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Abstract We investigate the non-leptonic weak interaction in magnetic field and discuss the improvement of

the previous method to analytically work out the rate for weak field case. Our result easily goes over to the

field-free limit. Then we calculate the reaction rate in strong magnetic field where the charged particles are

confined to the lowest Landau level. A strong magnetic field strongly suppress the rate, which will be foreseen

to affect viscous dynamics in SQM. We also derive a few approximation formulae under given conditions that

can be conveniently applied.
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1 Introduction

The composition of comparable number of u,

d and s-quarks are known as strange quark mat-

ter(SQM) would be a stable or metastable config-

uration of hadronic matter. The bulk SQM is the

β-equilibrium system determined by such a series of

weak processes: u + d → s + u, d → u + e + νe,

s → u + e− + νe
[1]

. There has been a lot of interest

in the study of the reaction rate and their astrophys-

ical relevance
[2—7]

. In the interior of neutron stars,

the semi-leptonic reaction is devoted to the cooling

of stars while the non-leptonic one to the damping

of instability of rapidly rotating stars. We here con-

cern about the non-leptonic process. The previous

work
[2, 3]

were carried out under the usual situation

of zero magnetic field. However, the strength of the

surface magnetic field of a pulsar is typically of order

1012G2) which is concluded from the observation data.

Some magnetars are observed to have a magnetic field

of 1014—1015G. Considering the flux throughout the

stars as a simple trapped primordial flux, the internal

magnetic field may go up to 1018G or even more
[4, 5]

.

In spite of the fact that we do not know yet any ap-

propriate mechanism to produce more intense field,

the scalar viral theorem indeed allows the field mag-

nitude to be as large as 1020G. Therefore, it is ad-

visable to study the effect of the magnetic field on

strange quark matter including the calculation of the

rate of the reactions. The quark Urca processes have

been discussed in a few of works
[8, 9]

. Here we focus

on the non-leptonic process leading to bulk viscosity

in strange quark matter.

u(1)+d→ u(2)+s . (1)

In magnetic fields, a classical charged particle will

have a transverse cycle motion. In quantum mech-

anism, the transverse motion is quantized into Lan-

dau levels. The quantization effect is important when

the magnetic strength is equal to or larger than the

critical value B(c)
m = m2

i c
3/(qi~) defined by equat-

ing the cyclotron energy qB/(mc) to mc2, where mi

and qi denote the mass and the charge (absolute

value) of the particle
[10, 11]

. ~, k and c denote the
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Planck constant, Boltzman constant and velocity of

light, respectively, which are taken to be units be-

low. We have considered a wide range of magnetic

fields in our study, from “low” to “very high” mag-

netic fields(B > 1019G) called respectively “weak”

and “strong” field. Since u-quark mass in magni-

tude of order is smaller than d-quark and s-quark,

we assume the quantization effect on u-quark is im-

portant but those of other flavors are negligible
[4]

. In

the weak field strength situation,we deal with the cal-

culation of the rate through some approximations: (i)

the unaffected matrix element; and (ii) the approxi-

mating free-particle motion direction
[12]

. In degener-

acy, the strong magnetic fields, i.e. 2qB > p2
Fi

, forces

u-quark to occupy the lowest Landau ground state,

where p
Fi

is the Fermi momentum, we should use the

exact solution of the Dirac equation in magnetic field

to evaluate the reaction rate.

This paper is organized as follows. We solve the

dirac equation in Section 2. We consider the case of

weak field in Section 3, and then give the reaction

rate in strong field in Section 4. Finally, the results

are discussed and a summery is made in Section 5.

2 The solution of Dirac function in

magnetic field

We first solve the Dirac equation in the presence

of a magnetic field B. Let the uniform magnetic field

B along the z-axis, and we choose the asymmetric

Landau gauge

A = (0,Bx,0), (2)

so that the four-dimensional polarized wave function

can be expressed in term of stationary states in the

normalization volume V = LxLyLz. In the magnetic

field, the u-quark wave function for fermions ultra-

relativistically reads

ψ+(t,x) =
exp[−iEt+ipyy+ipzz]

√

2E(E+m)LyLz

×












0

(E+m)Iν;pz
(x)

pzIν;pz
(x)

−i
√

2νqBIν−1;pz
(x)













, (3)

for spin up, and

ψ−(t,x) =
exp[−iEt+ipy +ipz]
√

2E(E+m)LyLz

×












0

(E+m)Iν−1;pz
(x)

i
√

2νqBIν;pz
(x)

−pzIν−1;pz
(x)













(4)

for spin down cases, where the energy E =
√

p2
z +m2 +2νqB, q is the charge of u-quark, and ν

is the Landau level. These states are degenerate and

can be described as other quantum numbers, such as

ν= l+
1

2
(1−s), (5)

where l is the orbital quantum number and s is the

spin quantum number.

And then we get

ξ=
√

qB

(

−x+
py

qB

)

(6)

and

Iν;pz
=

(

qB

π

) 1

4

exp

(

−ξ
2

2

)

× 1√
2νν!

Hν(ξ), (7)

where Hν is the Hermite polynomial.

3 The rate in weak magnetic field

If the matrix element for the reaction (1) is deter-

mined, we can express the rate per volume of reaction

(1) as
[2, 3]

:

Γ (u1d→ su2) =
36

2

[

∏

i

∫
d3pi

(2π)32Ei

]

|Ms|2×

S(2π)4δ4(P1 +Pd−P2−Ps), (8)

where the phase space integration will be carried out

over all particle states, the statistical distribution

function can be written as S = f1fd(1− f2)(1− fs)

and the quark distribution in reaction(1) is described

by the Fermi-Dirac distributions in the form of

fi(Ei) =

[

1+exp

(

Ei−µi

T

)]−1

, i = 1,2,d,s, (9)

with µi bring the chemical potential.

We consider the reaction (1) when the magnetic

field is not strong enough to force the quark get-

ting into the lowest Landau level. Previous study
[5]

showed that the matrix element for the weak process
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remains unaffected and only the phase factor is mod-

ified.

The matrix element summed over final spins and

averaged over initial spins is given by
[2]

:

|Ms|2 = 64G2
F sin2 θC cos2 θC(P1

•Pd)(P2
•Ps), (10)

here Pi = (Ei−pi) is the four-momentum of the quark

i, GF = 1.166× 10−11MeV−2 is the Fermi constant,

and θC is the Cabibbo angle (cos2 θC = 0.948). We

neglect the masses of the up and down quarks, then

E1 = p1, E2 = p2, Ed = pd, Es = (p2
s +m2

s )
1/2. So the

four-momentum products can be written as
[2, 3]

(P1
•Pd)(P2

•Ps) = E1E2EdEs(1−cosθ1d)×
(

1− ps

Es

cosθ2s

)

, (11)

where θij denotes the angle between the quarks i and

j.

Now we can calculate the rate of weak process

in the weak magnetic field by replacing the u-quark

phase space factor
[5]

2

∫
d3p

(2π)3
−→ qB

(2π)2

νmax
∑

ν=0

(2−δν,0)

∫
dpz , (12)

so the reaction rate can be written as:

Γ (u1d→ su2) =
18

(2π)6
G2

F sin2 θC cos2 θC(eB)2×

νmax
∑

ν1=0

(2−δν1,0
)

νmax
∑

ν2=0

(2−δν2,0
)×

∫
p2

ddpdp
2
sdps

∫
dp1z

∫
dp2z ×

Sδ(E1 +Ed−E2−Es)I , (13)

where

I =

∫
(

d,s
∏

i

)dΩi(1−cosθ1d)

(

1− ps

Es

cosθ2s

)

×

δ3(p1 +pd−p2−ps). (14)

As we know, the angle between two vectors is a

function of the respective inclinations and azimuth

angle in spherical coordinates, i.e.

cosθ1d = cosθ1 cosθd +sinθ1 sinθd cos(ϕ1−ϕd),

cosθ2s = cosθ2 cosθs +sinθ2 sinθs cos(ϕ2−ϕs).

(15)

In the magnetic field, the angles of polarized quarks,

θ1,θ2,ϕ1,ϕ2 vary with the Landau level (ν1,ν2) and

z-component of momentum (p1z,p2z). Therefore the

integrations and summations in Eq. (12) become very

difficult due to the coupling of variables ν and pz into

the integrated function. We need to make an im-

provement on Chakrabaty’s approach. Fortunately,

we can approximately regard the angles as indepen-

dent variables in the weak field situation, and then

the integrations and summations are decoupled, be-

cause the kinetic direction of quark should only devi-

ates slightly from that in the field-free case, although

the modification of the absolute value of the mo-

mentum is considered. It completely coincides with

the free-particle’s matrix approximation described by

Eq. (10).

We immediately have:

2

∫
d3p

(2π)3
−→ qB

(2π)3

νmax
∑

ν=0

′

(2−δν,0)

∫′
dpz

∫′
dΩ , (16)

where
∑′

and

∫′
denote the summation and integra-

tions are independent of the angles. In this approx-

imation, which may be called free-particle direction

average(FDA), Eq. (13) and Eq. (14) read:

Γ (u1d→ su2) =
18

(2π)8
G2

F sin2 θC cos2 θC(eB)2×

ν1max
∑

ν1=0

(2−δν1,0
)

ν2max
∑

ν2=0

(2−δν2,0
)×

∫
p2

ddpdp
2
sdps

∫
dp1z

∫
dp2z ×

Sδ(E1 +Ed−E2−Es)I
′ , (17)

where

I ′ =

∫′( 1,2,d,s
∏

i

)

dΩi(1−cosθ1d)

(

1− ps

Es

cosθ2s

)

×

δ3(p1 +pd−p2−ps). (18)

Since µi �T , only those fermions whose momenta

lie close to their respective Fermi surface can take part

in the reaction. We use the method in Refs. [6,7] to

complete partially the integral of I ′ through

δ3(p1 +pd−p2−ps) =

∫
d3x

(2π3)
exp(ip •x) (19)



1006 p U Ô n � Ø Ô n ( HEP & NP ) 1 31 ò

and then

I ′ =
27π2

p
F1
p

F2
p

F
d

p
Fs

∫
dx

x2

[ 1,2,d,s
∏

i

sin(p
Fi
x)+

asin(p
F1
x)sin(p

F
d

x)f(p
F2
x)f(p

Fs
x)+

sin(p
F2
x)sin(p

Fs
x)f(p

F1
x)f(p

F
d

x)+

a

1,2,d,s
∏

i

f(p
Fi
x))

]

(20)

≡ 27π2

p
F1
p

F2
p

Fs

J, (21)

where a=
p

Fs

µs

,f(p
Fi
x) = cos(p

Fi
x)−sin(p

Fi
x)

p
Fi
x

and the

integral J is defined through Eq. (20) and Eq. (21),

which can be calculated numerically.

The net rate of transforming d-quark into s-quark

is
[2]

Γ (d→ s) =

[

1−exp

(

µd−µs

T

)]

Γ (u1d→ su2). (22)

Using the method in Refs. [7, 12] and substituting

Eqs. (17), (18) and (21) into (22), we can get

Γ (d→ s) =

3

2π6
G2

F sin2 θC cos2 θC(qB)2
ν1max
∑

ν1=0

(2−δν1,0)×

ν2max
∑

ν=0

(2−δν2,0)
µ2

dµs
√

µ2
1−2ν1qB

√

µ2
2−2ν2qB

×

∆µ(∆µ2 +4π2T 2)J, (23)

where

νimax = Int

(

µ2
i

2qB

)

, i= 1,2, ∆µ=µd−µs . (24)

When B→ 0, the sum can be replaced by integral of

ν and then

Γ (d→ s) =
6

π6
G2

F sin2 θC cos2 θCµ
2
dµ

2
uµs×

∆µ(∆µ2 +4π2T 2)J, (25)

which is just that in the field-free case.

4 The rate of weak process in strong

magnetic field

Now we consider the strong magnetic field effect

on the non-leptonic weak interaction in this section.

In the case of strong magnetic field where B >B(u)
m ,

all u-quarks occupy the lowest Landau ground state

with the u-quark spins pointing in the direction of the

magnetic field. We treat other flavor particles in this

process as free particles which are not affected by the

magnetic field. The matrix element for the reaction

reads:

M =
GF sinθC cosθC√

2

∫
ψ̄2γµ(1−γ5)ψdψ̄sγ

µ(1−γ5)ψ1d
4x,

(26)

when d and s quark are treated as free particles, then

we get

ψi =
1

V
1

2

exp(−iPi
•r)Ui , (27)

Ui =

√

Ei +mi

2Ei



















1

0
pzi

Ei +mi

pxi
+ipyi

Ei +mi



















, (28)

where Pi denotes four-dimensional momentum, i=

d, s.

Consider ν = 0, the wave function of u-quark in

Eqs. (3) and (4) can be written as

ψ1 =
1

√

LyLz

exp(−iE1t+ipy1
y1 +ipz1

z1)×

(

qB

π

) 1

4

exp

[

−qB
2

(

−x+
py1

qB

)2
]

U1 , (29)

ψ2 =
1

√

LyLz

exp(−iE2t+ipy2
y2 +ipz2

z2)×

(

qB

π

) 1

4

exp

[

−qB
2

(

−x+
py2

qB

)2
]

U2 , (30)

where

U1 =
1

√

2E1(E1 +mu1
)













E1 +m

0

pz1

0













, (31)

U2 =
1

√

2E2(E2 +mu2
)













E2 +m

0

pz2

0













(32)

for spin up.

We now calculate the squared matrix element

which is summed over the initial state and averaged
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over the final state. We use the Eqs. (29), (32) and

(33) to express the corresponding matrix element:

|Ms|2 =
[

Ū2γµ(1−γ5)UdŪsγ
µ(1−γ5)U1]×

[Ū2γµ(1−γ5)UdŪsγ
µ(1−γ5)U1]

†. (33)

And then we immediately get:

|Ms|2 =
1

2E2
1E

2
2EdEs

(E1−pz1
)2(E2 +pz2

)2×

(Ed +pzd
)(Es−pzs

), (34)

where we set md =mu = 0, pz1
< 0 and pz2

> 0, oth-

erwise |Ms|2 = 0. Carrying out the integration, we

obtain

|M |2 =
G2

F sinθ2
C cosθ2

C

2V L2
x(LyLy)3

(2π)3|Ms|2×

exp

[−(py1
−py2

)2−(pxd
−pxs

)2

2qB

]

×

δ(E2 +Es−E1−Ed)δ(py1
+pyd

−py2
−pys

)×

δ(pz1
+pzd

−pz2
−pzs

). (35)

The rate per volume of the reaction is given by:

Γ (u1d→ su2) =
n1nd

2

∫
V d3pd

(2π)3

∫
V d3ps

(2π)3

∫ qBLx
2

−qBLx
2

×

Ly

2π
dpy1

∫ qBLx
2

−qBLx
2

Ly

2π
dpy2

∫∞
−∞

Ly

2π
dpz1

×

∫∞
−∞

Ly

2π
dpz2

|M |2f1fd(1−f2)(1−fs),

(36)

where the factor n1 = nd = 6 comes from 2 spins and

3 colors. Since only the left-hand helicity state of the

u1-quark couples to W− (W− is the mediate of the

reaction), there should be a factor of
1

2
in Eq. (35).

The integration over dpy1
and dpy2

can be carried out

by using the delta function of the y-component of the

momentum. The integration over dpz1
and dpz2

can

be converted into dE1 and dE2 respectively
[4, 5]

.

Since µs �T , only those momenta which lie close

to their respective Fermi surfaces can take part in the

reaction. As the conservation of the z-component of

the momentum, we can get

p
F1

+p
F
d

cosθd−pF2
−p

Fs
cosθs = 0. (37)

We approximately set p
Fu

= p
F
d

= p
Fs

near the equi-

librium. Then we can get cosθd−cosθs = 2, so we can

carry out the integration over the momentum space

of the d-quark and s-quark.

Substituting Eq. (35) into Eq. (22), we obtain

Γ (d→s) =
G2

F sin2 θC cos2 θC(qB)

4π5
×

exp

[

(2µu)
2−(µd +pFs

)2

2qB

]

(3µs +6µu−µd)×

µ2
d∆µ(∆µ2 +4π2T 2), (38)

where ∆µ=µd−µs, pFs
=

√

µ2
s −m2

s .

5 Discussion and conclusion

We calculate the rate of non-leptonic quark weak

process in the magnetic field and give analytic so-

lutions under the weak-field and the strong-field ap-

proximations, respectively. Based on these results,

we express the net rate of transforming the d-quark

to the s-quark in a unified form:

Γ (d→ s) =Γk(nb, qB)∆µ(∆µ2 +4π2T 2), (39)

where k can be 0, L and H, which denote the zero-

field, weak-field and strong-field cases, respectively.

In accordance with the formula (25), the result goes

to that in the field-free case, when the magnetic field

strength vanishes. We thus have

Γ0(nb) =
16

5
G2

F sin2 θC cos2 θC

(nb

π

) 5

3

, (40)

meanwhile, for 2quB <µ2
u, the ΓL reads simply from

the Eq. (23)

ΓL(nb, qB) =
144

π4
G2

F sin2 θC cos2 θCquBnb×

J
ν

3

2
m

3ν
1

2
m +4(νm−1)

3

2 +8ν
3

2
m

, (41)

where J as a function of µ is defined in Fig. 1. We

find that ΓL has a small deviation from that in the

field-free case. The comparison is made in Fig. 2.

The simplified formula of ΓH(nb, qB) need slightly

complicated calculations for 2quB>µ2
u.

In the referred SQM (µi �mi, only u-quark is po-

larized), the number densities of various quark com-

ponents read

nd,s =
µ3

d,s

π2
,
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nu =
3quBµu

2π2
, (42)

the β-equilibrium

µd =µs =µ, µu =µ−µe, (43)

the charge neutrality

2nu−nd−ns−3ne = 0, (44)

the baryon number density conservation

nb =
1

3
(nd +nu +ns), (45)

should be satisfied. Then we solve these equations nu-

merically to obtain the chemical potentials of quarks

with respective to the magnetic field.

Fig. 1. Numerical result of J , given by Eqs.

(20) and (21), as a function of µ for various

values of the parameter ms. The solid curve

is for ms=80MeV, and the dotted curve is for

ms=100MeV.

Fig. 2. Derivation of ΓL from Γ0 with B when

nb=0.2fm−3.

Figure 3 shows that the chemical potentials of

quarks are nearly equal under this situation. Combin-

ing Eqs. (41), (42), (44) and (45) in the approxima-

tion of µu ≈µd =µs =µ, µ can be solved analytically

through the algebraic equation

µ3 +
3

4
quBµ−

π2

2
nb = 0 (46)

and then ΓH(nb, qB) becomes

ΓH =
G2

F sin2 θC cos2 θC(qB)

4π5
×

[

quB
(

−6nbπ2 +
√

36n2
bπ

4 +(quB)3
) 1

3

−

(

−6nbπ
2 +

√

36n2
bπ

4 +(quB)3
) 1

3

]3

. (47)

Figure 4 gives a comparison of the results obtained

in Eq. (47) and Eq. (37), respectively. They fit each

other well with a small error.

Fig. 3. The numerical result of µ as a func-

tion of B which we get from Eqs. (46), (47)

and (48). The dotted curve is for µu when

nb=0.2fm−3. The solid curve is for the case

where µ = µd =µs.

Fig. 4. ΓH as a function of B when nb=

0.2fm−3. The solid curve is for the result of

Eq. (37) and the dot curve is for the result of

Eq. (47).

The formula (47) will be reduced to

ΓH =
24G2

F sin2 θC cos2 θC
11π3

quBnb (48)

for 2qB∼µ2, and it tends to the limit

ΓH =
16πG2

F sin2 θC cos2 θCn
3
b

(quB)2
(49)

for 2qB�µ2.

In Fig. 5 we compare the result of Eq. (47) with

those from Eq. (48) and Eq. (49). We find that they

could be good approximations in the future realistic

application.
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Fig. 5. ΓH as a function of B when nb=

0.2fm−3. The solid curve is for the result of

Eq. (47), the dotted curve is for the result of

Eq. (48) and the dash dot curve is for the re-

sult of Eq. (49).

Under the consideration that the u-quark is po-

larized but the effects of other flavors are negligible,

we investigate the influence of the magnetic field on

the non-leptonic reaction rate. Although the result

for the weak field case has a small deviation from the

field-free case, we give an analytical treatment of the

weak reaction which can be extended to the calcula-

tion of other reaction process. However, the strong

magnetic field can extremely suppress the rate. It

is possible to induce a decrease of bulk viscosity in

the magnetized SQM. This may have serious impli-

cations for compact star and pulsar dynamics. In

fact, we should also distinguish the d-quark and the

s-quark in calculations to obtain refined result for ap-

plications. That is our future work.
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