# Partial wave analysis of $J/\psi \to p\bar{p}\pi^0$ and measurement of $J/\psi \to p\bar{p}\eta, p\bar{p}{\eta'}^*$

YANG Hong-Xun(杨洪勋)<sup>1)</sup> (for the BES II collaboration)

(Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China)

**Abstract** Based on 58 million  $J/\psi$  data collected with the BES II detector at the BEPC, Partial Wave Analysis(PWA) is performed on  $J/\psi \to p\bar{p}\pi^0$ . The new excited baryon N(2065) is confirmed. Clear signals for other N\* states are observed and the corresponding masses, widths and spin-parity are also measured. Processes such as  $J/\psi \to p\bar{p}\eta, p\bar{p}\eta'$  are also studied and the branching ratios are measured.

Key words  $J/\psi$  Decays, PWA, Excited Baryon states, N(2065)

PACS 13.25.Gv, 12.38.Qk, 14.20.Gk

#### 1 Introduction

Nucleons are the basic building blocks of our world and the simplest system in which the three colors of QCD neutralize into colorless objects and the essential nonabelian character of QCD is manifest. The understanding of the internal quark-gluon structure of baryons is one of the most important tasks in both particle and nuclear physics. The systematic study of the baryon spectroscopy, various production and decay rates will provide us important information in understanding the nature of QCD in the confinement domain.

The  $J/\psi$  decays provide us a good laboratory for studying excited baryon states, excited hyperons and so on...So we try to search for those "missing baryons" which have been predicted by theory but not observed by experiment, study the masses, widths and spin-parity of those not well established states.

The upgraded Beijing Spectrometer (BES II [1]) detector, is a large solid-angle magnetic spectrometer. There are total of 58 million J/ $\psi$  data has been collected for physics analysis. BESII has reported a "new" excited states as N(2065)[2] with mass equals  $2065\pm 3^{+15}_{-30}$  MeV, width equals  $175\pm 12\pm 40$  MeV, the spin-parity is  $\frac{1}{2}^+$  or  $\frac{3}{2}^+$ . The analysis of J/ $\psi \to p\bar{p}\pi^0$ ,  $J/\psi \to p\bar{p}\eta$ ,  $p\bar{p}\eta'$  is reported here. PWA is performed on J/ $\psi \to p\bar{p}\pi^0$ . The new excited baryon N(2065)

is confirmed. Clear signals for other N\* states are observed and the corresponding masses, widths and spin-parity are also measured. In  $J/\psi\to p\bar p\eta$  and  $p\bar p\eta',$  there are obvious excited states and the branching ratios are also measured.

# ${f 2} \quad { m PWA} \,\, { m of} \,\, { m J}/\psi \,{ m op} {ar p} {ar m}^0$

There are clear peaks for  $\pi^0$  and  $\eta$  (Fig. 1). Only those events under  $\pi^0$  peak is analysised, and the background is estimated with side-band method. Fig. 2 shows the invariant mass spectra of mp $\pi^0$ , m $\bar{p}\pi^0$ . Clear N\* bumps are seen at around 1.5 GeV and 1.7 GeV of the p $\pi^0$  mass region. The Dalitz plot



Fig. 1. Invariant mass spectrum of  $\gamma\gamma$ , where are clear peaks for  $\pi^0$  and  $\eta$ .

Received 7 August 2009

<sup>\*</sup> Supported by National Natural Science Foundation of China (19991480)

 $<sup>1)\,</sup>E\text{-mail:}\,yanghx@mail.ihep.ac.cn$ 

<sup>©2009</sup> Chinese Physical Society and the Institute of High Energy Physics of the Chinese Academy of Sciences and the Institute of Modern Physics of the Chinese Academy of Sciences and IOP Publishing Ltd



Fig. 2. Invariant mass spectrum of (a)  $p\pi^0$ , (b)  $\bar{p}\pi^0$  in  $J/\psi \to p\bar{p}\pi^0$ , where the circles are invariant mass spectrum from  $\pi^0$  sideband, and black dots are the background estimated from  $J/\psi \to p\bar{p}\pi^0\pi^0$ .

of this decay is shown in Fig. 3 and some N\* bands are also present obviously.



Fig. 3. Dalitz plot of  $J/\psi \to p\bar{p}\pi^0$ . There are clear bands and clusters for excited baryon states.

#### 2.1 Intermediate resonances

The intermediate resonances considered in the PWA are listed in Table 1 with the masses, widths, spin-parities fixed to be their Particle Data Group values<sup>[3]</sup>. Among these states, only a few of them are (well) established states. N(1885) is one of the 'missing' N\* states predicted by quark model and has not been observed experimentally yet. N(2065) is also a 'missing' N\* observed recently by BES II <sup>[2]</sup>. As introduced in the framework of soft  $\pi$  meson theory<sup>[4]</sup>, the off-shell decay process is needed in this decay mode. Therefore, N(940) ( $M=940~{\rm MeV}, \cdots =0.0~{\rm MeV}$ ) is used in this analysis.

In fact, some of these resonances which have low significance or less contribution to the total process can be ignored in PWA. After careful analysis of each states, only those marked with  $\blacktriangle$  are included in the final fit.

#### 2.2 Partial wave analysis result

Figure 4 shows comparison between the PWA reuslt and the data distribution. The fitting result agrees with the data distribution pretty well. PWA result shows that N(2065) has a mass as  $2040^{+3}_{-4}\pm25\,\mathrm{MeV}$  and width as  $230\pm8\pm52\,\mathrm{MeV}$ . The spin-parity favors  $\frac{3}{2}^+$ , and it has a high significance( $\gg5\sigma s$ ). Table 2 shows the masses, widths, spin-parity, fractions and branching ratios for some resonances.



Fig. 4. The invariant mass spectrum of  $M_{\rm p\pi^0}$  and  $M_{\bar{\rm p}\pi^0}$  in the final fit. The crosses are real data and histograms are fit results.

Table 1. Resonances considered in the partial wave analysis.

|                  | ariar j bib. |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |              |
|------------------|--------------|----------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|
| resonance i      | mass/MeV     | $\mathrm{width/MeV}$ | $J^P$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | C.L.         |
| ▲N(940)          | 940          | 0                    | $\frac{1}{2}^{+}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | off-shell    |
| <b>▲</b> N(1440) | 1440         | 350                  | $\frac{1}{2}^{+}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ****         |
| <b>▲</b> N(1520) | 1520         | 125                  | $\frac{3}{2}^{-}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ****         |
| <b>▲</b> N(1535) | 1535         | 150                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ****         |
| <b>▲</b> N(1650) | 1650         | 150                  | $\frac{1}{2}^{-}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ****         |
| <b>▲</b> N(1675) | 1675         | 145                  | $\frac{5}{2}^{-}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ****         |
| <b>▲</b> N(1680) | 1680         | 130                  | $ \frac{1}{2} - \frac{1}{2} - \frac{1}{2} - \frac{1}{2} - \frac{1}{2} - \frac{1}{2} + \frac{1}{2} - 1$ | ****         |
| N(1700)          | 1700         | 100                  | $\frac{3}{2}^{-}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ***          |
| <b>▲</b> N(1710) | 1710         | 100                  | $\frac{1}{2}^{+}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ***          |
| N(1720)          | 1720         | 150                  | $\frac{3}{2}^{+}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ***          |
| N(1885)          | 1885         | 160                  | $\frac{3}{2}^{+}$ $\frac{3}{2}^{-}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 'missing' N* |
| N(1900)          | 1900         | 498                  | $\frac{3}{2}^{+}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | **           |
| N(2000)          | 2000         | 300                  | $\frac{5}{2}^{+}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | **           |
| <b>▲</b> N(2065) | 2065         | 150                  | $\frac{5}{2}^{+}$ $\frac{3}{2}^{+}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 'missing' N* |
| <b>▲</b> N(2080) | 2080         | 270                  | $\frac{3}{2}^{-}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | **           |
| N(2090)          | 2090         | 300                  | $\frac{1}{2}^{-}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | *            |
| <b>▲</b> N(2100) | 2100         | 260                  | $\frac{1}{2}$ +                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | *            |

<sup>\*\*\*\*</sup> Existence is certain, and properties are at least fairly well explored.

## 2.3 Branching ratio

The  $\pi^0$  signal is fitted with a histogram of  $\pi^0$  shape obtained from  $J/\psi \to p\bar{p}\pi^0$  MC simulation. The total number of signal is 11166. 100K  $J/\psi \to$ 

 $p\bar{p}\pi^0$  MC events including the intermediate excited states are generated to estimate the detection efficiency and the result is 13.77%. Finally , the branching ratio of  $J/\psi\to p\bar{p}\pi^0$  is determined to be  $(1.33\pm0.02\pm0.11)\times10^{-3}.$ 

Table 2. Masses and widths optimized results.

| resonance | $\mathrm{mass/MeV}$ | ${\rm width/MeV}$ | $J^P$             | fraction(%) |
|-----------|---------------------|-------------------|-------------------|-------------|
| N(1440)   | $1455^{+2}_{-7}$    | $316^{+5}_{-6}$   | $\frac{1}{2}^{+}$ | 16.37       |
| N(1520)   | $1513^{+3}_{-4}$    | $127^{+7}_{-8}$   | $\frac{3}{2}^{-}$ | 7.96        |
| N(1535)   | $1537^{+2}_{-6}$    | $135^{+8}_{-8}$   | $\frac{1}{2}^{-}$ | 7.58        |
| N(1650)   | $1650^{+3}_{-6}$    | $145^{+5}_{-10}$  | $\frac{1}{2}^{-}$ | 9.06        |
| N(1710)   | $1715^{+2}_{-2}$    | $95^{+2}_{-1}$    | $\frac{1}{2}^{+}$ | 25.33       |
| N(2065)   | $2040^{+3}_{-4}$    | $230^{+8}_{-8}$   | $\frac{3}{2}^{+}$ | 23.39       |

# 3 Measurement of $J/\psi \rightarrow p\bar{p}\eta, p\bar{p}\eta'$

In this analysis, the decay modes such as  $\eta \rightarrow \gamma \gamma$ ,  $\eta \to \pi^+\pi^-\pi^0$ ,  $\eta' \to \eta\pi^+\pi^-$  and  $\eta' \to \gamma\rho$  are included. Fig. 5 shows clear signals in the invariant mass spectrum of  $\gamma\gamma$  and  $\pi^+\pi^-\pi^0$  in  $J/\psi \to p\bar{p}\eta$ process. There are also peaks in the invariant mass spectrum of  $\eta \pi^+ \pi^-$  and  $\gamma \rho$  in  $J/\psi \to p\bar{p}\eta'$  process in Fig. 6. The signals of  $\eta$  and  $\eta'$  are fitted and the numbers of  $\eta$  is 12220±149 for  $\gamma\gamma$  process and 954±45 for  $\pi^+\pi^-\pi^0$ . The number of  $\eta'$  is  $65\pm 12$  for  $\pi^+\pi^-\eta$ process and  $200 \pm 29$  for  $\gamma \rho$ . Then branching ratios are obtained as listed in Table 3. We also try to find excited states int both processes. Fig. 7 shows the invariant mass spectrum of p̄p, pη, p̄η and dalitz plot of  $J/\psi \to p\bar{p}\eta$ . They differ much to the expected phase space distribution, that means intermediate states in the process. For  $J/\psi \to p\bar{p}\eta'$  process, there seems to be some resonances in the invariant mass spectrum, but there are not enough events to make sure the existence (Fig. 8).





Fig. 5. Signals of  $\eta$  in the invariant mass spectrum of  $\gamma \gamma$  and  $\pi^+ \pi^- \pi^0$ .

<sup>\*\*\*</sup> Existence ranges from very likely to certain, but further confirmation is desirable and/or quantum numbers, branching fractions, etc. are not well determined.

<sup>\*\*</sup> Evidence of existence is only fair.

<sup>\*</sup> Evidence of existence is poor.



Fig. 6. Signals of  $\eta'$  in the invariant mass spectrum of  $\pi^+\pi^-\eta$  and  $\gamma\rho$ .

Table 3. Branching ratios of  $J/\psi \to p\bar{p}\eta$  and  $J/\psi \to p\bar{p}\eta'$ .

| decay modes                                                                            | $Br(10^{-4})(PDG)$ | $Br(10^{-4})$          |
|----------------------------------------------------------------------------------------|--------------------|------------------------|
| $\mathrm{J}/\psi \to \mathrm{p\bar{p}} \eta (\eta \to \gamma \gamma)$                  | $20.9\pm1.8$       | $19.2 \pm 0.2 \pm 1.8$ |
| $J/\psi \mathop{\rightarrow} p\bar{p}\eta (\eta \mathop{\rightarrow} \pi^+\pi^-\pi^0)$ | $20.9\pm1.8$       | $18.3 \pm 0.9 \pm 2.4$ |
| $\mathrm{J}/\psi \to \mathrm{p\bar{p}} \eta' (\eta' \to \pi^+ \pi^- \eta)$             | $9\pm4$            | $2.3 \pm 0.4 \pm 0.4$  |
| $J/\psi \!\to\! p\bar p \eta' (\eta' \!\to\! \gamma \rho)$                             | $9\pm4$            | $1.9 \pm 0.3 \pm 0.3$  |



Fig. 7. Invariant mass spectrum of  $p\bar{p}$ ,  $p\eta$ ,  $\bar{p}\eta$  and dalitz plot for  $J/\psi \to p\bar{p}\eta$ . There are obvious structures for excited states.



Fig. 8. Invariant mass spectrum of  $p\bar{p}$ ,  $p\eta'$ ,  $\bar{p}\eta'$  and dalitz plot for  $J/\psi \to p\bar{p}\eta'$ . There seem to be structures for excited states.

### 4 Summary

Based on the J/ $\psi$  data sample collected at BES II ,  $J/\psi \to p\bar{p}\pi^0$  and  $J/\psi \to p\bar{p}\eta$ ,  $p\bar{p}\eta'$  are analyzed. PWA are performed on  $J/\psi \to p\bar{p}\pi^0$ , a new excited state N(2065) is confirmed and the masses,widths, spin-parity and branching ratios of some excited states

are studied. Obvious signals for ecxited states are also observed in  $J/\psi \to p\bar p \eta, p\bar p \eta',$  and the branching ratios of these two processes are measured.

The BESII collaboration thanks the BEPC staff for their strong efforts and thanks the member of IHEP computing center for their helpful assistance.

## References

- 1 BAI J Z et al (BES collaboration). Nucl. Inst. and Meths. A, 2001, 458: 627
- 2 Ablikim M et al (BES collaboration). Phys. Rev. Lett.,

2006, **97**: 062001

- 3 Amsler C et al. Phys. Lett. B, 2008, 667: 1
- 4 Adler L, Dashen R F. Current Algebra and Application to Particle Physics. New York: Benjamin, 1968; Lee B W. Chiral Dynamics. New York: Gordon and Breach, 1972