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Abstract The equivalence of two χ2 forms for linear function fit is proved. The two forms of χ2 are

applied on a simplified R-value measurement to test the equivalence.
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1 Introduction

In physics experiments, the covariance matrix is

used to construct the χ2 estimator for correlated data.

The matrix is minimized to acquire the best estimates

for measured parameters
[1]

. Usually the experimental

data are affected by overall systematic errors, such as

the error of luminosity or efficiency in scan experi-

ment. Without loosing generality, let ni be the num-

ber of selected events for certain final state at the i-th

energy point, and ε the corresponding efficiency for

all measured points2), the number of measured events

is calculated as

yi =
ni

ε
.

Since all yi’s contain the same ε, they are correlated

and ε here could be treated as a normalization fac-

tor. Under such circumstances, the n×n covariance

matrix V for n measurements are to be constructed

as follows: the diagonal elements are given by

vii = σ2
i +y2

i σ
2
f ,

where σi is the statistic uncertainty of ni, σf is the

relative uncertainty of ε and the quantity yiσf is the

normalization uncertainty due to the factor ε for the

variable yi. The correlation between data points i

and j contributes to the off-diagonal matrix element

vij , which is the product of two normalization uncer-

tainties, i.e.

vij = yiyjσ
2
f .

The convariance matrix is expressed explicitly as3)

V =
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1 +y2
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. (1)

We want to minimize4)

χ2
M = ητV −1η, (2)

where

η =















y1−k1

y2−k2

...

yn−kn















is the vector of the residuals between experimental

observations yi and theoretical expectation ki.

Apart from the matrix method, another alterna-

tive way to handle correlation is the so-called factor

method
[3, 4]

. In this method, a normalization factor
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2)This is a good approximation for the efficiency at continuum region, where no resonance exists.

3)The convariance matrix is derived formally by the error propagation forumla with details in Ref. [5].

4)In this paper, chi-square minimization is adopted to obtain the best estimated value. For experimental data minimization,

the MINUIT package is used. More on chi-square minimization technique and MINUIT package are found in Ref. [2].
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f is introduced and to be fitted as a free parameter

to take the correlation into account

χ2
f =
∑

i

(fyi−ki)
2

σ2
i

+
(f −1)2

σ2
f

. (3)

where σi and σf have the same meaning as in the

matrix method clarified before.

Actually, we can comprehend Eq. (3) from an ex-

perimental point of view. We treat the efficiency ε

also as a measured variable and introduce a fitting pa-

rameter ε0 as its expected value. Then we construct

a chisquare form for n+1 uncorrelated measurements

as follows:

χ2 =
∑

i

(y′

i−ki)
2

σ2
i

+
(ε−ε0)

2

(δε)2
, (4)

where δε is the uncertainty on efficiency and y′

i ≡

ni/ε0. The latter can be rewritten as

y′

i =
ni

ε0

=
ni

ε

ε

ε0

= fyi .

Here we define f ≡ ε/ε0. At the same time, we change

the form of the last term in Eq. (4), viz.

(ε/ε0−ε0/ε0)
2

(δε/ε0)2
=

(f −1)2

(δε/ε0)2
.

Exprimentally, ε0 could be replaced by the measur-

able quantity ε, so δε/ε0 ' δε/ε = σf. Thus we imme-

diately recover Eq. (3).

Now there are two χ2 forms, as expressed in

Eqs. (2) and (3) respectively, which treat the cor-

related data. As a matter of fact, the equivalence

between these two χ2 forms was first discussed by

D’Agostini in Ref. [5]. At the same time, the au-

thor pointed out the biasness of these two estimators.

Nevertheless, D’Agostini’s study was restricted to the

two-variate and constant fitting case. It is natural to

raise the following questions:

1. Is the equivalence of the two χ2 forms a general

conclusion?

2. Does the biasness of two χ2 forms always exist?

As to the first question, their equivalence has

been proved in the case of multi-variate and constant

fitting
[6, 7]

. Recently, efforts have been made to ex-

tend the proof to the case of non-constant fitting. In

this paper, first, the case of linear dependence is con-

sidered, and the equivalence of the two χ2 forms is

proved in the vigor of mathematics. So far as the

second question is concerned, the following study in-

dicates that for linear function fit, the biasness still

exists. Fortunately, by virtue of factor method, the

biasness due to fit can be corrected through the fitted

factor.

Besides the experimental requirement, from

statistic point of view, the analytic formulas are de-

sirable for it could provide qualitative understanding

towards more complicated problems and bring new

clues for advanced study. In the following sections, we

first derive the minimization starting from the two χ2

forms, and demonstrate that they lead to exactly the

same expression and so are equivalent. Then the two

χ2 forms are applied on some simplified experiments

to test their equivalence quantitatively.

2 Proof of equivalence of two χ
2 forms

We will study the two χ2 forms in Eqs. (2) and

(3), where ki depends on i linearly, i.e.

ki = α •i+β .

However in actual experiments, the physical attribute

is often indicated by a physical variable instead of the

sequence of the experiments. For the i-th experiment

at energy Ecm = xi, we usually use xi instead of i to

denote such experiment. So we write the linear form

of ki as

ki = α •xi +β . (5)

With the above expression, Eq. (2) reads explicitly

χ2
M =

n
∑

i=1

n
∑

j=1

[yi−(αxi +β)] • λij
•[yj −(αxj +β)] . (6)

Here, the symbol (V −1)ij has been changed into

λij for the convenience of notation. For the factor

method, chi-square has the relatively simpler form:

χ2
f =

n
∑

i=1

[fyi−(αxi +β)]2

σ2
i

+
(f −1)2

σ2
f

. (7)

In the above equations, subscripts M and f indicate

the matrix and the factor methods respectively.
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2.1 Expectation and variance from covari-

ance matrix method

For simplicity, we introduce the matrix notation

T =
1

2











∂2
χ2

M

∂α∂α

∂2
χ2

M

∂α∂β

∂2
χ2

M

∂β ∂α

∂2
χ2

M

∂β ∂β











≡

(

Txx Tx

Tx T0

)

.

With the minimization condition














∂χ2
M

∂α
= 0,

∂χ2
M

∂β
= 0,

we have

T

(

α̂

β̂

)

=

(

Txy

Ty

)

. (8)

In the above equations, we have defined

Txx =
∑

ij

xiλijxj , Tx =
∑

ij

xiλij =
∑

ij

λijxj ,

Txy =
∑

ij

xiλijyj , Ty =
∑

ij

λijyj , and T0 =
∑

ij

λij .

(9)

Solving Eq. (8), we obtain

(

α̂

β̂

)

= T−1

(

Txy

Ty

)

=
1

DT

•





T0Txy−TxTy

TxxTy−TxTxy



 ,

and covariance of α and β
(

σ2
α̂

σ2
β̂

)

=
1

DT

•

(

T0

Txx

)

,

with

DT ≡ |T |= TxxT0−TxTx . (10)

With the variables defined in Eqs. (9) and (10), as

well as by formulas (A2) and (A3) in appendix, we

yield the following results


















α̂ =
∑

ij

xiyi−xiyj

σ2
i σ

2
j

/

(S •DT) ,

β̂ =
∑

ij

x2
i yj −xixjyj

σ2
i σ

2
j

/

(S •DT) ;
(11)

and






















σ2
α̂ =

(

∑

i

1

σ2
i

+σ2
f

•

∑

ij

y2
i −yiyj

σ2
i σ

2
j

)

/

(S •DT) ,

σ2
β̂

=

(

∑

i

x2
i

σ2
i

+σ2
f

•

∑

ij

x2
i y

2
j −xiyixjyj

σ2
i σ

2
j

)

/

(S •DT) ,

(12)

where

DT =
1

S
•

[

∑

ij

x2
i −xixj

σ2
i σ

2
j

+

σ2
f

•

∑

ijk

(x2
i −xixj)y

2
k−x2

i yjyk−xiyixjyj +2xiyixjyk

σ2
i σ

2
j σ

2
k

]

.

(13)

2.2 Expectation and variance from factor

method

For simplicity, we introduce the matrix notation

Λ =
1

2
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According to the minimization condition
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= 0,

we have
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0

0
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. (14)

In the above equations, we used the definitions

A =
∑

i

x2
i

σ2
i

, B =
∑

i

1

σ2
i

, C =
1

σ2
f

+
∑

i

y2
i

σ2
i

,

D =
∑

i

xi

σ2
i

, E =
∑

i

xiyi

σ2
i

, F =
∑

i

yi

σ2
i

, and

∆ =
1

σ2
f

.

(15)

Solving Eq. (14), and utilizing the definitions in

Eq. (15), we obtain
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i σ

2
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/

(σ2
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2
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σ2
i σ

2
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•DΛ) ;

(16)
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and the corresponding covariance of the above quan-

tities
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2
j
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σ2
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(

∑
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i σ

2
j

)

/

DΛ ;

(17)

where

DΛ ≡ |Λ|= A BC −C D
2−BE

2−A F
2 +2DE F =

1

σ2
f

•

[

∑

ij

x2
i −xixj

σ2
i σ

2
j

+

σ2
f

•

∑

ijk

(x2
i −xixj)y

2
k−x2

i yjyk−xiyixjyj +2xiyixjyk

σ2
i σ

2
j σ

2
k

]

.

(18)

By virtue of Eqs. (13) and (18), S •DT = σ2
f

•DΛ. Then

comparing Eqs. (11) and (12) versus Eqs. (16) and

(17), the equivalence of the two methods can be seen

directly.

2.3 Discussion

If we denote fi(r) as a function at the i-th point of

any measurements r = r(x,y,z, · · · ) with uncertainty

σi, the weighted average of fi(r) is defined as

f(r) = σ2
s

•

∑

i

fi(r)

σ2
i

,

with

1

σ2
s

≡

n
∑

i=1

1

σ2
i

or σ2
s ≡ 1

/

(

n
∑

i=1

1

σ2
i

)

.

Using the above definition, we can write the opti-

mized quantities of Eqs. (16) and (17) in other forms.

For example, we have

f̂ =

(

1

σ2
s

•

x2

σ2
s

−
x

σ2
s

•

x

σ2
s

)/

(σ2
f

•DΛ) , (19)

and

σ2
f̂
= σ2

f
•

(

1

σ2
s

•

x2

σ2
s

−
x

σ2
s

•

x

σ2
s

)/

(σ2
f

•DΛ) . (20)

It is interesting to notice that from Eqs. (19) and (20),

we obtain the following relation

σ2
f̂
= f̂ •σ2

f . (21)

Furthermore, taking advantage of the forms as dis-

played in Eqs. (19) and (20), we acquire the relation

f̂ •y = β̂+ α̂ •x . (22)

At the same time, from Eq. (5), we have

k̂x = β̂+ α̂ •x . (23)

Here subscript denotes the dependence of k̂ on x. So

combining with Eq. (22), we get

k̂x = f̂ •y . (24)

Comparing with the results in Ref. [7], we find the re-

lations expressed in Eqs. (21) and (24) hold for both

cases of constant and linear fitting.

3 Experimental test

For illustrative purpose, in this section we apply

the formulas to a simplified R value measurement.

In high energy physics, R is defined as the ratio of

the hadron production cross section via single photon

annihilation to the lowest order point-like QED µ+µ−

cross section σpt = 4πα2/3s. In the naive quark-

parton model it is expressed as R = 3
∑

q
Q2

q, where

Qq is the electric charge of each quark flavor, and the

summation runs over all the produced flavors. Taking

the lowest order QCD correction and the electro-weak

effect into consideration, R value would be larger than

the naive value (10/3), and the correction term is a

slowly varying function of the center-of-mass (C.M.)

energy in the region without any resonances. There-

fore, R is well approximated by a linear function.

In experiments, many factors must be considered

in R value measurement1). As a pedagogical example,

here we take a comparatively concise R expression
[4]

R =
(N −Nbg)

Lε(1+δ) •σpt

,

where N is the number of the multi-hadronic events

detected, Nbg is the estimated number of background

events, L is the integrated luminosity, ε(1+δ) is the

1) The R value measurement at BESII is published in Refs. [9, 10] where the detailed calculation about experiment R value

could be found.
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acceptance for the multi-hadronic events with radia-

tive effect included and (1 + δ) is the radiative cor-

rection factor. Table 1 lists R values measured at

thirty eight energy points
[8]

. For a study of data

taken at different times at the same C.M. energy, the

estimated systematic point-to-point errors are given

to be ±3%. For the R value used here, the system-

atic uncertainty in the detection efficiency (±8%), the

luminosity measurement (±6%), the event selection

procedure (±2%), and the background substraction

(±3%) yielded a common systematic error of ±10%,

which should be considered as the normalization er-

ror. Now these thirty eight R values will be used to

test the foregoing conclusions. For minimization, the

MINUIT package from CERN library
[2]

is utilized.

Table 1. Values for R
[8]

. The errors quoted are

point-to-point systematic errors.

Ecm/GeV R ∆R Ecm/GeV R ∆R

5.60 4.08 0.32 6.60 4.50 0.17

5.70 4.09 0.16 6.65 4.25 0.16

5.75 4.12 0.20 6.70 4.63 0.15

5.80 4.13 0.16 6.75 4.38 0.15

5.85 4.13 0.19 6.80 4.44 0.16

5.90 4.09 0.14 6.85 4.50 0.13

5.95 4.17 0.16 6.90 4.41 0.15

6.00 4.17 0.09 6.95 4.23 0.17

6.05 4.16 0.18 7.00 4.10 0.12

6.10 4.04 0.15 7.05 4.31 0.09

6.15 4.34 0.16 7.10 4.32 0.14

6.20 4.05 0.08 7.15 4.29 0.11

6.25 3.96 0.14 7.20 4.27 0.11

6.30 4.27 0.14 7.25 4.39 0.11

6.35 4.47 0.17 7.30 4.29 0.11

6.40 4.31 0.13 7.35 4.33 0.09

6.45 4.23 0.14 7.40 4.46 0.08

6.50 4.40 0.15 7.45 4.51 0.14

6.55 4.66 0.16 7.50 4.18 0.59

In the χ2 construction, the following substitutions

are made:

xi →Ei
cm , yi →Ri

exp . , σi →∆Ri
exp . ,

β →R0 , and α→ η ,

so Eqs. (7) and (6) become

χ2
f =

∑

i

[fRi
exp .−(R0 +ηEi

cm)]2

(∆Ri
exp .)

2
+

(f −1)2

σ2
f

,

χ2
M =

∑

ij

[Ri
exp .−(R0 +ηEi

cm)]×

(V −1)ij(R
j
exp .−(R0 +ηEj

cm)] ,

where σf = 10% is the overall error of the normal-

ization factor f , and the element (vij) of matrix V

reads

vij = δij
•(∆Ri

exp .)
2 +σ2

f
•Ri

exp .
•Rj

exp . .

The fitting results are summarized in Table 2. At

the same time, using Eqs. (16) and (17), we compute

the corresponding values theoretically, which are also

given in Table 2. We can see that the two different

methods lead to the same results up to the signifi-

cant digits listed in the table. In addition, with these

values, we can also test the simple relation given in

Eq. (21).

Table 2. Experimental fitted and theoretical

calculated values of parameters and relevant

information.

matrix factor theoretical
parameter

method method calculation

R0 2.2895±0.3772 2.2895±0.3772 2.2895±0.3772

η 0.1241±0.0421 0.1241±0.0421 0.1241±0.0421

f — 0.7282±0.0853 0.7282±0.0853

χ2/d.o.f 27.18/35 27.18/35 —

The fitted values of R0 and η in Table 2 demon-

trate that the two χ2 forms give consistent results

after minimization. Next we turn to another aspect

of the two χ2 forms, i.e. the fit biasness, which has

been noticed in previous papers
[5,7,11]

.

Fig. 1 shows the fitting result, where the solid line

represents the best fitted k value. It is obvious that

the fitted line is far below all data points. With the

matrix χ2 fit, there is no way to correct this devia-

tion. On the contrary, the factor χ2 fit provides us

with a normalization factor f which just manifests

the magnitude of the biasness. In fact, what we want

to know is the weighted average of experimental data,

i.e. y. This value should not contain the biasness due

to common uncertainty. Eq. (24) gives the relation

between k̂ and y, from which we obtain y by scaling

k̂ with the factor f . The dashed line in Fig. 1 de-

notes the expected y which is obtained by rescaling

k by the normalization factor f . We can see that

the re-scaled line fits the experiment data well. After

rescaling, R0/f = 3.14 which is consistent with the

naive expectation 10/3 = 3.3.
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Fig. 1. The R value, error bars indicate point-

to-point systematic errors. The data points

are taken from Ref. [8]. The solid line repre-

sents the best fitted k value, while the dashed

line is the expected y which is obtained by

rescaling k by the normalization factor f .

4 Summary

For linear function fitting, two χ2 forms have been

constructed to handle correlated data. The equiva-

lence of these two forms has been proved in the vigor

of mathematics, and tested quantitatively in a sim-

plified experiment which measures R values. How-

ever, in light of the comparison of the two χ2 forms,

we notice that the factorized χ2 form is more trans-

parent. Besides its concise expression and relatively

easier minimization, the cause of the biasness is more

easily recognized and corrected by the scale factor.

By contrast, for matrix χ2 form, the biasness is un-

controllable.

The importance of this work lies in two aspects.

First, the proof of the equivalence of the two χ2 forms

has been extended from constant fitting to linear

function fitting; second, the analytical forms of the

minimized parameters are given explicitly, which dis-

play qualitative features for more complicated fitting.

At last, a remark is in order. Compared with

the formulas of the constant fitting, the formulas pre-

sented in this paper are more complicated and less in-

tuitive, which implies that further extension of such

proof might be more difficult, or an alternative ap-

proach should be found.
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Appendix A

Matrix formulas

Some formulas on matrix are collected in this ap-

pendix, as to the knowledge of matrix, see Ref. [12].

Let’s consider a special square matrix A,

A=















x1 +δ a1b2 +δ · · · a1bn +δ

a2b1 +δ x2 +δ · · · a2bn +δ

...
...

. . .
...

anb1 +δ anb2 +δ · · · xn +δ















. (A1)

If its matrix element reads

aij = δij •(xi−aibi)+aibj +δ ,

then the element of its inverse matrix is expressed as

a
−1
ij =

δij

xi−aibi

−

aibj +δ

S •(xi−aibi) •(xj −ajbj)
−

δ

S
•

n
∑

k=1

(ai−ak) •(bj −bk)

(xi−aibi) •(xj −ajbj) •(xk−akbk)
,

with

S =1+

n
∑

i=1

aibi +δ

xi−aibi

+δ •

n
∑

i=1

n
∑

j=1

aibi−aibj

(xi−aibi) •(xj −ajbj)
.

In addition, its determinant is

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

x1 +δ a1b2 +δ · · · a1bn +δ

a2b1 +δ x2 +δ · · · a2bn +δ

...
...

. . .
...

anb1 +δ anb2 +δ · · · xn +δ

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

=S •

[

n
∏

i=1

(xi−aibi)

]

.

As a matter of fact, the error matrix given in Eq. (1)

is just a special form of the one in Eq. (A1). So with the

above formulas, it is easy to acquire the corresponding

results of matrix V . If the element of V reads

vij = δijσ
2
i +yiyjσ

2
f ,

then the element of its inverse matrix is

λij = v
−1
ij =

δij

σ2
i

−

σ2
f

S
•

yiyj

σ2
i σ2

j

, (A2)

with

S =1+σ
2
f •

n
∑

i=1

y2
i

σ2
i

. (A3)
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