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Abstract Two renormalization approaches: the analytic continuation approach and the subtraction approach,

are used to obtain the infrared behavior of gluon and ghost propagators in the coupled gluon and ghost Dyson-

Schwinger equations, where the three-gluon and gluon-ghost vertices are taken to be bare. The results show

that the two renormalization approaches give the same results in the infrared analysis of propagators.
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1 Introduction

Quantum chromodynamics (QCD) is believed to

be the quantum field theory of the strong interac-

tions of quarks and gluons. In contrast to Abelian

gauge theories like quantum electrodynamics (QED),

the non-Abelian nature of the gauge symmetry of

QCD not only induces interactions between quarks

and gluons but also among gluons themselves. This

last effect is expected to be responsible for the phe-

nomenon of confinement.

Confinement and the dynamical chiral symme-

try breaking are the two genuine effects of non-

perturbative QCD. Although there is a lot of work

devoted to them, it is still far from satisfactory. Re-

cently the Dyson-Schwinger (DS) approach, equa-

tions of motion for correlation functions of the fields,

has been employed to study the confinement and the

dynamical chiral symmetry breaking[1—3]. The DS

approach has been proven to be successful in devel-

oping a hadron phenomenology which interpolates

smoothly between the infrared (non-perturbative)

and the ultraviolet (perturbative) regime
[1—3]

. Cer-

tainly a great step forward in understanding QCD

would be the detailed knowledge of the basic cor-

relation functions, the propagators. Information on

confinement is encoded in these two-point functions.

Furthermore the dynamical chiral symmetry break-

ing can be studied directly in the DS equation (DSE)

for the quark propagator, which is the gap equation

of QCD. Besides being related to the fundamentals of

QCD, the quark and gluon propagators are vital in-

gredients for phenomenological models describing low

and medium energy hadron physics
[4]

. Bound state

calculations based on the Bethe-Salpeter equations

for mesons or the Faddeev equations for baryons
[5—9]

,

might one day be capable to bridge the gap between

the fundamental theory QCD and phenomenology.

In this paper, we will investigate the behavior of

gluon and ghost propagators in the small momentum

regime of QCD using their DSEs. It has been shown

that the gluon propagator or ghost propagator is sin-
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gular in the infrared limit
[10, 11]

. The singularity will

complicate the renormalization, which is necessary to

extract the needed information. So far two renor-

malization prescriptions: the analytic continuation

approach
[12]

and the subtraction approach
[3]

, were

used in the analysis of the infrared behavior of gluon

and ghost propagators. Different results are obtained

in different work. The present work is to compare

the two different renormalization approaches in the

infrared regime for the same DSEs with same approx-

imations and to see whether the two approaches give

us same results or not.

2 The DSEs for gluon and ghost pro-

pagators

The derivation of DSEs for ghost and gluon prop-

agators has been given in Ref. [11]. Parameterizing

the ghost propagator DG and the gluon propagator

Dµν by their respective renormalization functions G

and Z,

DG(k) = −
G(k2)

k2
,

Dµν(k) =

(

δµν −
kµkν

k2

)

Z(k2)

k2
,

(1)

in the Landau gauge, with the bare three-gluon and

gluon-ghost vertices, the DSEs for the ghost and

gluon propagators lead to

G−1(k2) = Z̃3−
3g2

8π
3

∫Λ2

0

dq2q2G(q2)

∫
π

0

dθ
sin4 θ

p4
Z(p2),

(2)

Z−1(k2) = Z3 +
g2

8π
3

∫Λ2

0

dq2

k2
G(q2)

∫
π

0

dθ sin2 θ

M(k2, q2,p2)G(p2)+

g2

8π
3
Z1

∫Λ2

0

dq2

k2
Z(q2)

∫
π

0

dθ sin2 θ

Q(k2, q2,p2)Z(p2), (3)

with p2 = k2 + q2 − 2pq cosθ and Λ2 the ultraviolet

cutoff. The kernels are

M(k2, q2,p2) =
1

p2

(

k2 +q2

2
−

q4

k2

)

+
1

2
+

2q2

k2
−

p2

k2
,

Q(k2, q2,p2) =

(

k6

4q2
+2k4−

15q2k2

4
+

q4

2
+

q6

k2

)

1

p4
+

(

2k4

q2
−

19k2

2
−

13q2

2
+

8q4

k2

)

1

p2
−

(

15k2

4q2
+

13

2
+

18q2

k2

)

+

(

1

2q2
+

8

k2

)

p2 +
p4

k2q2
. (4)

In the above equations, k, p and q denote the mo-

menta of the propagators.

Refs. [11—13] have already revealed that in the

infrared region the gluon renormalization function is

infrared vanishing while the ghost renormalization

function is infrared singular. For the infrared proper-

ties of the gluon and ghost propagators, it has been

shown that the gluon propagator vanishes for the

small momenta while the ghost propagator is infrared

enhanced. Here we just do the infrared analysis, so

the second term in Eq. (3) can be ignored. The equa-

tions to be studied become:

G−1(k2) = Z̃3−
3g2

8π
3

∫Λ2

0

dq2q2G(q2)

∫
π

0

dθ
sin4 θ

p4
Z(p2),

(5)

Z−1(k2) = Z3 +
g2

8π
3

∫Λ2

0

dq2

k2
G(q2)

∫
π

0

dθ sin2 θ×

M(k2, q2,p2)G(p2). (6)

In the infrared regime, it was assumed that the

ghost and gluon renormalization functions obeyed the

power law
[11, 13]

:

Z(x) = Ax2κ, (7)

G(x) = Bx−κ. (8)

With these simplifications, Eqs. (5) and (6) reduce to

(let x = k2,y = q2,z = p2 = x+y−2
√

xy cosθ)

xκ

B
= Z̃3−

6λAB

π

∫Λ2

0

dy

yκ−1

∫
π

0

dθ sin4 θ

z2−2κ
, (9)

x−2κ

A
= Z3 +

2λB2

π

∫Λ2

0

dy

xyκ

∫
π

0

dθ sin2 θ

z−κ
M(x,y,z).

(10)

In Ref. [13], a further simplification, the y-max

approximation, was introduced. In the y-max ap-

proximation, the κ was obtained as:

κ≈ 0.77. (11)
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And the running coupling, which is given by

α(x) = 4πλZ(x)G2(x), (12)

has a non-trivial infrared fixed point

α(0)≈ 11.4702. (13)

Generally, the integrals in Eqs. (9) and (10) are di-

vergent because of the singularity at y = 0. The renor-

malization procedure should be employed to evaluate

the integrals.

3 Two renormalization approaches

3.1 The analytic continuation approach

In Ref. [12], the analytic continuation approach

was developed. The integral in Eq. (9) is conver-

gent if Re κ < 0, whereas a subtraction is necessary

if 0 < κ < 1. By identifying Z̃3 with this subtraction

constant, one ensures that G(x) is defined by analytic

continuation in κ beyond Re κ = 0. This continuation

is made explicit in terms of the generalized hyperge-

ometric function.

By using the generalized hypergeometric function,

the Eq. (9) can be evaluated and the result is shown

below

1

λAB2
= −

9

4

[

1

2−κ
3F2(−2κ+2,

−2κ,2−κ;3,3−κ;1)−

1

κ
3F2(−2κ+2,−2κ,−κ;3,1−κ;1)

]

. (14)

Similarly, Eq. (10) becomes

1

λAB2
=

1

2(1−κ)
3F2(κ+1,κ,1−κ;2,2−κ;1)+

1

2(2−κ)
3F2(κ+1,κ,2−κ;2,3−κ;1)−

1

1−κ
3F2(κ−1,κ−2,1−κ;2,2−κ;1)+

1

2κ−2
3F2(κ−1,κ−2,2κ−2;2,2κ−1;1)+

1

2(2κ−1)
3F2(κ+1,κ,2κ−1;2,2κ;1)−

1

2κ−2
3F2(κ+1,κ,2κ−2;2,2κ−1;1)+

1

2(1−κ)
3F2(κ,κ−1,1−κ;2,2−κ;1)+

2

2−κ
3F2(κ,κ−1,2−κ;2,3−κ;1)+

1

2(2κ−1)
3F2(κ,κ−1,2κ−1;2,2κ;1)+

1

κ−1
3F2(κ,κ−1,2κ−2;2,2κ−1;1)−

1

3−κ
3F2(κ+1,κ,3−κ;2,4−κ;1)+

1

4κ
3F2(κ+1,κ,2κ;2,2κ+1;1). (15)

Then the result of κ → 1 and α(0) ≈ 4.19 is ob-

tained. The behavior of the ghost and gluon prop-

agators in the infrared regime is the same as that

in y-max approximation mentioned above: the gluon

renormalization function is infrared vanishing while

the ghost renormalization function is infrared singu-

lar. The running coupling has an infrared fixed point.

But the values of κ and α(0) are different from y-max

approximation. So although y-max approximation is

a good approximation for the ultraviolet analysis, it

is not a good one for the infrared analysis.

Recently, a lot of work has been done in this

subject and different results have been obtained in

different work. Within the framework of the bare

three-gluon and gluon-ghost vertices, Refs. [14—17]

did the infrared renormalization using the analytic

continuation approach with the help of Γ-functions.

In their work, the contraction was performed using

an arbitrary ξ-parameter tensor, and the infrared

analysis yielded the bulk of solutions between κ=0.5

and κ=0.6 for different ξ when using a non-Brown-

Pennington tensor
[18]

. For κ=0.595, the infrared fixed

point is α(0)=2.97. In Refs. [19,20], considering the

multiplicative renormalization, a two-loop truncation

of the ghost-gluon DSEs was performed, and with dif-

ferent groups of parameters, they obtained the results

between κ=0.17 and κ=0.53. For κ=0.5, the infrared

fixed point is α(0)=5.24. The infrared behavior of the

gluon and ghost propagators in the work mentioned

above is consistent, although the values of α(0) and

κ are different.

3.2 The subtraction approach

In this approach, the integration region

∫Λ2

0

in

Eq. (9) is separated into two parts:

∫x

0

and

∫Λ2

x

. For

the integration over

∫x

0

, we change the integral vari-
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able:

y = xt, dy = xdt,

z = x+y−2
√

xy cosθ = x(1+ t−2
√

tcosθ), (16)

and for the integration over

∫Λ2

x

,

y =
x

t
, dy =−

xdt

t2
,

z = x+y−2
√

xy cosθ =
x

t
(1+ t−2

√
tcosθ). (17)

Inserting Eqs. (16) and (17) into Eq. (9), we obtain:

xκ

B
= Z̃3−

6λABxκ

π
{∫1

0

dt

tκ−1

∫
π

0

dθ sin4 θ

(1+ t−2
√

tcosθ)2−2κ
+

∫1

x/Λ2

dt

t1+κ

∫
π

0

dθ sin4 θ

(1+ t−2
√

tcosθ)2−2κ

}

. (18)

The renormalization constant Z̃3 can be eliminated

by subtracting the above equation at x = s, then we

get

1

λAB2
= Ã(κ)+

xκB̃1(κ,x)−sκB̃2(κ,s)

xκ−sκ
(19)

where

Ã(κ) =−
6

π

∫1

0

dt

tκ−1

∫
π

0

dθ sin4 θ

(1+ t−2
√

tcosθ)2−2κ
,

B̃1(κ,x) =−
6

π

∫1

x/Λ2

dt

t1+κ

∫
π

0

dθ sin4 θ

(1+ t−2
√

tcosθ)2−2κ
,

(20)

B̃2(κ,s) =−
6

π

∫1

s/Λ2

dt

t1+κ

∫
π

0

dθ sin4 θ

(1+ t−2
√

tcosθ)2−2κ
.

The same procedure is applied to Eq. (10), the result

is:

1

λAB2
= C(κ)+

x−2κD1(κ,x)−s−2κD2(κ,s)

x−2κ−s−2κ
, (21)

where

C(κ) =
2

π

∫1

0

dt

tκ

∫
π

0

dθ sin2 θ

(1+ t−2
√

tcosθ)κ
×

t−4tcos2 θ+3
√

tcosθ

1+ t−2
√

tcosθ
,

D1(κ,x) =
2

π

∫1

x/Λ2

dt

t2−2κ

∫
π

0

dθ sin2 θ

(1+ t−2
√

tcosθ)κ
×

1−4cos2 θ+3
√

tcosθ

1+ t−2
√

tcosθ
, (22)

D2(κ,s) =
2

π

∫1

s/Λ2

dt

t2−2κ

∫
π

0

dθ sin2 θ

(1+ t−2
√

tcosθ)κ
×

1−4cos2 θ+3
√

tcosθ

1+ t−2
√

tcosθ
.

From Eqs. (19) and (21), we obtain

C(κ)+
x−2κD1(κ,x)−s−2κD2(κ,s)

x−2κ −s−2κ
=

Ã(κ)+
xκB̃1(κ,x)−sκB̃2(κ,s)

xκ−sκ
. (23)

The l.h.s of the above equation is corresponding to the

gluon propagator, while the r.h.s is corresponding to

the ghost propagator. In the subtraction approach

here, we do both the radial and angular integrations

numerically. Choosing different sets of x and s, we

obtain the results, which are shown in Fig.1.

Fig. 1. The numerical result of κ.

From the numerical study, we find that the l.h.s

of Eq. (23) (gluon part) is independent of the choices

of x and s, while the r.h.s. of Eq. (23) (ghost part)

depends on the choices of x and s. However, from

Fig. 1, it is clear that when both x and s go to zero,

κ→ 1 and α(0)≈ 4.19 is obtained.

4 Summary

Taking bare three-point vertex functions in the

truncated Dyson-Schwinger equations of gluon and

ghost propagators, two renormalization approaches:

analytic continuation approach and subtraction ap-

proach, are employed to investigate the infrared be-

havior of gluon and ghost propagators. The calcula-

tions show that the two renormalization approaches

mentioned above give the same results in the in-

frared analysis. This is an important result, be-

cause we do not want to always take the bare ver-

tices assumption. When the other information (i.e.

the Slavnov-Taylor identities
[11]

, transverse Ward-

Takahashi identities
[21,22]

) can be used to determine

the three-point vertices, the analytic continuation ap-

proach is not always possible in the infrared analysis,
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while the subtraction approach can work. In addi-

tion, the subtraction approach works not only in the

infrared regime but also in the whole momentum re-

gion.
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