Measurement of Strong Coupling Constant at Low Energy Range^{*}

HU Jun-Hui^{1,2} WENG Yao^{2;1)} HU Hai-Ming² YANG Yong-Xu¹ GAO Yuan-Ning³ WANG Jun⁴

1 (College of Physics and Electronic Engineering, Guangxi Normal University, Guilin 541004, China)

2 (Institute of High Energy Physics, CAS, Beijing 100049, China)

3 (Department of Engineering Physics, Tsinghua University, Beijing 100084, China)

4 (Department of Physics, Kunming Teacher's College, Kunming 650034, China)

Abstract The strong coupling $\alpha_{\rm s}(s)$ is an important free parameter of Quantum Chromodynamics. Based on R values measured at BES, the values of the strong running coupling constant $\alpha_{\rm s}(s)$ at 2.0—3.7GeV are determined using the $\mathscr{O}(\alpha_{\rm s}^3)$ and $\mathscr{O}(\alpha_{\rm s}^4)$ order expressions calculated by pQCD, then $\alpha_{\rm s}(s)$ is deduced to the M_z scale. The numerical prediction on the improvement of the uncertainty of $\alpha_{\rm s}(s)$ with the decrease of the experimental error of R value in the future experiment is also given.

Key words R value, strong coupling constant, least squares fit

1 Introduction

The strong coupling α_s is a basic parameter in Quantum Chromodynamics (QCD). The precise determination of α_s and its evolution with energy have significant effects on all the hadronic theories and experiments. QCD predicts the energy dependence of α_s and the asymptotic freedom property. But the actual value of α_s cannot be predicted by QCD, it must be determined from experiments, such as deep inelastic scattering^[1], τ decay^[2, 3] and e⁺e⁻ annihilation^[4] processes.

The cross section of $e^+e^- \rightarrow hadrons$ is often expressed as R value, $\sigma_{had}(s) = R \cdot \sigma_{\mu\mu}(s)$, where s is the squared center-of-mass energy in e^+e^- annihilation. The value of α_s can be obtained by solving the equation $R_{QCD}(\alpha_s) = R_{exp}(s)$ with the conventional method^[4], where $R_{QCD}(\alpha_s)$ is the expression calculated by perturbative QCD, and R_{exp} is the experimental R value. Fig. 1 shows the values of α_s and their uncertainties determined from experiments.

In this work, R values measured at BES^[5, 6] be-

tween 2.0—3.7GeV are used to determine α_s by both means of solving the equation and the least squares fitting respectively, and give its evolution to M_z scale. Through the latter method we can obtain the dimensional parameter Λ of QCD, and may predict the value of $\alpha_s(s)$ at any energy in the fitting region, instead of only getting the separate values of $\alpha_s(s_i)$ at the experimental energy points s_i , like the issue in the scheme of solving the equation. In the last section,

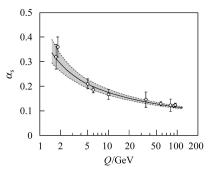


Fig. 1. The energy dependence of α_s . The hollow dots with error bars are experimental results. The dash line is the experimental average, and the shadow indicates the region within $\pm 1\sigma$.

Received 25 August 2006, Revised 26 September 2006

^{*} Supported by National Natural Science Foundation of China (10491300)

¹⁾ E-mail: wengy@ihep.ac.cn

the numerical prediction on the improvement of the uncertainty of $\alpha_{\rm s}(s)$ with the decrease of the experimental error of R value is also given.

2 QCD predictions on $\alpha_{\rm s}(s)$ and R

In QCD, $\alpha_{\rm s}(s)$ actually depends on the energy scale Q^2 . If the renormalized coupling $\alpha_{\rm s}$ is fixed at a certain given scale μ^2 , QCD can precisely derive the value of $\alpha_{\rm s}$ at any other energy scale Q^2 through the renormalization group equation^[7]

$$Q^2 \frac{\partial \alpha_{\rm s}(Q^2)}{\partial Q^2} = \beta(\alpha_{\rm s}(Q^2)). \tag{1}$$

In complete 4-loop approximation and using the Λ -parametrization, the running coupling is given by

$$\begin{aligned} \alpha_{\rm s}(Q^2) &= \frac{1}{\beta_0 L} - \frac{\beta_1 \ln(L)}{\beta_0^3 L^2} + \\ &\frac{1}{\beta_0^3 L^3} \left(\frac{\beta_1^2}{\beta_0^2} (\ln^2(L) - \ln(L) - 1) + \frac{\beta_2}{\beta_0} \right) + \\ &\frac{1}{\beta^4 L^4} \left[\frac{\beta_1^3}{\beta_0^3} \left(-\ln^3(L) + \frac{5}{2} \ln^2 L + 2 \ln L - \frac{1}{2} \right) - \\ &3 \frac{\beta_1 \beta_2}{\beta_0^2} \ln(L) + \frac{\beta_3}{2\beta_0} \right], \end{aligned}$$
(2)

where $L = \ln(Q^2/\Lambda_{\overline{MS}}^2)$, \overline{MS} indicates the modified minimal subtraction scheme, and

$$\begin{split} \beta_0 &= \frac{33 - 2N_{\rm f}}{12\pi}, \\ \beta_1 &= \frac{153 - 19N_{\rm f}}{24\pi^2}, \\ \beta_2 &= \frac{77139 - 15099N_{\rm f} + 325N_{\rm f}^2}{3456\pi^3}, \\ \beta_3 &\approx \frac{29243 - 6946.3N_{\rm f} + 405.089N_{\rm f}^2 + 1.49931N_{\rm f}^3}{256\pi^4} \end{split}$$

with the number of active flavor $N_{\rm f}$.

The strong coupling $\alpha_{\rm s}$ is not a direct observable quantity by itself, it should be determined by the experimental observable. *R* value can be expressed by a perturbation series in powers of the coupling parameter $\alpha_{\rm s}(s)$. Up to the $\mathscr{O}(\alpha_{\rm s}^3)$ order, it may be written as^[8]:

$$R_{\rm QCD}(s) = 3\sum_{\rm f} Q_{\rm f}^2 \left[1 + \left(\frac{\alpha_{\rm s}(s)}{\pi}\right) + r_1 \left(\frac{\alpha_{\rm s}(s)}{\pi}\right)^2 + r_2 \left(\frac{\alpha_{\rm s}(s)}{\pi}\right)^3 \right] + \mathcal{O}(\alpha_{\rm s}^4), \qquad (3)$$

where

with quark electric charge $Q_{\rm f}$. In this work, $N_{\rm f}=3$ and $Q_{\rm f}$ is the electric charge of u, d, s quark.

If considering the higher order QCD correction, i.e. up to the 4-loop approximation $(\mathscr{O}(\alpha_s^4))^{[9]}$,

$$R_{\rm QCD}(s) = 3\sum_{\rm f} Q_{\rm f}^2 \left[1 + \left(\frac{\alpha_{\rm s}(s)}{\pi}\right) + (1.98571 - 0.115295N_{\rm f}) \left(\frac{\alpha_{\rm s}(s)}{\pi}\right)^2 + (-6.63694 - 1.20013N_{\rm f} - 0.00517836N_{\rm f}^2) \left(\frac{\alpha_{\rm s}(s)}{\pi}\right)^3 + \left(\frac{\alpha_{\rm s}(s)}{\pi}\right)^4 r_0^{\rm V,4} \right] + \mathcal{O}(\alpha_{\rm s}^5).$$
(4)

For the coefficient of $\left(\frac{\alpha_{\rm s}(s)}{\pi}\right)^4$, it can be further decomposed as a polynomial in $N_{\rm f}$, namely

$$r_0^{\mathrm{V},4} = r_{0,0}^{\mathrm{V},4} + r_{0,1}^{\mathrm{V},4} N_{\mathrm{f}} + r_{0,2}^{\mathrm{V},4} N_{\mathrm{f}}^2 + r_{0,3}^{\mathrm{V},4} N_{\mathrm{f}}^3, \qquad (5)$$

 $\operatorname{with}^{[10]}$

$$\begin{split} r^{\mathrm{V},4}_{0,0} = -186, \qquad r^{\mathrm{V},4}_{0,1} = 21.3, \\ r^{\mathrm{V},4}_{0,2} = -0.797, \qquad r^{\mathrm{V},4}_{0,3} = 2.15 \times 10^{-2}. \end{split}$$

In the above calculations, the massless approximation for the u, d and s quarks are adopted.

3 The determination of $\alpha_{\rm s}(s)$

The energy range 2.0—3.7GeV belongs to the continuous region (except for the narrow resonances J/ψ and ψ'), and it is below the open charm threshold. The interactive energy is far larger than the mass of the active quarks (u, d and s), so the prediction of the perturbative QCD is reliable in this energy region. In the following, two methods are used to determine α_s from the measured R values, one is to solve the equation, and the other is to adopt the method of least squares. In QCD, the energy dependence of the running α_s is a smooth curve, so using the least squares fitting guarantees the consistency and smoothness of the energy dependence of α_s , and avoids the discrepancy of the value of α_s brought by the experimental errors of R value in the method of solving equation.

It is noticed that QCD indicates the strict restriction on the value of $R_{\rm QCD}$. Fig. 2 shows the variation of $R_{\rm QCD}$ with $\alpha_{\rm s}$ varying from 0.0 to 1.0. It is found that the maximum $R_{\rm QCD}$ predicted by QCD theory is 2.385 for 3-loop approximation, and 2.1985 for 4-loop approximation. Therefore, some experimental values $R_{\rm exp}$ between 2.0—3.7GeV measured with BEPC/BES and other groups surpass the upper limit permitted by QCD, hence only the *R* values at four energy points $\sqrt{s}=2.8$, 2.9, 3.0 and 3.7GeV are used in the method of solving equation, and the *R* values at eleven energy points $\sqrt{s}=2.0$, 2.2, 2.4, 2.5, 2.6, 2.7, 2.8, 2.9, 3.0, 3.7 and 3.73GeV are adopted in the least squares fitting.

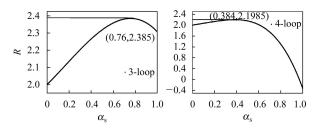


Fig. 2. The variation of theoretical $R_{\rm QCD}$ with $\alpha_{\rm s}$, the left one is for Eq. (3), and the right one is for Eq. (4).

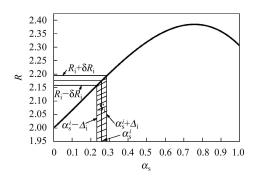


Fig. 3. The error calculation of $\overline{\alpha_s}(5 \text{GeV})$.

In the method of solving the algebraic equation, it is supposed that the theoretical $R_{\text{QCD}}(s)$ is equal to the experimental value within one standard deviation: $R_{\rm QCD} = R_{\rm exp} \pm \Delta R_{\rm exp}$, then $\alpha_{\rm s}(s) \pm \Delta \alpha_{\rm s}(s)$ at energy s is obtained by solving Eq. (3) or Eq. (4). The value of $\alpha_{\rm s}(s)$ at other energy scale (usually to the standard reference scale $M_{\rm Z}$) can be derived from Eq. (2)^[11]. The error calculation of $\alpha_{\rm s}(s)$ at each energy point is direct: the experimental values are taken as $R_{\rm ex} + \Delta R_{\rm exp}$ and $R_{\rm ex} - \Delta R_{\rm exp}$ respectively, and $\alpha_{\rm s-\Delta_i}^{+\Delta_i}$ are obtained, in which $\Delta_{\rm i}$ and Δ_i' are unsymmetrical errors. All $\alpha_{\rm s}(s_{\rm i})$ may evolve to 5GeV using Eq. (2). And for the calculation of the $\overline{\alpha_{\rm s}}(5 \text{GeV})$, the area shown in Fig. 3 is used. The $R_{\rm QCD}$ curve and the two vertical lines cross $\alpha_{\rm s}$ axis at $\alpha_{\rm si} + \Delta_{\rm i}$ and $\alpha_{\rm si} - \Delta_i'$ construct a region with area $S_{\rm i}$. The weighted average of $\alpha_{\rm s}(5 \text{GeV})$ is

$$\overline{\alpha_{\rm s}}(5 {\rm GeV}) = \frac{\sum_{\rm i} \frac{\alpha_{\rm s}(s_{\rm i})}{S_{\rm i}}}{\sum_{\rm i} \frac{1}{S_{\rm i}}} , \qquad (6)$$

where the area is

$$S_{\rm i} = \int_{\alpha_{\rm s}(s_{\rm i}) - \Delta_{\rm i}'}^{\alpha_{\rm s}(s_{\rm i}) + \Delta_{\rm i}} R(\alpha_{\rm s}) \mathrm{d}\alpha_{\rm s} .$$
 (7)

The upper and the lower errors $\overline{\Delta}_{up}$ and $\overline{\Delta}_{down}$ of $\overline{\alpha}_{\overline{s}}(5 \text{GeV})$ are calculated respectively through

$$\overline{\Delta}_{\rm up} = \sqrt{\frac{1}{\sum_{\rm i} \frac{1}{\Delta_{\rm i}^2}}} , \qquad \overline{\Delta}_{\rm down} = \sqrt{\frac{1}{\sum_{\rm i} \frac{1}{\Delta_{\rm i}^{\prime 2}}}} . \tag{8}$$

Evolving $\overline{\alpha_{\rm s}}(5 {\rm GeV})$ up to $M_{\rm Z}$, we have

$$\alpha_{\rm s}(M_{\rm z}) = 0.129^{+0.014}_{-0.021} , \qquad (9)$$

which agrees with the world average value within error^[12], $\alpha_{\rm s}(M_{\rm z}) = 0.1176 \pm 0.002$. The results are summarized in Table 1 and Table 2.

The second method is the least squares fitting. The object function of fitting is

$$\chi^{2} = \sum_{i} \frac{\left(f \cdot R_{exp}(s_{i}) - R_{QCD}(s_{i})\right)^{2}}{\left(f \cdot \Delta \tilde{R}_{exp}^{(i)}\right)^{2}} + \frac{(f-1)^{2}}{\sigma_{f}^{2}}, \quad (10)$$

Table 1. The values of α_s determined by R values measured with BES at 2.8, 2.9, 3.0 and 3.7 GeV. The values of α_s evolving to 5 GeV are also shown. The first term is statistical error, and the second term is systematical error.

\sqrt{s}/GeV	$R_{\rm exp}$	$lpha_{ m s}(s)$	$\alpha_{\rm s}/5{ m GeV}$
	1		-,
2.80	$2.17 \pm 0.06 \pm 0.14$	$0.251^{+0.091+0.233}_{-0.087-0.215}$	$0.207^{+0.056+0.126}_{-0.063-0.162}$
2.90	$2.22 \pm 0.07 \pm 0.13$	$0.326^{+0.118+0.249}_{-0.105-0.192}$	$0.257\substack{+0.064+0.121\\-0.069-0.135}$
3.00	$2.21 \pm 0.05 \pm 0.11$	$0.311\substack{+0.080+0.215\\-0.075-0.162}$	$0.251\substack{+0.047+0.114\\-0.050-0.116}$
3.70	$2.23 \pm 0.08 \pm 0.08$	$0.342_{-0.121-0.121}^{+0.141+0.141}$	$0.296\substack{+0.095+0.095\\-0.098-0.094}$

Table 2. The evolution of α_s from 5GeV to M_z scale.

\sqrt{s}/GeV	$\alpha_{\rm s}/5{\rm GeV}$	area ${\cal S}$	$\overline{\alpha_{\rm s}}/5{\rm GeV}$	$\alpha_{\rm s}(M_{\rm z})$
2.80	$0.207\substack{+0.138\\-0.174}$	0.6628		
2.90	$0.257^{+0.137}_{-0.151}$	0.6245	$0.254_{-0.071}^{+0.066}$	$0.129^{+0.014}_{-0.021}$
3.00	$0.251^{+0.123}_{-0.127}$	0.5423		
3.70	$0.296\substack{+0.135\\-0.133}$	0.5888		

where $R_{\text{exp}}(s_i)$ and $\Delta \tilde{R}_{\text{exp}}^{(i)}$ are the *R* value measured at the energy s_i and its error (not includes the common error) respectively, $R_{\text{QCD}}(s_i)$ is the corresponding theoretical expressions in Eq. (3) or Eq. (4); *f* is the scale factor corresponding to the influence of the common error σ_f , and the sum runs over the measured energy points included in the fitting. The fitted parameters are Λ and *f*. The dimensional parameter $\Lambda^{[13]}$ is directly obtained through fit, and $\alpha_s(s)$ is gotten with Eq. (2). The fitted results are

 $\alpha_{\rm s}(M_{\rm z}) = 0.141^{+0.020}_{-0.025}, \quad \Lambda_{\overline{\rm MS}} = 0.79 \pm 0.48 {\rm GeV}, \quad (11)$

for 3-loop, and

 $\alpha_{\rm s}(M_{\rm z}) = 0.131^{+0.011}_{-0.014}, \ \Lambda_{\overline{\rm MS}} = 0.58 \pm 0.25 {\rm GeV}, \ (12)$

for 4-loop approximations respectively, see Fig. 4 and Fig. 5. The fit curve shown in Fig. 5 based on 4-loop approximation is constrained by the model predicted maximum $R_{\rm QCD}$ value 2.1985. The theoretical error may be estimated by comparing the difference between the results of 3-loop and 4-loop approximations. Therefore, the result may be reported as $\alpha_{\rm s}(M_{\rm z}) = 0.141^{+0.020}_{-0.025} \pm 0.010$, the second term represents the theoretical uncertainty.

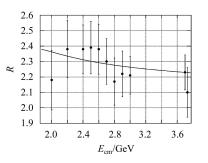


Fig. 4. The fit results for 3-loop approximation, dots with error bars are the experimental data. In the fitting, $\chi^2/n_{\rm d.o.f}=3.03/9$.

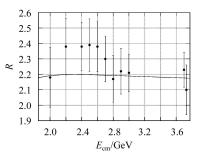


Fig. 5. The fit results for 4-loop approximation, dots with error bars are the experimental data. In the fitting, $\chi^2/n_{\rm d.o.f}$ =4.23/9.

4 Determination of $\alpha_{s}(s)$ in the future

To measure R value with smaller error at the fu-

Table 3. The improvement of the uncertainty of $\alpha_s(s)$ with the decrease of the experimental error of R value.

$\alpha_s \operatorname{error}_{rror}$	r 3.0%		2.5%		2.0%		1.5%		1.0%	
$E_{\rm cm}/{\rm GeV}$	Up(%)	Dw(%)	Up(%)	Dw(%)	Up(%)	Dw(%)	Up(%)	Dw(%)	Up(%)	Dw(%)
2.00	37.7	35.4	31.1	29.6	24.7	23.7	18.4	17.8	12.2	11.9
2.10	38.1	35.9	31.4	29.9	25.0	24.0	18.6	18.1	12.3	12.1
2.20	38.4	36.3	31.8	30.3	25.3	24.3	18.8	18.3	12.5	12.2
2.30	38.8	36.8	32.0	30.7	25.5	24.6	19.0	18.5	12.6	12.4
2.40	39.2	37.2	32.4	31.0	25.8	24.9	19.2	18.7	12.8	12.5
2.50	39.6	37.6	32.8	31.4	26.0	25.2	19.4	18.9	12.9	12.6
2.60	40.0	38.1	33.0	31.8	26.3	25.4	19.6	19.1	13.0	12.7
2.70	40.2	38.5	33.3	32.1	26.5	25.8	19.8	19.3	13.1	12.9
2.80	40.6	38.9	33.6	32.4	26.7	26.0	20.0	19.5	13.2	13.0
2.90	41.0	39.3	33.9	32.7	27.0	26.2	20.2	19.7	13.3	13.2
3.00	41.4	39.7	34.3	33.1	27.3	26.5	20.4	19.9	13.5	13.3
3.10	41.6	40.1	34.4	33.4	27.4	26.7	20.4	20.1	13.5	13.4
3.20	42.0	40.4	34.8	33.7	27.7	27.0	20.7	20.2	13.7	13.5
3.30	42.3	40.8	35.0	34.0	27.8	27.2	20.8	20.4	13.8	13.7
3.40	42.6	41.1	35.3	34.2	28.1	27.4	21.0	20.6	14.0	13.7
3.50	42.9	41.5	35.6	34.6	28.3	27.6	21.1	20.8	14.1	13.8
3.60	43.1	41.8	35.8	34.8	28.3	27.9	21.3	20.9	14.1	14.0
3.70	43.4	42.1	36.0	35.1	28.7	28.1	21.4	21.0	14.2	14.1

ture BEPC II /BES III is one of the important experimental subjects, which will decrease the uncertainty of α_s . Using the similar method, the numerical predictions on the improvement of the uncertainty of $\alpha_s(s)$ with the decrease of the experimental error of R value are given in Table 3. It shows that the un-

References

- 1 Blumlein J, Bottcher H. Nucl. Phys., 2002, **B636**: 225–263
- 2 ALEPH Collaboration. Eur. Phys. J., 1998, C4: 409-431
- 3 OPAL Collaboration. Eur. Phys. J., 1999, C7: 571-593
- 4 Kühn J H, Steinhauser M. Nucl. Phys., 2001, B619: 588– 602
- 5 BES Collaboration. Phys. Rev. Lett., 2000, 84: 594-597
- 6 BES Collaboration. Phys. Rev. Lett., 2002, 88: 101802-1
- 7 Bethke S. J. Phys., 2000, ${\bf G26}:$ R27

certainty of $\alpha_{\rm s}$ is about 12—15 times larger than the error of R value, so to determine $\alpha_{\rm s}$ with R value is not an economic way.

We would like to thank Zheng Zhipeng for his instruction and support, and Zhu Yongsheng for his suggestions.

- 8 Gorishnii S G, Kataev A L, Larin S A. Phys. Lett., 1991,
 B259: 144-150
- 9 Baikov P A, Chetyrkin K G, Kühn J H. Phys. Lett., 2003,
 B559: 245-251
- 10 Harlander R V, Steinhauser M. Comp. Phys. Commun., 2003, 153: 244—274
- Chetyrkin K G et al. Comput. Phys. Commun., 2000, 133: 43-65
- 12 YAO Y M et al. J. Phys., 2006, $\mathbf{G33:}\ 1$
- 13 Chetykin K G et al. Phys. Rev. Lett., 1997, **79**: 2184—2187

低能区强耦合常数的测量*

胡君辉^{1,2} 翁瑶^{2;1)} 胡海明² 杨永栩¹ 高原宁³ 王骏⁴

(广西师范大学物理与电子工程学院 桂林 541004)
 2(中国科学院高能物理研究所 北京 100049)
 3(清华大学工程物理系 北京 100084)
 4(昆明师范专科学校物理系 昆明 650034)

摘要 强耦合常数 $\alpha_s(s)$ 是量子色动力学最重要的参数.基于BES的R值测量结果,分别利用精确到3圈和4圈的 微扰QCD的计算,测定了 $\alpha_s(s)$ 在2.0—3.7GeV能量范围的数值,并推断了 $\alpha_s(s)$ 演化到 Z^0 能标下的值 $\alpha_s(M_z)$. 同时对在未来实验中R值测量精度的提高对 $\alpha_s(s)$ 的不确定性的减小作了定量的预言.

关键词 R值 强耦合常数 最小二乘法拟合

²⁰⁰⁶⁻⁰⁸⁻²⁵ 收稿, 2006-09-26 收修改稿

^{*}国家自然科学基金(10491300)资助

¹⁾ E-mail: wengy@ihep.ac.cn