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Quantum electrodynamics with arbitrary charge

on a noncommutative space *
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Abstract Using the Seiberg-Witten map, we obtain a quantum electrodynamics on a noncommutative space,

which has arbitrary charge and keep the gauge invariance to at the leading order in theta. The one-loop

divergence and Compton scattering are reinvestigated. The noncommutative effects are larger than those in

ordinary noncommutative quantum electrodynamics.
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1 Introduction

The idea that coordinates can be noncommuta-

tive (NC) has a long history[1]. It has been thought

as a way to eliminate the infinities in quantum field

theory by providing a natural cut off, but the success

of renormalization obscures the idea.

In the past few years, noncommutativity has at-

tracted much attention[2]. It is widely accepted

that the open string’s end is attached on the D-

brane[2, 3], where the background Neveu-Schwarz

B field exists. It makes the string’s coordinates

noncommutative[2, 4—6], and gives an extra phase fac-

tor to the scattering amplitude[2]. The open string

theory indicates that we must replace the ordinary

product in the effective actions by the star product

f(x)∗g(x) = exp

(

i

2
θij ∂

∂ξi

∂
∂ηj

)

f(x+ξ)g(x+η)

∣

∣

∣

∣

ς,η=0

,

(1)

where θij is a function of the B field. Using the star

product, one can obtain the commutator for the co-

ordinates

[xµ,∗xν ] =xµ∗xν −xν∗xµ = iθµν . (2)

Replacing the ordinary product in the gauge field

actions by the star product, we get a noncommutative

gauge theory. The simplest noncommutative gauge

theory is the NCU(1) theory[7—13]. It has two im-

portant properties[12, 13]. One is that the theory isn’t

Lorentz invariance, and the other is that new vertices

such as three and four photon self-interactions are in-

troduced. It is similar to the non-abelian theory and

renormalizable the single loop level.

Unfortunately, there are some problems in the

NC gauge theory. First the ordinary SU(N) the-

ory, which is the foundation of the standard model,

can’t be extended to the NC SU(N) theory because

SU(N) group’s NC counterpart destroys the closure

condition[14, 15]. The only group which admits a sim-

ple noncommutative extension is U(N). In order to

get the NC SU(N) theory, the authors of Ref. [16]

use the Seiberg-Witten map to the get a low energy

effective theory. Second, the time components of θµν

leads to a the unitarity problem. Another problem is

the no-go theorem[14]: the matter fields can transform

nontrivially under at most two NC group factors. In

other words, the matter fields cannot carry more than

two NC gauge group charges. Additionally only the

NC U(1) charges 1, 0, −1 are allowed, because the

gauge transform is charge dependent

δâµ = ∂µ λ̂+ig[λ̂,∗âµ]. (3)

All this conflicts with observation. In the standard

model the matter fields can couple with three gauge
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fields, and the number of U(1) charges is higher than

three. We must introduce additional fields for the

new charge in the theory, and in addition there are

too many degrees of freedom. In the commutative

limit θµν → 0, this theory can’t coincide with ordi-

nary QED. The latter problem has been partly dealt

with in Ref. [17]. Calmet required that the U(1) field

depends explicitly on the charge Q, and found that

all of the NC U(1) fields could be expressed as a func-

tion of the ordinary U(1) field via the Seiberg-Witten

map

âξ = aξ +
g

4
θµν{aν ,∂µ aξ}+

g

4
θµν{fµξ,aν}, (4)

λ̂=λ+
gθµν

4
{∂µλ,aν}. (5)

They got an effective theory of the Standard Model.

In the effective theory all fields are ordinary fields.

But there is a flaw. The original NC U(1) action

isn’t gauge invariant, the reason is the same as the

Eq. (3). The new covariant derivative does not trans-

form covariantly.

This paper is aimed to constuct a NC U(1) the-

ory with arbitrary charge in a noncommutative space.

To avoid a problem with unitarity we assume that

only the space-space components of θµν are nonzero,

namely θ0ν = 0. It is organized as follows. In Sec-

tion 2, we construct the generalized form of the NC

U(1) theory. In Section 3, we discuss the one-loop

divergence of the theory, which has minimal devi-

ations from ordinary quantum electrodynamics, the

β function. In Section 4, we calculate noncommuta-

tive corrections of the Compton scattering amplitude.

Section 5 is the conclusion.

2 Noncommutative QED

In order to make different NC U(1) fields degen-

erate to the same ordinary U(1) field in the commu-

tative limite, we should require that all the NC U(1)

fields are functions of the classical gauge field aξ, as

Calmet did in Ref. [17].

âξ = aξ +
g

4
θµν{aν ,∂µ aξ}+

g

4
θµν{fµξ,aν}+O(θ),

â′ξ = aξ +
g′

4
θµν{aν ,∂µ aξ}+

g′

4
θµν{fµξ,aν}+O(θ).

(6)

It is easy to see that the different NC U(1) fields can

be expressed as local functions of each other. We are

interesting in the special NC U(1) field which provides

kinetic terms for all NC gauge fields. Its strength is

given by

f̂µν = ∂µ âν −∂ν âµ− ig[âµ,
∗ âν ]. (7)

The charge g is the NC U(1) field’s inherent property.

The action of the gauge field is invariant under the

gauge transformation.

Considering Eq. (6) , other NC U(1) gauge can be

rewritten as

â′ξ = âξ +
(g′−g)

4
θµν{f̂µξ +∂µ âξ,

∗ âν}+O(θ) . (8)

The action of the full NC U(1) theory is

L =

∫
ψ(iγµ ∂µ−m)ψ+g′ψ∗γµaµ

∗ψ+

g′
(g′−g)

4
θµνψ∗{f̂µξ +∂µ âξ,

∗ âν}
∗ψd4x−

1

4

∫
fµν

∗fµνd4x+O(θ)+Lothermatter . (9)

Here and in the following part of the paper, we ig-

nore the hat on the noncommutative field except in

special mention case, ψ is the matter with charge g′.

Lothermatter stands for the action of the matter with

different U(1) charges.

This NC U(1) theory isn’t invariant under the or-

dianary NC gauge transformation

δψ= ig′λ∗ψ . (10)

Noticing from Eq. (5) that λ is also charge dependent,

we must modify (10) as follows

δψ= ig′λ′∗ψ , (11)

where

λ′ =λ+
g′−g

4
θην{∂µλ,

∗aν}+O(θ). (12)

It is not hard to check that the NC U(1) theory

(Eq. (9)) is invariant under the gauge transformation

Eqs. (3) and (11) to first order in theta. Following

the same steps, we can go to the arbitrary order of θ,

and this way obtain an infinite contribution. So this

theory is a low energy effective theory and unrenor-

malizable. We will only consider the tree and single

loop processes, and ignore the terms of order O(θ).

The theory reduces to the ordinary U(1) theory in

the commutative limite.

By introducing a gauge fixing term and aghost

term, the effective action is[11]

Leff =L+

∫{

−
1

2
∂µ a

µ∗ ∂ν a
ν+∂µ

c∗(∂µ c−ig[aµ,
∗ c])

}

d4x .

(13)

The corresponding Feynman rules in the Feynman

gauge are given in Fig. 1.

The action (13) and Fig. 1 indicate that the theory

depends on the inherent charge g chosen. The minial

deviation from the ordinary U(1) theory is achieved

for g = 0; then the poton self-interaction and the

ghost field disappear (Fig. 1(f)—(h)). We will dis-

cuss this model in the next sections.
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Fig. 1. (a) Fermion propagator; (b) Photon propagator; (c) Ghost propagator; (d) Fermion photon vertex;
(e) Two photon Fermion vertex; (f) Ghost photon vertex; (g) Three photon vertex; (h) Four photon vertex;
(i) N photon Fermion vertex.

3 The one loop renormalised NC U(1)
theory

Using the Feynman rules of Fig. 1,we obtain cor-

rections to the fermion self-energy (Fig. 2), photon

self-energy (Fig. 3) and fermion photon vertex Fig. 4.

Fig. 2. Fermion self-energy.

Fig. 3. The photon self-energy.

Fig. 4. The corrections to the fermion photon vertex.

The fermion self-energy graph Fig. 2(b) is the

same as in ordinary QED[11, 13]. The phase factors

cancel with each other. The third Feynman graph is

zero. The renormalisation constant is

Z2 = 1−
g′2

16π2ε′
. (14)

The phase factors also cancel in Fig. 3(b), and the

contribution of Fig. 3(c) is equal to 0. The correction

to photon self-energy coincides with ordinary QED.

The renormalisation constant is[11, 13]

Z3 = 1−
g′2

16π2

4Nf

3ε′
. (15)
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Next we consider the corrections to the vertex.

Fig. 4(b) is no-planar graph, its phase factor contains

internal momentum. The integral is finite[13]. The

contributions of Fig. 4(c) and (d) are

Λµ = −
g′2

2
exp

(

iθαβP1αP2β

2

)∫{[

θµν(k1ξ −k2ξ)γ
ξ

2
−(k1ξθ

ξνγµ +k2ξθ
ξµγν)

]

i

γα(P1α −k2α)−m
ig′γν +

ig′γν

i

γα(P2α−k2α)−m

[

θµν(k1ξ +k2ξ)γ
ξ

2
−(k1ξθ

ξνγµ−k2ξθ
ξµγν)

]}

−i

k2
2

[1+exp(iθαβk1αk2β)]d4k2 . (16)

The integral is infinite. We can separate the infinite part

exp

(

iθαβP1αP2β

2

)

Λµ =−
g′π2

ε′
exp

(

iθαβP1αP2β

2

){[

θµνγξk1ξ

2
−k1ξθ

ξνγµ

](

γξP1ξ

2
+m

)

γν +

[

θµνγα

2
−θαµγν

]

(γξP1ξ +m)γνP1α +

[

θµνγα

2
+θαµγν

]

γβγν

[

gαβ

2

[

P 2
1

6
−
m2

2

]

+P1αP1β

]

+

γν

(

γξP2ξ

2
+m

)[

θµνγξk1ξ

2
−k1ξθ

ξνγµ

]

+γν(γ
ξP2ξ +m)

[

θµνγα

2
+θαµγν

]

P2α +

γνγ
α

[

θµνγβ

2
+θβµγν

][

gαβ

2

[

P 2
2

6
−
m2

2

]

+P2αP2β

]}

+finite . (17)

It is momentum dependent, and we can’t extract

γµ. The renormalisation constant Z1γ
µ of ordinary

QED must be replaced by

Z1γ
µ = γµ−Λµ . (18)

At this stage the theory is renormalised at the single

loop level.

As in ordinary QED, the bare parameter s are

g0 = g(µ)Z1Z
−1
2 Z

−
1

2

3 , (19)

θ
µν
0 = θµνZ−1

2 . (20)

Notice that Λµ contains θ as a factor. It is smaller

than the other renormalisation constants and it can

be discarded when investigating the asymptotic be-

havior. The running coupling constant and noncom-

mutativity constant satisfy

β(µ) =µ
∂

∂µ
g(µ) =

g′2

16π2
(2+

4

3
Nf ) , (21)

∂θαβ

∂ t
=µ

∂θαβ

∂µ
=

g′2

16π2
θαβ . (22)

They represent the infrared freedom. In the low en-

ergy limit the noncommutative effect is small.

4 The correction to Compton scatter-
ing

The two photon fermion vertex (Fig. 1(e)) must be

taken into account in Comptom scattering. Its con-

tribution may reveal the noncommutativity of space.

Comptom scatterings is described by Fig. 5.

In the high-energy limit, the amplitude in the cen-

ter of mass frame is proportional to

|MNC|
2 = |MC|

2 +δ |M |2 . (23)

where |MC|
2

is the contribution of the ordinary QED,

and the δ |M |
2
term is the effect of noncommutativity.

δ |M |2 =
−g′4

2m2

{

[(k×k
′) •θ]

(k •k
′)

E2
+

(E2−(k •k
′))[(k • θ)2 +(k′

•θ)2]+

(5E2−(k •k
′))(k •θ)(k′

•θ)−

(θ •θ)(E2−(k •k
′))(k •k

′)
}

. (24)

where θi = εijkθjk, E is the energy of the photon. We

can rewrite θ,k,k′ as

θ = (θ sinα, 0, θ cosα), (25)

k = (0, 0, E), (26)

k
′ = (E sinϕcosψ, E sinϕsinψ, E cosϕ). (27)

The δ |M |
2

term is given by

δ |M |
2

=
−g′4E4θ2

2m2

{

(sinϕsinψ sinα)2 cosϕ+

(1−cosϕ)[cos2α+(sinα sinϕcosψ+

cosαcosϕ)2]+

(5−cosϕ)cosα(sinϕcosψ sinα+

cosαcosϕ)−(1−cosϕ)cosϕ
}

. (28)

The vertex in Fig. 1(i) isn’t taken into account in

the calculation, because it given no contribution at
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Fig. 5.

the tree level. So the correction is exact at the order

of θ2. The correction depends on the direction of θ.

So the Lorentz invariance is violated. The right hand

of Eq. (28) is proportional to E4 which is bigger than

the result of Ref. [12], which is only proportional to

E2. The noncommutativity effect is more significant

than in the previous theory.

5 Conclusion

In this paper we construct a noncommutative

U(1) theory. Different from the previous theory, var-

ious charges can couple with the same gauge field. It

degenerates to the ordinary U(1) theory in the com-

mutative limite. But the gauge transformation of the

matter fields is nonlinear and charge dependent. We

must introduce an infinite vertex. The process in our

work is similar to Calmet’s[17], but there is a signifi-

cant difference. First all of the fields are noncommu-

tative variable. If we calculate the total processes at

low energies, the phase factor has a nontrivial effect

on the loop integral. Second if we rewrite Calmet’s

action in noncommutative space with the Seiberg-

Witten inverse map, we obtain a similar action except

the terms of Fig. 1(e), (i).

We also study the minimal modification model

which requires that the inherent charge of NC U(1)

field be equal to 0. The minimal modification model

has no self-interactiom vertex and the running cou-

pling constant and noncommutativity constant lead

to infrared freedom. At the single loop level and in

leading order of theta the theory is renormalized. The

study of Comptom scattering indicates that Lorentz

invariance is breakdown violated and the noncommu-

tative effect is more significant than in the previous

theory.
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