
Chinese Physics C (HEP & NP) Vol. 32, No. 2, Feb., 2008

Landau problem in noncommutative

quantum mechanics *
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Abstract The Landau problem in non-commutative quantum mechanics (NCQM) is studied. First by solving

the Schrödinger equations on noncommutative (NC) space we obtain the Landau energy levels and the energy

correction that is caused by space-space noncommutativity. Then we discuss the noncommutative phase space

case, namely, space-space and momentum-momentum non-commutative case, and we get the explicit expression

of the Hamiltonian as well as the corresponding eigenfunctions and eigenvalues.
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1 Introduction

Recently, there has been much interest in the

study of physics on noncommutative (NC) space[1—7],

not only because the NC space is necessary when

one studies the low energy effective theory of D-brane

with B field background, but also because in the very

tiny string scale or at very high energy situation, the

effects of non commutativity of both space-space and

momentum-momentum may appear. There are many

papers devoted to the study of various aspects of

quantum mechanics on noncommutative space with

usual (commutative) time coordinate.

In the noncommutative (NC) space the coordinate

and momentum operators satisfy the following com-

mutation relations

[x̂i, x̂j ] = iΘij , [p̂i, p̂j ] = 0, [x̂i, p̂j ] = i~δij , (1)

where x̂i and p̂i are the coordinate and momentum

operators on a NC space. Refs. [8, 9] showed that

p̂i = pi, and x̂i have the representation form

x̂i =xi−
1

2~
Θijpj , i, j= 1,2, ...,n. (2)

The case of both space-space and momentum-

momentum noncommuting[8, 9] is different from the

case of only space-space noncommuting. Thus in the

noncommutative (NC) phase space the momentum

operator in Eq. (1) satisfies the following commuta-

tion relations

[p̂i, p̂j ] = iΘ̄ij , i, j= 1,2, ...,n. (3)

Here {Θij} and {Θ̄ij} are totally antisymmetric ma-

trices which represent the noncommutative property

of the coordinate and momentum on noncommutative

space and phase space, respectively, and play analo-

gous role to ~ in the usual quantum mechanics. On

NC phase space the representations of x̂ and p̂ in

terms of x and p are given in Ref. [9] as follows

x̂i = αxi −
1

2~α
Θijpj ,

p̂i = αpi +
1

2~α
Θ̄ijxj , i, j= 1,2, ...,n.

(4)

The α here is a scaling constant related to the non-

commutativity of phase space. When Θ̄= 0, it leads

α=1[9], the NC phase space returns to the NC space,

which is extensively studied in the literature, where

the space-space is non-commuting, while momentum-

momentum is commuting.
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Given the NC space or NC phase space, one

should study its physical consequences. It appears

that the most natural places to search the noncommu-

tativity effects are simple quantum mechanics (QM)

system. So far many interesting topics in NCQM

such as hydrogen atom spectrum in an external mag-

netic field[10, 11], Aharonov-Bohm(AB) effect[12] in the

presence of the magnetic field, the Aharonov-Casher

effects[13], and Landau problem[14], as well as the

Van de Waals interactions and photoelectric effect

in noncommutative quantum mechanics[15] have been

studied extensively. The purpose of this paper is to

study the Landau problems on NC space and NC

phase space, respectively, where both space-space and

momentum-momentum noncommutativity could give

additional contribution.

This paper is organized as follows: In Section 2,

we study the Landau problem on NC space. By solv-

ing the Schrödinger equation in the presence of mag-

netic field we obtain all the energy levels. In Section

3, we investigate the Landau problem on NC phase

space. By solving the Schrödinger equation in the

presence of magnetic field, the additional terms re-

lated to the momentum-momentum noncommutativ-

ity is obtained explicitly. Conclusions are given in

Section 4.

2 The Landau problem on NC space

In this section we consider the two dimensional

Landau problem in the symmetric gauge on noncom-

mutative space. Let us consider a charged particle,

with electric charge q and mass µ, moving in two

dimensions (say x-y plane), and under uniform mag-

netic field B perpendicular to the plane (say z direc-

tion). The magnetic vector potential has the form,

Ax =−
1

2
By, Ay =

1

2
Bx, Az = 0 (5)

and then the Hamiltonian of the system has the fol-

lowing form,

H =
1

2µ

[(

p2
x +

qB

2c
y

)2

+

(

p2
y −

qB

2c
x

)2

+p2
z

]

=

1

2µ
(p2

x +p2
y)+

1

2
µω2

L(x2 +y2)−ωLlz +
1

2µ
p2

z , (6)

where ωL =
qB

2µc
, lz is the z component of the orbital

angular momentum and defined as lz =xpy−ypx. The

static Schrödinger equation on NC space is usually

written as

H(x,p)∗ψ=Eψ , (7)

where the Moyal-Weyl (or star) product between two

functions is defined by,

(f ∗g)(x) = e
i

2
Θij ∂xi

∂xj f(xi)g(xj) =

f(x)g(x)+
i

2
Θij ∂i f ∂j g

∣

∣

xi=xj
, (8)

here f(x) and g(x) are two arbitrary functions. On

NC space the star product can be replaced by a

Bopp’s shift[5], i.e. the star product can be changed

into the ordinary product by replacing H(x,p) with

H(x̂,p). Thus the Schrödinger Eq. (7) can be written

as,

H(x̂i,pi)ψ=H

(

xi−
1

2~
Θijpj ,pi

)

ψ=Eψ . (9)

In our case, the H(x̂,p) has the following form

H(x̂,p) =
1

2µ

[(

p2
x +

qB

2c
ŷ

)2

+

(

p2
y−

qB

2c
x̂

)2

+p2
z

]

=

1

2µ

{[(

1+
qB

4~c
θ

)

px +
qB

2c
y

]2

+

[(

1+
qB

4~c
θ

)

py−
qB

2c
x

]2

+p2
z

}

=

1

2µ′
(p2

x +p2
y)+

1

2
µ̃ω̃2

L(x2 +y2)−

ω̃Llz +
1

2µ
p2

z =Hxy +Hlz +H‖ , (10)

where

Hxy =
1

2µ̃
(p2

x +p2
y)+

1

2
µ̃ω̃2

L(x2 +y2),

Hlz =−ω̃Llz, H‖ =
1

2µ
p2

z ,

µ̃=
µ

(

1+
qB

4~c
θ

)2 , ω̃L =
qB

2µ̃c

(

1+
qB

4~c
θ

) , (11)

Hxy is the hamiltonian for two dimensional harmonic

oscillator with mass µ̃ and angular frequency ω̃L.

We now look for a basis of eigenvectors common to

Hxy (eigenvalues Exy), Hlz(eigenvalues Elz ), and H‖

(eigenvalues E‖). It is easy to show that the Hxy,

Hlz , and H‖ commute with each other. Therefore

the eigenvectors of {Hxy,Hlz ,H‖} will automatically

be eigenvectors of H with eigenvalues

E=Exy +Elz +E‖ . (12)

The eigenvectors ψk(z)∼ eikz of the momentum oper-

ator pz are also eigenvectors of H‖. Thus the eigen-

values of H‖ are of the form

E‖ =
~

2k2

2µ
, −∞<k<+∞ . (13)

We see that the spectrum of H‖ is continuous, the

energy E‖ can take any positive value or zero. This
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result implies thatH‖ describes the kinetic energy of a

free particle moving along the oz (along the direction

of magnetic field). The eigenfunctions ψm(ϕ)∼ eimϕ,

m= 0,±1,±2, . . . of lz are also wave functions of Hlz .

Therefore the eigenvalues of Hlz are

Elz =−m~ω̃L . (14)

Thus, now we shall concentrate on solving the eigen-

value equation of Hxy of two-dimensional harmonic

oscillator; note that the wave functions which we con-

sider now depend on x and y, and not on z. The

solution to Eq. (9) can be written as a product of

the solution for a static harmonic oscillator with the

phase factors responsible for the momentum and or-

bital angular momentum,

ψnρmk(ρ,ϕ,z) =R(ρ)eimϕeikz,

m= 0,±1,±2, . . . , −∞<k<+∞ . (15)

Inserting Eq. (15) into Eq. (9), and using cylindri-

cal coordinate system, we can obtain the following

radial equation for the two dimensional homogenous

harmonic oscillator
[

−
~

2

2µ̃

(

∂2

∂ρ2
+

1

ρ

∂
∂ρ

−
m2

ρ2

)

+
1

2
µω̃2

Lρ
2

]

R(ρ) =ExyR(ρ) .

(16)

Solving Eq. (16), the eigenvalues of the Hamiltonian

Hxy are

Exy = (N+1)~ω̃L , (17)

with N = (2nρ + |m|),nρ = 0,1,2, · · · ; and the corre-

sponding eigenfunctions are

R(ρ) = ρ|m|F (−nρ, |m|+1, ζ2ρ2)e−ζ2ρ2/2, ζ2 =
µ̃ω̃L

~
.

(18)

Therefore the energy eigenfunctions are

ψnρmk(ρϕ,z) = ρ|m|F (−nρ, |m|+1, ζ2ρ2)eimϕ+ikz .

(19)

The eigenvalues of the total Hamiltonian H are of the

form

E= (N+1)~ω̃L−m~ω̃L+
~

2k2

2µ
. (20)

The corresponding levels are called Landau levels.

Obviously, when θ = 0, then µ̃ → µ, ω̃L → ωL, our

results return to the space-space commuting case.

3 The Landau problem on NC phase

space

The Bose-Einstein statistics in NCQM requires

both space-space and momentum-momentum non-

commutativity. Thus we should also consider the

momentum-momentum non-commutativity when we

deal with physical problems. The star product in

Eq. (8) on NC phase space now is defined as

(f ∗g)(x,p) = e
i

2α2
Θij ∂x

i ∂x

j + i

2α2
Θ̄ij ∂p

i ∂p

j f(x,p)g(x,p) =

f(x,p)g(x,p)+
i

2α2
Θij ∂x

i f ∂x
j g

∣

∣

xi=xj
+

i

2α2
Θ̄ij ∂p

i f ∂p

j g
∣

∣

pi=pj
, (21)

which can be replaced by a generalized Bopp’s shift

xi → x̂i, pi → p̂i with x̂i and p̂i defined in

Eq. (4). Thus on noncommutative phase space the

Schrödinger Eq. (9) can be written as,

H(x̂i, p̂i)ψ=

H

(

αxi −
1

2~α
Θijpj ,αpi +

1

2~α
Θ̄ijxj

)

ψ=Eψ . (22)

In two dimensions we have,

x̂= αx−
θ

2~α
py, ŷ=αy+

θ

2~α
px,

p̂x = αpx +
θ̄

2~α
y, p̂y =αpy−

θ̄

2~α
x,

(23)

The three parameters θ, θ̄ and α represent the non-

commutativity of the phase space, it is related by

θ̄= 4~
2α2(1−α2)/θ , (24)

so only two of them are free in the theory and they

may depend on the space and energy scales. The

Hamiltonian for the two dimensional Landau prob-

lem on noncommutative phase space in the symmetric

gauge is

H(x̂, p̂) =
1

2µ

[(

p̂2
x +

qB

2c
ŷ

)2

+

(

p̂2
y −

qB

2c
x̂

)2

+ p̂2
z

]

=

1

2µ

{[(

α+
qB

4~αc
θ

)

px +

(

qB

2c
α+

θ̄

2~α

)

y

]2

+

[(

α+
qB

4~αc
θ

)

py−

(

qB

2c
α+

θ̄

2~α

)

x

]2

+p2
z

}

=

1

2µ̃′
(p2

x +p2
y)+

1

2
µ̃′ω̃′2

L (x2 +y2)− ω̃′
Llz +

1

2µ
p2

z =

H ′
xy − ω̃

′
Llz +

1

2µ
p2

z , (25)

where

µ̃′ =
µ

(

α+
qB

4~αc
θ

)2 , ω̃′
L =

qB

c
α+

θ̄

~α

2µ̃′

(

α+
qB

4~αc
θ

) ,

(26)

H ′
xy is the Hamiltonian for two dimensional harmonic

oscillator with mass µ̃′ and angular frequency ω̃′
L. In

an analogous way as in NC space, the solution to

Eq. (22) can be written as a product of the solution

for a static harmonic oscillator with the phase factors
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responsible for the momentum and orbital angular

momentum.

ψnρmk(ρ,ϕ,z) =R(ρ)eimϕeikz,

m= 0,±1,±2, . . . , −∞<k<+∞ . (27)

The eigenvalues of lz and pz are m~ and ~k, respec-

tively. Choosing cylindrical coordinate system, and

inserting Eq. (27) into Eq. (22), we can obtain the

following radial equation for the two dimensional ho-

mogenous harmonic oscillator
[

−
~

2

2µ̃′

(

∂2

∂ρ2
+

1

ρ

∂
∂ρ

−
m2

ρ2

)

+
1

2
µω̃′

2

Lρ
2

]

R(ρ) =E′
xyR(ρ) .

(28)

This eigenvalue equation of H ′
xy leads to the wave

functions

R(ρ) = ρ|m|F (−nρ, |m|+1, ζ ′2ρ2)e−ζ′2ρ2/2, ζ ′2 =
µ̃′ω̃′

L

~
.

(29)

with eigenvalue

E′
xy = (N+1)~ω̃′

L , (30)

where N = (2nρ + |m|),nρ = 0,1,2, · · · . Therefore the

total eigenfunctions of the Hamiltonian H are of the

form

ψnρmk(ρϕ,z) = ρ|m|F (−nρ, |m|+1, ζ ′2ρ2)eimϕ+ikz ,

(31)

where the term eikz describes a free particle moving

along the magnetic field, and the particle energy is

continuous. In the x-y plane, particle is confined in

a harmonic potential, energy is discontinuous. The

eigenvalues of the total HamiltonianH are of the form

E= (N+1)~ω̃′
L−m~ω̃′

L +
~

2k2

2µ
. (32)

The corresponding levels are called Landau levels on

NC phase space. Obviously, when θ 6= 0 and α= 1, it

leads to θ̄ = 0 (refer to Eq. (24)), such that µ̃′ → µ̃,

ω̃′
L → ω̃L, which is the space-space noncommuting

case. When both θ = 0 and θ̄ = 0 then µ̃′ → µ,

ω̃′
L →ωL, our results return to the case of usual quan-

tum mechanics.

4 Conclusion

In this letter we study the Landau problem in

NCQM. The consideration of the NC space and NC

phase space produces additional terms. In order to

obtain the NC space correction to the usual Lan-

dau energy levels, in Section 2, first, we give the

Schrödinger equation in the presence of a uniform

magnetic field; and then by solving the equation we

derive all the energy levels. In order to obtain the NC

phase space correction to the usual Landau problems,

in Section 3, we solve the Schrödinger equation in the

presence of a uniform magnetic field and obtain new

terms which comes from the momentum-momentum

noncommutativity.
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