various parameters at the

high friction limit in massive nuclear reactions.

The simpliest case is the one-dimensional motion

of the particle, the so-called one-dimensional prob-

lem, n = 1. For this case, the distribution function

can be found very easily

w(q, t;q0,0) =
1√
2π

ω
√

T (e
2ω2

β
t−1)

×

exp

{

− 1

2

[q−〈q(t)〉]2ω2

T (e
2ω2

β
t−1)

}

, (19)

with

U = 1, λ =
ω2

β
, R(t) = β−1/2R(t),〈q(t)〉= eλtq0.

(20)

Of course, these are the well known results from solv-

ing the Smoluchowski equation.

The slightly more complicated case compared

with the one-dimensional one is the two-dimensional

problem. This is a more real situation for complex

massive nuclear collision which is a subject of consid-

erable current interest. Most recently, C. Y. Wang et

al.[14] discussed the diffusion of a particle passing over

the saddle point of a two-dimensional quadratic po-

tential via a set of coupled Langevin equations. They

found that the passing probability is strongly influ-

enced by the off-diagonal components of inertia and

friction tensors and there exists an optimal injection

choice for the deformable target and projectile nuclei

to maximize the fusion probability. Here, in order

to get the analytical solution of the multidimensional

Langevin equation at high friction limits and show

the fundamental properties, we simply take the fric-

tion and spring tensors as

Q =

[

q1

q2

]

, Ω2 =

[

ω2
1 , 0

0,−ω2
2

]

, β =

[

β1, β12

β12, β2

]

. (21)

In this model the first degree of freedom indicates the

“valley” direction to the saddle and the second one

reflects the “confining” direction.
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The matrix β1/2 and β−1/2 can be found from

solving simultaneous equations. The process is cum-

bersome but straightforward. The results are

(β1/2)11 =
(β1/2)12

β12

(β1−
√

β1β2−β2
12),

(β1/2)22 =
(β1/2)12

β12

(β2−
√

β1β2−β2
12), (22)

(β1/2)12 =

√

β2
12(β1 +β2 +2

√

β1β2−β2
12)

(β1 +β2)2 +4β12

,

or

(β1/2)11 =
(β1/2)12

β12

(β1 +
√

β1β2−β2
12),

(β1/2)22 =
(β1/2)12

β12

(β2 +
√

β1β2−β2
12), (23)

(β1/2)12 =

√

β2
12(β1 +β2−2

√

β1β2−β2
12)

(β1 +β2)2 +4β12

,

β−1/2 =
(β1 +β2)

2 +4β12

(β1 +β2±2
√

β1β2−β2
12)[2β1β2∓(β1 +β2)

√

β1β2−β2
12]

(

(β1/2)22, −(β1/2)12

−(β1/2)12, (β1/2)11

)

. (24)

The upper line signs in the denominator of Eq. (24)

correspond to the values of Eq. (22), and the lower

line signs correspond to the values of Eq. (23).

The eigenvalues of matrix β−1/2Ω2β−1/2 can be

easily gotten. We denote them as λ1 and λ2 here and

they read

λ1 =
1

2
(η−κ), λ2 =

1

2
(η+κ), (25)

η = (β−1/2
11 )2ω2

1 −(β−1/2
22 )2ω2

2 ,

κ =

√

4[(β
−1/2
12 )2−β

−1/2
11 β

−1/2
22 ]2ω2

1ω
2
2 +η2 . (26)

Inserting them into Eq. (17) and with the relations
[

〈q1(t)〉
〈q2(t)〉

]

= etD

[

q10

q20

]

. (27)

We can find that the distribution is

w(q1, q2, t;q10, q20) =
1

2π
√

DetA(t)
×

exp

{

− 1

2
[q1−〈q1(t)〉, q2−〈q2(t)〉]×

A−1(t)

[

q1−〈q1(t)〉
q2−〈q2(t)〉

]

}

, (28)

with

Det(A(t)) =
T 2

λ1λ2

(e2λ1t−1)(e2λ2t−1),

A−1(t) =







λ1

T (e2λ1t−1)
, 0

0,
λ2

T (e2λ2t−1)






. (29)

The probability of a particle passing over the sad-

dle point can be obtained by performing the following

integration over q1 > 0, q2 > 0, i. e.

p(t;q10, q20) =

∫
∞

−∞

dq1

∫
∞

0

dq2w(q1, q2, t;q10, q20). (30)

And thus, we finally get the probability passing over

the saddle point at time t as

p(t;q10, q20) =

√

πT (e2λ1t−1)

2λ1

×

erfc

[

−
√

λ2e
2λ2t

2T (e2λ2t−1)
q20

]

. (31)

For the situation in which two incident nuclei have

a large mass asymmetry, the potential energy can be

drawn within the liquid drop model (LDM) for heavy

nuclear systems. The potential energy surface is a

typical two-dimensional problem in the space spanned

by the relative distance and the mass-asymmetry

coordinates[14]. If we take the relative distance of two

incident nuclei as q1 and the mass-asymmetry coordi-

nates as q2 =
A1−A2

A1 +A2

, here A1 and A2 are the mass of

incident nuclei. Then the probability of passing over

the saddle point is

p(t;q10, q20) =

∫
∞

0

dq1

∫+1

−1

dq2w(q1, q2, t;q10, q20) =

1

4
eηt 1
√

DetA(t)
[1+Erf(z1)][1+Erf(z2)],

(32)

(

z1

z2

)

=











√

λ1

2T (1−e−2λ1t)
cosθ, −

√

λ1

2T (1−e−2λ1t)
sinθ

√

λ2

2T (1−e−2λ2t)
sinθ,

√

λ2

2T (1−e−2λ2t)
cosθ











×





−β
1/2
11 q10 +β

1/2
12 (e−λ2t−q20)

−β
1/2
12 q10 +β

1/2
22 (e−λ2t−q20)



 . (33)
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η is given in Eq. (26) and θ reads

θ =
1

2
tan−1

{

[

2β
−1/2
12 (β−1/2

11 ω2
1 −β

−1/2
22 ω2

2)
]/

[

[(β−1/2
11 )2−(β−1/2

12 )2]ω2
1 +

[(β−1/2
22 )2−(β−1/2

12 )2]ω2
2

]

}

. (34)

In summary, the analytical solution of a multi-

dimensional Langevin equation at the overdamping

limit is obtained and the probability of particles

passing over a saddle point with multi-parameters is

discussed. Although we have only given the formal

solutions of the equation under the above-mentioned

condition without discussing a the detailed applica-

tion in concrete physical problems, we believe that

the method and the results given here may break a

path for studying further the fusion in superheavy

elements synthesis. As a matter of fact, as has been

pointed out in Refs. [6,7], the diffusion motion is a

fundamental phenomenon almost everywhere in na-

ture. The issue considered here is a typical problem

of diffusion and thus is of important physical rele-

vance. Therefore, both the results and the method

used in the present paper are instructive for studying

more complicated diffusion motion.

We would like to thank Prof. Y. Abe for advising

us to study this topic.
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