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Abstract

The properties of four factorized chi-square forms, which are used in minimization of correlated data, are studied, includ-

ing their biasness and unbiasedness. The simplified R-value measurement are quoted to test the conclusion quantitatively.
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1 Introduction

There are two often used methods, the covariance
matrix and the scale factor method, to deal with the corre-
lated data, and the equivalence between them was dis-
cussed by D’ Agostini in Ref.[ 1], where two typical ex-
periment cases, the offset and the normalization cases,
have been studied in detail mainly for two measurements.

. . 2) . .
For the normalization case™ , the equivalent conclusion

5

has been expanded to multi-measurements

In previous study* , two points are worthy of notice:
first, it is easy to acquire analytical results by using the
factorized y* form, which avoids complex calculations of
inverse matrix; second, the estimates of parameters ob-
tained from both the matrix and the factor approach deviate
from the expected average value, and the deviation may be
considerably striking, if the measurement points are quite
many, or the uncertainty of the scale factor is rather
large .

In this article, the study is devoted to factorized xz
forms. Besides the two depicted in Ref.[1]. the other
two forms come also into our sight. The properties of and
the relations between different x2 forms are the main top-
ics of the following sections. In addition, attention is paid

to biasness and unbiasedness of minimization estimates.
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At last, some simplified experimental results are adopted

to confirm the theoretical conclusions.

2 Four x? forms

In the experimental data analysis, a scale factor f,
by which all data points are multiplied. is introduced in
the expression of XZ to take into account the normalization

uncertainty **’

, (- k)Y (- )
@ _ \0
Xe = 2 (d.)z + Ui . (1

where g, is the error of the factor f. Another similar form,

where the individual errors are also scaled, is

; (- k) (1 - )
7 \‘
X\ = 2y + R )

Here subscripts A and B follow D’ Agostini s notation. In

above two equations, x,'s denote n statistically indepen-
dent observations, k a physical quantity, which is expect-
ed as a constant. In minimization process k is a fitting pa-
rameter. However, in some actual analyses, the normali-
zed factor is usually combined with fitting parameters in-
stead of acting on observations. For example, in ¢(2S)
scan experiment , Xl can be expressed as®
n ? 0032
X=X (A%—) (3)
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2)For the offset case, the equivalent proof can be found in Appendix of this article.
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where N, is the experimentally observed event number,
N° corresponding theoretical expectation, which could be
written in detail as
N =L o) e,
where L, indicates luminosity; o, ‘theoretical cross sec-
tion, which is a function of parameter vector 1; ¢ the ef-
ficiency for a certain process, which could be figured out
by Monte Carlo simulation. Because of simulation imper-
fection, the error of € could not be neglected, and some-
times could be rather large. Under such situation, ¢
could be treated as a kind of scale factor whose variation
would affect all data points in the same way. If ¢ ’s error
is denoted as A, taking the correlation coming from ¢ in-
to account, Eq. (3) becomes
: \n\ (N, - ”?)2 + (e - €°)°

x = — a* A* ’ (4)

with
= L, . O',v(f'> . 60
Here ¢’ is a fitting parameter. If define
e’ A
fE*e", andafae—,

then

nt =L oln)-(e-f)=fN,
and

a . 2 2
. = Z (N, -azﬂv") . (1 ;if) _
Rewrite V, as x,, and only consider the constant fitting
problem (so N° becomes k), then
n 2 2
£ L()i’ ; Q;if)" (5)
which is similar to y except the factor f acts on the fit-
ting parameter k rather than on the observations x;. Cor-
responding to ¥}, there is a similar chi-square form:
L = S (x2 —ﬂ;)’ La=n )
= (o) a5

Here subscripts « and 8 are chosen in order to display the

duality of estimates and covariances between different chi-
square forms. This point would be seen clearly in the next

section. Thus, there are totally four X2 forms as shown in

(5) and (6).
Properties of y? forms

In this section, the parameter estimates and covari-

B E

ances of four y* forms are to be worked out. Firstly, for
2
X, from

a 2

Xa

3k =0

ajxi =0

af

it can be obtained

ky = ﬁ‘/-i‘ itA =x
. ", thatis \ .
fA =1 fA =1

where % is the weighted average defined as
= o [% 1
i= =/ 2, =
23 &7

The inverse of covariance matrix is

. 22 22
"__‘)X\ aXA
| dk 9Jk afak
=T 2.2 22 =
- (]X\ ax‘
\dkadf 3dfaf
5 1 vx_
= A
0, | _ \ox
= Soexe DI
sl ey oy t,‘af
therefore
1 _ \n\ x; \"w x,
— + x * p -
i oy o =
ST
= = o
where
- 1 "y 1
D, = VW:-—-X — .
A g =

From V,, the variance of k, can be acquired,
ai\ = ai + (g,2)°
where ¢ is defined as
1 ! L
—zzz—z,or 0’3:1/(2_5
o, Q=1 i J =1 0

(8) indicates the use of y} always gives the result of

k. = x. The reason can be seen from another form

_ E (x - k)" (1)

i=1 ( (8 i )2 02f
In minimization process, for any f, the estimated k, s
determined by the summation terms of the above equation,

at the same time, the last term constrains f to 1. The
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only influence of f is on 5} , which turns out to be equal
y i, eq

to quadric combination of the weighted average error o,
with ¢, x, the normalization uncertainty on the average.
This result corresponds to such a case, when the normali-
zation factor in the definition of y” is not included, the
overall uncertainty is added in quadrature at the end" .
For the other three Xz forms, repeat the similar pro-
cess, the needed results could be acquired” , which are

summarized in Table 1.

Table 1. Results of four y° forms.

Method Parameter

Scale factor Estimate variance
estimate

R - 7 _ 2 =32

A k,\=f‘\'x ]:1 O‘LA—G,+(afx)
i = 1 2 2 2.2
by=fx Ies, el

7 L 2 2 2 22

fo=—:a f=1 a‘.=a,+(0,x)
b P {2 3, &f0] o 5 RpaR

y2 kp=—-% FEIFfHSf-1)=Z2, &f#£0]| a5 =05 +

ol R el £ e 35--7

) 2
P=1 i

Note: EU/ is defined as E,, 2 3 M, with the

(a1,

expeclation (X, ) = o}
i4

It can be seen that the scale factor f of x?, should be
solved from the quartic equation

- ==

Four roots of the above equation are
172

11 1
=5 g la-s-gl
IR [1 L]'”
=3 *t25F 4 a8l

where
1 4-4
S:,\le—‘T,—‘-#-B’T,
T = \/V3,/27 + 2563, -
i
257
A:[‘*ff,
N 3
320

N i

B=. g

For the limit 6, = 0, which corresponds to the case that
there is no correlation between different points, and the

scale factor should be identically equal to 1, then E”/ =
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0, so it is easy to dertve f,,; =0 and f, = 1. Therefore
fs is the reasonable physical solution.

According to the results listed in Table 1, the mini-
mization of xf, and Xé will give the biased parameter esti-
mate k, which is not equal to the weighted average . To
see the deviation in xz method, the scale factor 1/ f as

the function of 6, with different number of experiment
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Fig.1. l/j variation for xé. The numbers on curve, 1,2,3
4 and S, indicate different numbers of experiment points, which
is 10, 50, 100, 200 and 1000, respectively.
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Fig.2. f variation for x;. The numbers on curve, 1,2,3,

4 and 5, indicate different numbers of experiment points,

which is 10, 50, 100, 200 and 1000, respectively.

1) In fact, one special matrix approach can be used to obtain the same unbiased estimate, see appendix.

2) For x% , the detail of calculation could be found in Ref.[3].
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points n, has been drawn in Fig.1. Correspondingly, the

variation of factor f from x; is also drawn in Fig.2. Here
the expectaﬁon of E,r , namely <E"r> =g,(n-1) is

used to calculate scale factor /. Comparing Fig.1 and 2,
it can be seen, both y; and y; will lead to biasness of
minimization results. However, the degree of deviation
from the weighted average is different. As to the same
normalization error, the deviation of X§ is much smaller
than that of yj.

On the contrary, according to Table 1. both Xi and
Xi will derive unbiasedness results, moreover, the esti-

mate variances of two chi-squares are the same exactly.
4 Experiment testing

R, the ratio of the hadron production cross section
via single photon annihilation to the lowest order point-
like QED p* p1 cross section ¢, = 4xa’/3s, is a funda-
mental quantity in e’ e interaction. It is calculated in
the naive quark-parton model as R =33 Q7. where Q,
is the quark electric charge, and the summation runs over
all the produced flavors. Taking the lowest order QCD
correction and the electro-weak effect into consideration,
R value would be larger than the naive value (10/3) for
four quark flavors, and the corrected term is a slowly
varying smooth function of C. M. energy, in the region
without any resonances, therefore, R could reasonably be
treated as a constant in a good approximation .

In experiment, many factors should be considered in
R value calculation' . As a pedagogical example, a com-
paratively concise R expressionis: is given here,

o (N =Ny
where N is the number of multi-hadronic events detected ,
N, is the estimated number of back-ground events, L is
the integrated luminosity, ¢(1+ &) is the acceptance for
the multi-hadronic events with radiative effect included
and (1 + &) is the radiative correction factor due to high-
er order QFI) processes up to order a® . Table 2 lists thir-
ty eight experiment R-values” . From a study of data

taken at different times at the same C.M. energy, the es-
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timated systematic point-to-point errors are given as
+ 3% . Forthe R value used here , the systematic uncert -
ainly in the detection efficiency ( + 8 % ), the luminosity
measurement ( + 6 7% ), the event selection procedure
(£2%), and the background substraction ( + 3 % )
yielded an common systematic error of + 10 % , which
should be considered as normalization error. Now these
thinty eight R-values will be used to test foregoing conclu-
sions. For minimization, the MINUIT packages, one of
useful CERN package in high energy physics''®", is uti-

lized. In the X2 construction, the following substitute is

adopted :
x, >R, ,0 —~AR,, ,and k> R.
Table 2. Values for R” . The errors quoted are
point-to-point systematic errors.

E_./GeV R value AR E_./GeV R value AR
5.60 4.08 0.32 6.60 4.50 0.17
5.70 4.09 0.16 6.65 4.25 0.16
5.75 4.12 0.20 | 6.70 4.63 0.15
5.80 4.13 0.16 6.75 4.38 0.15
5.85 4.13 0.19 6.80 4.44 0.16
5.90 4.00 0.14 6.85 4.50 0.13
5.95 4.17 0.16 6.90 4.41 0.15
6.00 4.17 0.09 6.95 4.23 0.17
6.05 4.16 0.18 7.00 4.10 0.12
6.10 4.04 0.15 7.05 4.31 0.09
6.15 4.34 0.16 7.10 4.32 0.14
6.20 4.05 0.08 7.15 4.29 0.11
6.25 3.96 0.14 7.20 4.27 0.11
6.30 4.27 0.14 7.25 4.39 0.1t
6.35 4.47 0.17 7.30 4.29 0.11
6.40 4.31 0.13 7.35 4.33 0.09
6.45 4.23 0.14 7.40 4.46 0.08
6.50 4.40 0.15 7.45 4.51 0.14
6.55 4.66 0.16 7.50 4.18 0.59

For example, the standard chi-square form should be

written as

2 (Rlcx _R)z
X = E“—*"‘(APR‘ o (11)

First, the data listed in Table 2 are considered as

H

uncorrelated ( namely, the common sys-tematic error of
10 % is not taken into account), and Formula (11) is

used in the fitting . Minimizationgives R = 4.284 + 0.021

1) The R value measurement at BESII has heen described in Refs.[7,8], where the detailed calculation about experiment R value could be found.
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(fitting error only) with y*/n,, = 55.93/37, see Fig.3.
In fact, as to this simple example, R and corresponding
x" could be computed directly from Formulae (9) and
(11), which give the same results as those from the fit-
ting.

5.5
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Fig.3. Fitted R value without any correlation (solid line

indicates fitting result) .

Next, in order to consider the correlation, a scale
factor f is introduced, whose uncertainty ranges from 1 %
to 20 % , centering around the normalization error 10 % .
The fitted values and their errors (fitting errors only) are
shown in Fig.4. The top straight line denotes the fitted R
value for xi and Xi forms, which is 4.284. The other
two lines correspond to the theoretical curves of xf, and

X3 respectively. Unlike Fig.1 and 2, the value of 2’/
instead of (2”f> is used in curve drawing.

On the basis of simplified R-value measurement re-
sults, it can be concluded that the actual fitting results,
shown in Fig.4, quantitatively agree with theoretical ex-
pectations, listed in Table 1:

1. The fitted R value in Xi and X: forms consists
with each other and with the weighted average. The devi-
ation between y; and y) forms to the weighted average
increase with the enhancement of o, .

2 . The fitted uncertainties of R in xi and xi in-
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R value
el

0 bt I A‘.._J_.__._AJ
0.05 0.10 0.15 0.20
or
Fig.4. Fitted R value with correlation (solid lines

indicate theoretical expectation) .

crease with the velocity proportional to the size of o}, but
for Xf! and szi , the increasing velocity is relatively slow,
especially in xf, case’

By virtue of the concrete example, x:, and y; are
unfavorable from the minimization point of view. The rea-
sons are two-fold. First, y and y; produce biased fitting
value and the bias might be rather severe when the com-
mon error o, is considerably large. Concretely speaking.
for the 10 % common systematic error in our quoted K-
value measurement, the fitted R equal to 2.747 for Xﬁ
and 3.369 for y;, respectively. The deviation from the
weighted average R is up to 36 % and 21 % correspond-
ingly. Under such condition, the correction from factor f
must be taken into account conscientiously. Second, y4
and y; tend to underestimate the fitted error which is hard
to correct. Comparing with xi or Xi , the enhancement of
fitting error is too slow with the increasing of common er-
ror g, for Xé , while for X; , the fitting error almost keep
the same for the variation of o,. But from the intuition of
experiment physics, the common g, should be added di-

rectly into the final fitting emor, just as that for y3 or

2
Xa-

1) So far as uncertainty is concerned, the effect from o2 could be neglected when o, is small and n is large. This point could be seen clearly for a simple

case that all 0, s are approximately equal, i.e.d;, ~ @,. Under such condition, according to the definition of a7 , it could be obtained that o2 = a2/n . As tn the

example quoted in this paper, o, ~3% , then 0,3 %/./38=0.49 % which is small enough to be neglected.
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5 Discussion

In this paper, the properties of four factorized chi-
square forms have been studied. Some simplified R-value
experiment fitting results are employed to test the relevant
theoretical conclusions quantitatively. From foregoing dis-
cussions, the xi or the xi method seems a comparatively
ideal approach to treat correlated data points, especially
when only one normalized factor should be taken into ac-
count. However. further study displays many technical
and theoretical difficulties.

First, the trick used in the equivalence proof for sin-
gle factor and single parameter (i.e. constant) fitting
case would lose its magic, when multi-factor and multi-
parameter must be taken into consideration. Therefore,

for minimization results from chi-square which contains
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Appendix
Matrix x* form

Let us consider a certain offset case where all experiment results
x;x0,(i=1,2,-.n) are affected by one calibration constant ¢

whose errur is o, and the best estimate value of ¢ is 0 (¢ =0), then

the error matrix could be constructed® as follows:

-2 2
o) + o o’ o’
2 2 2 2
a gy + 0, v a.
vV, = . . . - (AD
2
g’ a’ ad + o

B2 %

many factors, it is hard to know if the matrix chi-square
form could be used as a cross check for fitted results.
This point makes it more difficulty to ensure that results
from factorized chi-square fitting are reliable .

Second, although the scheme of covariance matrix
construction proposed in Ref.[1], seems fairly crafty and
reasonable, only linear effect of correlation has been tak-
en into account' . So the accuracy, furthermore the appli-
cation of factorized chi-square form is rather limited .

In fact, it is necessary to construct a reasonable
minimization estimator from the general statistic principle,
so the correlation could automatically be taken into con-
sideration, and the equivalence proof would become un-
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necessary. In another paper''', one method about esti-

mator construction is introduced, together with its appli-

cation for ¢(2S) scan data fitting.
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Correspondingly, the y* reads

x“: = 22(1‘ —k)-(V:')lj-:u - k),

v=1 sl

(A2)

where subscript “ ¢” indicates the effect from offest constant c¢. The
first and second derivative of er lead to the minimization estimate and
variance ;
Al -
pIDIEAL
}; o=l g1
e = T
QY et
22

T

1) In Ref. 1], the equivalence between the factorized and the matrix chi-square form has been proved strictly. However, in matrix form, the covariance ma-

trix is constructed according to the standard formalism of error propagation where only first derivatives are considered .

first derivative is usually not accurate enough as approximation.

But for a general and non-linear function, the

2) The details of correlated matrix construction can be found in Ref.[1], where two frequently happed cases, the offset and the normalization cases, have been

studied .
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2 2 v,
a/f’ = azxz = u" »n-‘
ey s AEPIDILE

where V7' indicates the element of the adjoint matrix of V,.

’

the following two formulae

b~ fiee S 3b U1

o

X

it can be worked out,

(A4)

Using

(A5)

(A6)

(A7)

ai! = gl + ol (A8)
Comparing Eq. (A8) with (8), together with Eq. (A8) with (10),
it can be see if let o, = ok (k = x), then y, and y, would give the
exactly same minimization estimate and variance. In another word, if
it is assumed that normalization uncertainty produces a “global” corre-
lation with constant covariance (o)?, instead of a “local” correla-
tion with variant covariance (a}x‘zj )}, then the nomalization uncer-
tainty could transform into a special form of offset uncertainty. So the
matrix method (i.e. y2 method) can alsv usex! to figure out the unbi-

ased estimate .
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