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Abstract This work is done for improving the current intemational standard cross section of nuclear reaction. The features of covari-

ance propagation in R-matrix model fitting for 7Li, "B and '°0 systems are researched systematically with Code RAC, and the results

about propagation of non-diagonal elements of covariance matrix are presented. It is found that in R-matrix model fitting, short-ener-

gy-range parameters result in relatively smaller covariance propagation coefficient (CPC), medium and long-energy-range parameters

produce relatively larger CPC. Especially the medium-energy-range component of systematic error plays very important role in propa-

gation of covariance. In the evaluation procedure of nuclear data both long-energy-range component (LERC) and medium-energy-

range component ( MERC) of systematic error should be considered in experimental data-base file. Furthermore, these conclusions are

suitable for the similar model fitting in other science fields.
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1 Introduction

As some fields of modern science and technology are
developing towards high precision and synthetical analys-
is, the research on error propagation and covariance be-
come more and more importantm . For example . a nuclear
measurement'”’ requires standard cross section with high
precision. So we have systematically researched the error
propagation features with R-matrix model fitting for "L,
"B and "0 systems. The basic formula, simulation data,
calculation procedure, and some regularities of propaga-
tion for standard error have been published in Ref.[3]
This letter will describe the result about propagation of
non-diagonal element of covariance matrix, it follows the
terms, formula and signs defined in Refs. [3 4],

We have calculated out tens of thousands covariance
data of the cross sections of °Li(n, a), “B(n, o),
“B(n, o) and * 0 (n, n) O with R-Matrix Code
RAC'', the sub-sets of simulative data used are 300,
340 and 800 data points respectively. The numbers of co-
variance matrix elements are from 90000 to 640000 .

In R-matrix theory, intrinsic wave function can be
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expressed by operator Green Function'®

N A0(A]
- ﬁ, (1)

G =
The values of G rely strongly on the energy E, so the
parameters of R-matrix can be divided into three kinds in
accordance with their dependency on energy. The first
one is long-energy-range parameter, e.g. channel radii,
background parameters; the second one is middle-energy-
range parameter, e.g. the parameters of wider energy
level; the third one is short-energy-range parameler, €.
g. the parameters of narrow energy level . Different kinds
of parameters make the covariance propagation have dif-
ferent features. The property of parameter of R-matrix re-
ly strongly on the structure of cross section of *Li(n,a),

“B(n, o), “B(n, o) and “O(n,n) (refer to
Fig.1.).

2 Analysis of covariance propagation
For convenience, a collection made up of coordinate

points that have the same value of correlation coefficient

(CC) is called as ‘correlation coefficient curve’ (CCC);
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the quotient of a element of calculated covariance matrix
and it’ s corresponding element of covariance matrix of
simulation data is called covariance propagation coeffi-
cient” (CPC); Let Y, = Y2/ U? in which Y? is total sys-
tematic variance and U f is total variance; for a given Yz,- ,
let M, = M?/Y’ in which M’ is medium-energy-range
component (MERC) of systematic error.

It was found that propagation of covariance depends
on the intrinsic features of R-matrix parameters and the

error distribution of simulation data.

2.1 Intrinsic features of R-matrix parameters for

propagation of covariance

When non-diagonal element of covariance matrix of
simulation data is set as zero (that is Y =0), the non-di-
agonal element of calculated covariance matrix is not zero.
In this situation there is no CPC exist, the feature of co-
variance propagation can be studied with the calculated
value of CC. Fig.2, Fig.3 and Fig.4 show the CC fig-
ures of °Li (n, ) and O (n, n) O respectively when
all the error is regarded as statistical error (Y=0), they
actually show the intrinsic features of error propagation for

R-matrix parameters. In these figures the digital numbers

show the values of CC for the most adjacent lines.
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Fig.1. Cross section of °Li(n, o), "B(n, o),

"B(n, o) and *O(n,n).

Fig.2 is the CCC of °Li (n, ), its characteristic is
that near the energy coordinate (0.25, 0.25) there is a
symmetrical closed or half closed curve collection ( called
*closed collection’ for short) , the CC value at the center

part of closed collection is about - 0.2 and about O for
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Fig.2. CCC of °Li(n, o) (Y=0).

marginal part. From Fig.1 it can be seen that the closed
collection is just corresponding to the resonance energy
level -5/2.

parameters of this energy level and other parameters, but

This is the result of corporate action of the

the parameters of the level — 5/2 play a main role.

In the initiative part of diagonal area, correlation
curves distribute parallel around the diagonal line in a ra-
diant shape ( called ‘parallel collection’ for short) and
the value of CC decreases from 1 to about 0.5. The cross
section of °Li(n, a) in this area is mainly generated by
the background parameters of S wave. In another half part
of diagonal area, correlation curves also distribute parallel
around the diagonal line in radiant shape, and the value
of CC decreases from 1 to about 0.5. This is caused by
background parameters of distant energy levels.

The CC figure of *O(n,n) "0 is the most reprehen-
sive one. For the sake of being clear only the part for 0—
1.6 MeV is shown in Fig.3. In cross section of *O(n,
n) 0 (See Fig.1), there are three very strong reso-
nance ( corresponding energy zone is called ‘apex zone’
for short) , in this energy zone they result in three closed
collections in diagonal area and, the middle one corre-
spond level + 3/2 is shown in Fig.4 in detail. The value
of CC in the central part of this closed collection is about
—0.95 and about 0.1 for marginal part. For the energies
in the vicinity of ‘extraordinary point’ or ‘vertex point’

the value of CC are negative and the correlation is very
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Fig.4. CCC of %0(n,n) 50 on the energy
area of +3/2 level (Y=0).

strong so that it has a tendency to approach — 1 .0, this is
*0(n,n) O channel.

From the figures above it can be seen that if there

due to there just exist '

are obvious ‘apex zone’ and ‘incline zone’ in integrated
cross section fitted, the value of CC that related energy
points in ‘apex zone’ are relatively lower, forming hori-
sontal and vertical  vales’ ; the value of CC of two energy
points in ° incline zone  are relatively higher, forming
‘ plateaus’ which are separated by the ‘vales’

The characteristic of CCC for B (n, o) and
©B(n,q ) (refer to Fig.5 and Fig.6) is that in diagonal

area, CCC distributes parallel around the diagonal line

throughout all energy zones and values of CC decrease
from 1 to about 0. Out of diagonal area there are several
smaller closed curve collections. They just correspond
with the resonance energy levels. From the curves of cross
section of °B(n, a,) in Fig.1, it can be seen the back-
ground parameters and parameters of wide distant energy
levels play a primary role, the parameters of some weak
energy levels in that energy zone play a secondary role.
The parameters of weak resonance energy level are not

able to produce closed collection in diagonal area, and

just able to produce small closed collections out of diago-

nal area.
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Fig.5. CCC of °B(n, o) "Li (¥Y=0).
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Fig.6. CCC of ®B(n, &) 'Li (Y=0).

General speaking, in R-matrix model fitting, short-
energy-range parameters result in relatively lower CPC, it
playing a role something like ‘sieving covariance ’; long-

energy-range parameters produce relatively higher CPC
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and therefore should be used in computation as few as

possible.

2.2 Effect of error distribution of simulation data

for propagation of covariance

In order to research the effect of error distribution of
data for propagation of covariance, the covariance or CPC
that associated with E, = 0.2 MeV for Li(n, a) is
shown in Fig.7 to Fig.12.
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Fig.7. Covariance of °Li(n, «) (M =0).
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Fig.8. Covariance of *Li(n, a)(M =0.5).

Fig.7 shows the covariance for M = 0 and Y in-
creased from 0 to 0.99. The curve marked with ¥ =0 re-
fers to the covariance for total systematic error being zero;
the covariance looks relative smaller. If Y has a little in-
creasing (e.g. Y =0.05) the corresponding covariance
increased a lot; when Y reaches 0.15 the covariance got
maximum value, this is due to the contribution of total

systematic error increased. When Y larger than 0.15 the

covariance decreased with Y increasing; the covariance
for Y =0.99 is very small, the peak value just is about
1.46 mb’ . Those explain that in R-matrix model fitting,
if all error is considered as statistic error the evaluated co-
variance will be relative lower if all error is considered as
long-energy-range component (LERC) of systematic error
the evaluated covariance will be very small.

Fig.8 shows the covariance for M =0.5 and Y in-
creased from 0 to 0.99. The curve marked with ¥ =0.0
refers to the covariance for total systematic error being ze-
ro. For Y smaller than 0.9 the covariance increased with
Y increasing, when Y reaches 0.9 the covariance got
maximum value, for Y larger than 0.9 the covariance de-
creased with Y increasing; When Y =0.99 the peak val-
ue is about 110mb’. Making comparison of Fig.8 with
Fig.7 it can be found that the covariance for M = 0.5 is
remarkably larger than that for M = 0. Those explain that
the MERC of systematic error plays very important func-
tion for propagation of covariance.

Fig.9 shows the covariance for ¥ =0.99 and M in-
creased from O to 0.99. The curve marked with M =0.0
refer to the covariance for medium-energy-range compo-
nent (MERC) of systematic error being zero. The covari-
ance increased with M increasing, and looks very sensi-
tive to the change of M when M are smaller than 0.4. In
real experimental data the most possible value of M is lo-
cated in this range. When M reaches 1.0 the covariance

got maximum value.
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Fig.9. Covariance of *Li(n, ) (Y =0.99).
2.3 Propagation of covariance for real situation

The real error of experimental data must include both
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statistical error and systematic error; the systematic errors
usually include LERC and MERC; it’ s reasonable to sup-
pose that both Y and M taking the values about 0.3 are
close to real situation.

Fig.10 shows the covariance for Y=0.3 and M in-
creased from O to 0.99. The curve marked with M =0.0
refers to the covariance for medium-energy-range compo-
nent (MERC) of systematic error being zero. The covari-
ance increased with M increasing, when M reaches 1 the
covariance got maximum value. Those explain that in R-
matrix fitting if the MERC of systematic error of experi-
mental data is not considered the evaluated covariance will
be relatively lower.
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Fig.10. Covarance of *Li(n, a){ ¥ =0.3).

Fig.11 shows the covariance of *Li(n, o) for ¥ =
0.2,0.3,0.4and M=0.2, 0.3, 0.4 respectively. In
this range of Y and M. the covariance increased when

both ¥ and M increased. An interesting thing is that if
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Fig.11. Covariance of *Li(n, a).

the value of Y and the value of M exchanged each other
the covariance is very closed. This explains that in evalu-
ation procedure both LERC and MERC of systematic error

of experimental data should be considered correctly .
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Fig.12. CPC of °Li(n, a).

Fig.12 shows the CPC of SLi(n,a) associated with
E,=0.2 MeV for Y=0.2,0.30.4and M=0.2,
0.3, 0.4 respectively. It can be found that in this range
of Y and M, for a given Y the CPC increased with M in-
creasing; for a given M the CPC decreased with Y in-
creasing. An interesting thing is that the CPC is depen-
dent on the ratio of M/Y, CPC increased with M/Y in-
creasing, for different M and Y, if the values of M/Y
are close each other the CPC are closed each other. The
narrow ‘vales’ at 0.2 MeV represent the propagation co-
efficient of standard error; the wider ‘vales’ at 0.25 MeV
reflect the effect of resonance parameters of the narrow en-

ergy level —-5/2.

3 Conclusions

In R-matrix model fitting, short-energy-range param-
eters result in relatively smaller covariance propagation co-
efficient (CPC), it play a role something like ‘sieving
covariance’ ; the correlation coefficient curves ( CCC)
form closed or half-closed collections. The medium and
long-energy-range parameters produce relatively larger
CPC, the CCC form ‘parallel collection” .

In R-matrix model fitting, the CPC is more sensitive
to medium-energy-range component (MERC) of systemat-

ic error than to long-energy-range component (LERC) of
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systematic error; the MERC of systematic error plays very MERC of systematic error should be considered in data-
important function for propagation of covariance. In the base file.

evaluation procedure of nuclear data both LERC and
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