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Klein-Gordon oscillators in noncommutative

phase space *
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Abstract We study the Klein-Gordon oscillators in non-commutative (NC) phase space. We find that the

Klein-Gordon oscillators in NC space and NC phase-space have a similar behaviour to the dynamics of a particle

in commutative space moving in a uniform magnetic field. By solving the Klein-Gordon equation in NC phase

space, we obtain the energy levels of the Klein-Gordon oscillators, where the additional terms related to the

space-space and momentum-momentum non-commutativity are given explicitly.
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1 Introduction

There are many papers devoted to the study

of various aspects of quantum mechanics in NC

space and NC phase space with the usual time

coordinate[1—15]. For example, the Aharonov-Bohm

phase in NC space and NC phase space has been stud-

ied in Refs. [1—3]. The Aharonov-Casher phase for

a spin-1/2 and spin-1 particle in NC space and NC

phase space has been studied in Refs. [4—8]. The

Landau problem in NC quantum mechanics has been

discussed in Refs. [9—12]. Ref. [13] studied the Klein-

Gordon oscillators in non-commutative space. It is

still interesting to study the Klein-Gordon oscillators

in non-commutative phase space.

This paper is organized as follows: in Section 2,

we discuss the Klein-Gordon oscillators in NC space.

In Section 3, we study the Klein-Gordon oscillators

in NC phase space. In Section 4, by solving the

Klein-Gordon equation, we deduce the energy levels

of a particle in a magnetic field in NC phase space.

A summary is given in the last section.

2 The Klein-Gordon oscillators in NC

space

In NC space the coordinate x̂i and momentum p̂i

operators satisfy the following commutation relations

[x̂i, x̂j ] = iθij , [p̂i, p̂j ] = 0, [x̂i, p̂j ] = i~δij . (1)

By replacing the normal product with a star product,

the Schrödinger equation in commuting space will

change into the Schrödinger equation in NC space.

H(p,x)∗ψ(x) =Eψ(x), (2)

where the Moyal-Weyl (or star) product between two

functions is defined as

(f ∗g)(x) = e
i

2
Θij ∂xi

∂xj f(xi)g(xj) =

f(x)g(x)+
i

2
Θij ∂i f ∂j g

∣

∣

xi=xj
+O(θ2).

(3)

Here f(x) and g(x) are two arbitrary functions. In-

stead of solving the NC Schrödinger equation by us-

ing the star product procedure, we use Bopp’s shift
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method, that is, we replace the star product in the

Schrödinger equation by the usual product by making

a Bopp’s shift

x̂i =xi−
1

2~
θijpj , p̂i = pi. (4)

Then the noncommutative Schrödinger equation can

be solved in the commuting space, and the non-

commutative properties can be realized by the θ re-

lated terms.

Studies in Refs.[9—12] have shown that the non-

relativistic harmonic oscillators in noncommutative

space have properties also encountered in the Lan-

dau problem in commutative space. Now , following

Ref. [13], we review the Klein-Gordon oscillators in

NC space. The the Klein-Gordon oscillators in two

dimensional commutative space is defined by the fol-

lowing equation

c2(p+imwr) •(p− imwr)ψ= (E2
−m2c4)ψ, (5)

By a straightforward calculation (in 2 dimensions) we

arrive at the following equation

c2[(p2
x +p2

y)+m
2w2(x2 +y2)]ψ=

(E2
−m2c4 +2mc2~w)ψ, (6)

with energy eigenvalues

E2
nxny

= 2mc2~w(nx +ny +1)+m2c4−2mc2~w. (7)

In a noncommutative space one may describe the

Klein-Gordon oscillators by the following equation

c2[(p+imwr) •(p− imwr)]∗ψ= (E2
−m2c4)ψ, (8)

Instead of solving the NC Klein-Gordon Eq. (8) by

using the star product, an equivalent method will be

used in this paper, i.e., we replace the star product

in the Klein-Gordon equation

c2[(p̂2
x + p̂2

y)+m
2w2(x̂2 + ŷ2)]ψ=

(E2
−m2c4 +2mc2~w)ψ, (9)

by the usual product with a Bopp’s shift Eq. (4). In

the two dimensional non-commutative space, Eq. (4)

becomes

x̂=x−
1

2~
θpy, ŷ= y+

1

2~
θpx, p̂x = px, p̂y = py. (10)

Inserting Eq. (10)into Eq. (9), we have

c2
[

(p2
x +p2

y)+m
2w2

(

x−
1

2~
θpy

)2

+

m2w2

(

y+
1

2~
θpx

)2]

ψ= (E2
−m2c4 +2mc2~w)ψ.

(11)

By a straightforward calculation, we arrive at the fol-

lowing equation

c2
[(

1+
m2w2θ2

4~2

)

(p2
x +p2

y)+m
2w2(x2 +y2)−

m2w2θ

~
Lz

]

ψ= (E2
−m2c4 +2mc2~w)ψ. (12)

Neglecting terms with θ2, we have

c2
[

(p2
x +p2

y)+m
2w2(x2 +y2)−

m2w2θ

~
Lz

]

ψ=

(E2
−m2c4 +2mc2~w)ψ. (13)

The energy eigenvalues are given by

E2
nxnym`

= 2mc2~ω(nx +ny +1)−
(

m2w2c2θ

~

)

m`~+m2c4−2mc2~w (14)

and indicate a similarity to the normal Zeeman effect.

3 The Klein-Gordon oscillators in NC

phase space

The Bose-Einstein statistics in non-commutative

quantum mechanics requires both space-space and

momentum-momentum non-commutativity. On NC

phase space, we replace the commutation relations

(1) by

[x̂i, x̂j ] = iθij , [p̂i, p̂j ] = iθ̄ij , [x̂i, p̂j ] = i~δij. (15)

The Schrödinger equation in NC phase space is the

same as given in Eq. (2), but the star product in

Eq. (2), for NC phase space, is defined by,

(f ∗g)(x,p) = e
i

2α2
θij ∂x

i ∂x
j + i

2α2
θ̄ij ∂p

i
∂p

j f(x,p)g(x,p) =

f(x,p)g(x,p)+
i

2α2
θij ∂x

i f ∂x

j g
∣

∣

xi=xj
+

i

2α2
θ̄ij ∂p

i f ∂p

j g
∣

∣

pi=pj
+O(θ2), (16)

where O(θ2) stands for the second and higher order

terms of θ and θ̄. In NC phase space the star prod-

uct in the Schrödinger equation can be replaced by

a generalized Bopp’s shift, i.e., the non-commutative

coordinates and momenta are shifted by

xi → x̂i = αxi−
1

2α~
θijpj ,

pi → p̂i = αpi +
1

2α~
θ̄ijxj . (17)

Now we are in the position to discuss the energy

levels of the Klein-Gordon oscillators in NC phase

space . In two dimensional NC phase space, Eq. (17)

becomes

x̂ = αx−
1

2α~
θpy, ŷ=αy+

1

2α~
θpx,

p̂x = αpx +
1

2α~
θ̄y, p̂y =αpy−

1

2α~
θ̄x. (18)
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Inserting Eq. (18) into Eq. (9), we have

c2
{(

αpx +
1

2α~
θ̄y

)2

+

(

αpy −
1

2α~
θ̄x

)2

+

m2w2

[(

αx−
1

2α~
θpy

)2

+

(

αy+
1

2α~
θpx

)2 ]}

ψ=

(E2
−m2c4 +2mc2~w)ψ. (19)

With a similar procedure as in NC space, we ob-

tain the following Klein-Gordon equation in NC phase

space

c2
[

α2(p2
x +p2

y)+α
2m2w2(x2 +y2)−

θ̄+m2w2θ

~
Lz

]

ψ=

(E2
−m2c4 +2mc2~w)ψ, (20)

and the energy eigenvalues are given by

E2
nxnym`

= 2mc2~Ω(nx +ny +1)−
(

c2θ̄+m2w2c2θ

~

)

m`~+m2c4−2mc2~w,

(21)

where

Ω=wα2 . (22)

The energy levels E2
nxnym`

represent both, space-

space and momentum-momentum non-commutativity.

In a 2 dimensional non-commutative plane, θ̄ij = θ̄εij ,

and the two NC parameters θ and θ̄ are related by

θ̄= 4α2
~

2(1−α2)/θ[15]. If α= 1, then θ̄ij = 0, and the

E2
nxnym`

(Eq. (21)) in NC phase space will return to

E2
nxnym`

(Eq. (13)) in NC space.

By comparing Eq. (12) and Eq. (20) with the Lan-

dau problem in non-relativistic quantum mechanics,

one finds that the Klein-Gordon oscillators in non-

commutative space and noncommutative phase-space

have similar properties as the dynamics of a particle

in a uniform magnetic field in a commutative space.

4 Energy levels of the Klein-Gordon

equation for a particle in a uniform

magnetic field in NC phase space

In this section we discuss the energy levels of the

Klein-Gordon equation for a particle in a uniform

magnetic field in NC phase space. The Klein-Gordon

equation for a particle in a uniform magnetic field in

a commutative space can be written as

c2
[(

p−
e

c
A

)]

•

[(

p−
e

c
A

)]

ψ= (E2
−m2c4)ψ, (23)

where

A =
B×r

2
. (24)

Substituting Eq. (24) into Eq. (23)one gets

c2[(p2
x +p2

y)+

(

e2B2

4c2

)

(x2 +y2)−

eB

c
(xpy −ypx)]ψ= (E2

−m2c4)ψ. (25)

By comparing Eq. (25) with the Eq. (12) and

Eq. (20) one finds that, even in the relativistic case,

the Klein-Gordon oscillators in non-commutative

space and noncommutative phase-space also have a

behaviour similar to the dynamics of a particle in a

uniform magnetic field in commutative space.

In NC phase space Eq. (25) can be written as

c2
[

(p2
x +p2

y)+

(

e2B2

4c2

)

(x2 +y2)−

eB

c
(xpy −ypx)

]

∗ψ= (E2
−m2c4)∗ψ. (26)

After replacing the star product with the shift defined

in Eq. (18), one obtains

c2
{(

αpx +
1

2α~
θ̄y

)2

+

(

αpy −
1

2α~
θ̄x

)2

+

m2ω2
1

[(

αx−
1

2α~
θpy

)2

+

(

αy+
1

2α~
θpx

)2 ]

−

2mω1

[(

αx−
1

2α~
θpy

)(

αpy −
1

2α~
θ̄x

)

−

(

αy+
1

2α~
θpx

)(

αpx +
1

2α~
θ̄y

)]}

ψ=

(E2
−m2c4)ψ, (27)

where

ω1 =
eB

2mc
. (28)

By a further simplification we get the Klein-Gordon

equation for a particle in a constant magnetic field in

NC phase space as

c2
[(

α2 +
mω1θ

~

)

(p2
x +p2

y)+

(

α2 +
θ̄

~mω1

)

m2ω2
1(x

2 +y2)−

θ̄+m2ω2
1θ+2m~ω1

~
Lz

]

ψ= (E2
−m2c4)ψ. (29)

The energy eigenvalues are given by

E2
nxnym`

= 2mc2~Ω1(nx +ny +1)−
(

c2θ̄+m2ω2
1c

2θ+2mc2~ω1

~

)

m`~+m2c4,

(30)

where
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Ω1 =ω1

√

α2 +
mω1θ

~

√

α2 +
θ̄

~mω1

. (31)

The energy levels E2
nxnym`

contain the effects of

both, space-space and momentum-momentum non-

commutativity.

5 Summary

First, we discussed the energy levels of the Klein-

Gordon oscillators in NC space. Then we obtained

the energy levels of the Klein-Gordon oscillators in

NC phase space. At last, we obtained the energy

levels of the Klein-Gordon oscillators for a particle

in a constant magnetic field in NC phase space. We

note that the known similarity between an oscilla-

tors in non-commutative space and a particle in a

constant magnetic field[9—12] can be extended to rel-

ativistic motion.
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