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Spin Operators in the Quantum Field Theory *
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Abstract The concept of moving spin of the relativistic particle is further discussed in the quantum
field theory. Two new operators, field quanta spin and moving spin of quantum field system, are in-
troduced. We show that, in virtue of these two operators, some problem in the quantum field theory
concerned spin can be neatly settled.

Key words quantum field theory, field quanta spin, moving spin of quantum field system

1 Field Quanta Spin

In the previous paper !, we discussed the spin operator for a massive relativistic particle with
nonzero spin. It has been known that the spin operator for the states of the nonrelativistic particle
should be replaced by the moving spin (PMS). Now for the quantum field, therefore some modifica-
tion to the spin operator is expected.

Consider a massive field with spin s. Suppose the independent canonical coordinates are ea (A
=1,2'*,n);and the Lagrangian density is Z, hereby the conjugate fields are my =343 ¢p,. We
may now define an operator as follows,

qs:Jd3x(_i):ZTFA(I);’(ﬁ)A,m};(I):, (1)
A.B
where 5(p) is just the moving spin as defined by Eq. (10) in Ref.[1]. It is easy to check that
[P#, qu]=09 [.Iiy qu]z[qSi9qS}]:ielyqukv (2)

which manifests the properties of a spin operator for %. Owing to what follows, we may call this
new defined operator the field quanta spin (FQS). Accordingly the total angular momentum is now
redivided as following,

J=9L+ 9§, (3)
where 'L may be called field quanta orbital angular momentum. While the following commutation
rules are easy to check,

L L, qS, ]=0, [.I, ’ qu]: ( L, qu]:ieijquk , [P.' ’ qL,]= [Pi s],‘]:iS,jkPk- (4)
For concrete, we come now to the Dirac field. The Lagrangian density is
F= ¢, (iY*V +i703, = m) o, = $(B - m) ¢, (5)
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where ¢, are the four components of the spinor, while ¢ =¢" 7,. The conjugate fields are

7r,,=;—sz=i¢: (6=1,2,3,4). (6)
The equation of motion is (i # = m )¢ =0 with the following plane wave solution
w(p,E)e** F=w(ple ", (7)

In the particle rest frame, p=0, p=p, E= * m;w(p) can be expanded in term of the
following base,

_({& _ 0) _
W@ =), wm=(]) G=z12. ()
If pA0,E=+V|pl*+m?*=1+ E,; we may take the following canonical frame
ua(p)=ea""“2ua(ﬁ) v, (p)=e*"2 0, (p), (9)
where n=p /| p|, while 6 satisfies tanh = =|pl/(E,+m). It can be check that

§(ﬁ)u;(P)e""’"=7(o')“ux(p)e“”", s(P)u(p) ""=—(o‘)“v,1 (p)e =, (10)

in which s(p) is the PMS for Dirac particle.
Now expand ¢,¢ in the momentum space,
(x e | _P_ jm ic,(p ) {{A{p)t“. Py d; (p)z-',-i(p)e

E; -JI\hn
s (11)

$lx, 1) = f (;]—‘)L_ l: ,\};” lex (p)a (p)e?”* + d, (p)z, (p)e "},
4 (2r

where ¢;(p), ¢; (p) and d,(p), d; (p) are known as the annihilation and creation opera-
tors for particle and antiparticle respectively with the following anticommutators
lea(p)y i (P =1di(p), di (p')) =8u38P(p~p"), (12)
with other anticommutators eliminated.
In the following we go over to the field quanta spin. One may substitute the expansions
of Eq.(11) into Eq ( 1) Noticing Eq.(10), one can get after direct calculations

Jda s el (Plev(p) — di-(p)d, (P} (13)
A4 =212

Next we consider the states of the Dirac field.

(a) Vacuum state: |0). One may take the normalization as {0|0) = 1. The vacuum
state should be invariant under space time transformation, i.e. ,J|0)=0, P|0)=0.

(b) One particle state

(P A3 +))=V2E,c; (p)10),|(p, a5 - ))=24/2E,d",(p)]0),  (14)
where ‘+” and ‘ = in the notation of the states stands for particle and anti particle respec-
tively; the phase convention for the antiparticle states are adopted according to the charge
conjugation transformation.

Via the transformations of the annihilation and creation operators, one can get after
some computation

Ula,L] 1 (p,as £)) = 2 SIDL(R(L,p))' 1 (Lp,A5 £)),

which indicates that | (p,A;+)) are the canonical states.
We can now check the action of S on the states with Eq. (13). First,
$10) =0, (16)
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i.e., the vacuum state of Dirac field is the eigen state of FQS with zero eigenvalue. Up to
now in the text books on the quantum field theory, however, the spin operator is § and the
vacuum state is not its eigen state. This had been remained as a problem in the quantum field
theory. We know now that this problem is well settled if we adopt FQS as the spin operator
of the the quantum field.
Next, for the one particle states | (p,A; +)), from Egs. (13, 14) we can get

S (p Az =5"1(p, 2751, 17)
especially, °S*|(p,A; £))=al(p,A; £)). Eq.(17) shows that °S’ are exactly the spin
operator for the one particle states. In texts on the quantum field theory, the spin problem
has been discussed® ™. However, the problem is now discussed more neatly in virtue of
FQS. For this reason, and also for the defect of the spin operator § on vacuum state, FQS
are more proper as a spin operator for the quantum field theory.

2 Moving Spin of Quantum Field System

In the above, the spin operator for the vacuum and one-particle states of the quantum field is
clarified. As for the arbitrary particle states of the quantum field, such an operator is also found.

For the arbitrary N-particle states, one can construct the N-particle canonical states
| pra--nA 3 win) . (where 7 stands for the degenerate indices) , which is the eigenstate of the momen-

tum operator P,

Plpipnd;win)e = przn | prondiwin).. (18)
We found that for these states there exists such an operator S(P) which satisfies
S(P)| pranAswin)e = jaa | Pra-nAiwin)es (19)

where j; -4 is the spin representation matrices for spin-j, as s’ in Eq. (3) in Ref.[1].
The explicit expression of §(P) reads as following,
S(P)=(P*) 1 {PyJ - (VPP +Py) ' P(P+J) - PXK}, (20)
in which J and K are the generators for rotation and boost respectively, while P2 = P P* = P§ ~ | P{.
In the above expression only P,J,K appear, and this indicates an universal meaning of S(P).
Eq. (19) manifest the property of S(P) as a spin operator for the various canonical states. On
the other hand, from the procedure of the construction of the N-particle canonical states, it is
known that the canonical states are the complete base for the space of arbitrary N-particle states.
Hence, S(P) is an universal spin operator for various states of the quantum field. Accordingly we
may name it as moving spin of quantum field system (FSMS).
As a fact, it can be verified that $(P) acts on the vacuum state and one-particle state just in
the same way as .
Considering the infinitesimal rotary transformation of the canonical states, one can found that
the total angular of the field appears as
J=—iP><§aI—,+S(P). (21)
We may define L(P)= —iPx3[dP, then L(P), S(P) are the orbital angular momentum and
‘ spin’ operator respectively. Some relations concerned L{P),S(P) are listed as follows.
LJ: ’L(P),‘ 1= [L(P)i vL(P),‘ ]= ie.’,/eL(P)/, ’
[J..S(P),1=[S(P),,S(P), ] =ieuS(P)s,
[L(P),‘op_,]z[.]up ]:iei p,,
[S(P),,P,1=[S(P),,Py]=[L(P),,S$(P),1=[L(P),,P,]=0,
L(P)-P=P-L(P)=0.
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The more detailed account is to be appeared elsewhere.

3 Conclusion Remarks

In the preceding pa 1} and this paper, we present a systematic discussion of the spin opera-
tors for various relativistic states. For a relativistic particle, the moving spin (PMS) instead of the
ordinary spin operator should be adopted for describing its spin. The further discussion in the quan-
tum field theory leads to the two new operators FQS and FSMS. The explicit expression of FQS in
momentum space and FSMS in terms of the generators of Poincaré group are obtained. With the aid
of FQS and FSMS, problems of the quantum field concerned spin can be neatly settled. It is reason-
able that FQS and FSMS are the proper spin operators for relativistic quantum field. We hope that
all these results will be helpful in our endeavor to the spin cnisis.

The authors are grateful to Profs. ZHU YuCan and ZHENG ZhiPeng in IHEP for their sup-
port and useful suggestions. We also thank Prof. S. U. Chung in BNL for his kind help on the re-

search materials .
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Appendix
Generators of #of Quantum Field
Suppose that the field variables are 4 (A =1,2+*, n), with Lagrangian density 4. The conjugate fields

are x4 =34/3% 4. By Nother's theorem, the momentum of the field is

P, = [z 8001, (22)

where &, (z) = EAnAa,ﬂA — 7.0 x) is the energy-momentum density. While the angular momentum is
Jo = jd% 2% - 08— i3 G amm] = L+ S, (23)

with Lo=[fz:(2,2-58]1. S.=[dz:(- IDUNCHINER (24)

where 5, is the spin tensor for one particle.
Impose the quantization condition to (@, ), either commutation rules for Boson field or anticommutation
rules for Fermion field, and from Egs. (22,23,24), we may get by direct calculations
[P,,P,1=[P,,S,)=[La,S,]=0,
[Pus L] =[PusJop]=i(50P, = Ps) s
(Lu:Lypl= =i L = MoLye ¥ Molis ~ ol s (25)
[Sw+Sp]= = i(7Sp = TS + TS = NS )s
U Tpl= =i( 50T = 1T + 2T = Twle) (T=S,L.J).
All these Poincaré algebra are just the same as that in the Appendix in Ref{1]. And similarly, the Pauli-Lubanski
vector is defined as W, = —;—:MP]* , with the commutations

(W, W,]= —iePWP, [W,,P,]=0. [W,.],]1=i(1W,=n,W.). (26)
The two Casimir operators are C; = P,P* and C, = W,W", which satisfy [C;, P,]=[C;, ], ]1=0(i=1,2).
From the Lorentz tensors J,,,, L,, and S,,, we may define the following space vector operators,
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L,=%EU§LA=%E,}‘L¢, Si=—;—eijk5"=%—s,ﬁsﬁ, J,':L,-'*'S,‘;

Zi=Lu=-L%, T,=Sy,=-5", Ki=2,+T,.
We should point out here that on the definition of L, and 5; in Eq. (18) in the Appendix of Ref. (1] the
factor —é- is unwarily missed.
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