Low-Lying Spectra and E2 Transition Rates in Even-even Ce Isotopes in the Interacting Boson Model*

ZHANG JinFu^{1,3} PAK JaeYon^{1,2} LIU FengYing¹

- 1(Department of Physics, Tsinghua University, Beijing 100084, China)
- 2(Department of Nuclear Power, KimllSong University, Pyongy Yang, DPRKorea)
- 3(Department of Physics, Chifeng Teacher's College for Nationalities, Chifeng 024001, China)

Abstract The positive parity collective states in the even-even ¹²⁸⁻¹⁵⁰ Ce isotopes are studied in the framework of the interacting boson model. A schematic Hamiltonian able to describe their spectra and transition is used. It is found that both the light and heavy even Ce isotopes are in the transition from the vibrational limit to the rotational limit. From ¹⁴⁶ Ce onward, the isotopes are nearly perfect rotors.

Key words spectra, electromagnetic transition, positive parity low-lying collective state

1 Introduction

More than twenty years ago, Arima and Iachello put forward the interacting boson model (IBM). In the IBM, valence nucleon pairs are treated as bosons. It is a very effective phenomenological model for describing low-lying collective properties of nuclei across an entire major shell. For these nuclei in the xenon-barium-cerium mass region, the excitation spectra of the Xe-Ba and ^{132,134}Ce nuclei was approximated by the dynamical symmetry O(6) of the IBM-1^[1-5], which is analogous to the gamma-unstable rotor model. It has been recently shown^[6,7] that one can describe the low-lying structure of Xe and Ba isotopes by the transition from U(5) to SU(3). This raises the interesting question whether Ce isotopes can also be described by U(5) to SU(3) transition. Meanwhile for the nuclei in the cerium-neodymium with mass numbers around 150 region, it is found that Nd isotopes are in the transition from the vibrational limit to the rotational limit ^[8-11], and from ¹⁵²Nd onward, the isotopes are nearly perfect rotors^[10]. In this study, we also check if Ce isotopes with mass numbers around 150 can also be described by a transition from U(5) to SU(3).

The structure of these isotopes is studied in the framework of the interacting boson model, the IBM-1, where no distinction is made between neutron boson and proton bosons. As has been showed^[8], this simple IBM-1 gives a very good approximation to the symmetric states of the neutron-proton interacting boson model. Usually the low-lying levels are dominantly the symmetric states. Systematics is important in the study of the properties of nuclei^[12-14]. We analyzed the systematics of the spectra and electromagnetic transitions of the even Ce isotopes in this work. Finally it was found from this work that the Ce isotopes

Received 17 April 2000

^{*} Supported by National Natural Science Foundation of China (19775026), Excellent Young University Teacher's Fund of China Education Ministry and the FOK YingTung Education Foundation

could be well described by a U(5) to SU(3) transition.

The paper is divided as follows. After this short introduction, we describe briefly the model Hamiltonian and the E2 transition operator in sect 2. In sect 3, we give the results and discussion on spectrum and E2 transition properties. Finally, in sect 4, a conclusion is given.

2 Schematic IBM Hamiltonian

The general IBM Hamiltonian contains 7 terms. However, for our study, we take the following schematic Hamiltonian^[15].

where
$$\hat{H} = \varepsilon_d \hat{n}_d + KQ \cdot Q + K_L L \cdot L$$
, $Q_\mu = (s^+ \tilde{d} + d^+ s)^2 + \chi (d^+ \tilde{d})_\mu^2$, and $L_q = \sqrt{10} (d^+ \tilde{d})_q^{(1)}$, $\chi = -\frac{\sqrt{7}}{2}$.

This Hamiltonian is able to give a transition from U(5) to SU(3), if $\varepsilon_d = 0$, then the Hamiltonian reduces to an SU(3) limit Hamiltonian. If K = 0, the Hamiltonian becomes a U(5) limit, describing the vibrational collective motion. $K_L(L \cdot L)$ term removes some of the degeneracy for different L values. Therefore the ratio of K/ε_d is a measure of the transition between U(5) and SU(3). If $K/\varepsilon_d = 0$, the Hamiltonian is vibrational, and if this ratio is ∞ , the Hamiltonian is rotational. In between, the Hamiltonian is in the transition between U(5) and SU(3). The parameters in the Hamiltonian can be determined by fitting to the experimental spectra. After the determination of the spectra, the wave function is determined. The electric and magnetic transition properties can then be obtained accordingly. For example, the E2 transition operator is

$$T(E2)_{\mu}^{2} = e_{2}[(s^{+}\tilde{d} + d^{+}s)_{\mu}^{2} + \chi(d^{+}\tilde{d})_{\mu}^{2}]$$

Microscopically, the transition operator can be derived from shell model by the mapping procedure [16-19]. In practice, it is more convenient to treat them as free parameters. Here we adopted the consistent $Q \cdot Q$ Formalism [20]. As is knew, this convention is not an essential requirement of the model, and sometimes, it is even necessary to use a different Q operator in E2 transition calculation to describe the E2 transitions [21,22], for example, the structure for neutron-rich and neutron-deficient Sr nuclei [23-25], neutron-rich Cd nuclei [26], and neutron-deficient and neutron-rich Nd nuclei [10,11]. Noticeably, the reduction in collectivity problem can be solved by using an operator in the transition different from that in the Hamiltonian [27-29]. However in many cases, the consistent $Q \cdot Q$ Formalism can give a good first description of the E2 transition properties. Since there are few experimental data available, we adopt the consistent $Q \cdot Q$ Formalism in a first place. When there are more experimental data on the E2 transition in the future, one can fine-tune the E2 transition operators to reproduce the details.

3 Result and Discussion

In table 1, we give the parameters of the Hamiltonian and of the E2 transition operator in each nucleus studied. From table 1, the values for ϵ_d , K, K_L , and e_2 are rather constant. For ϵ_d in the lighter even Ce isotopes, with the exception of ¹³⁰Ce, the value increases

with increasing mass number, until 138 Ce. In the heavier even Ce isotopes, ε_d value decreases with increasing mass number. But for K, K_L and e_2 in the lighter even Ce isotopes, these values decrease with increasing mass number until 136 Ce and 138 Ce. In the heavier even Ce isotopes, these values increase with increasing mass number. It reflects the transition character of the dynamical symmetries in even Ce isotopes.

Table 1 Parameters of energy levels and B(E2) operator for Ce isotopes.

Nucleus	ϵ_d (MeV)	K(MeV)	$K_L(\text{MeV})$	$e_2(efm^2)$	
¹²⁸ Ce	0.205	-0.0050	0.0190	15.8	
¹³⁰ Ce	0.422	-0.0140	0.0175	14.5	
¹³² Ce	0.392	0.0123	0.0194	16.2	
¹³⁴ Ce	0.400	0.0050	0.0185	15.0	
¹³⁶ Ce	0.500	-0.0025	0.0175	5.00	
¹³⁸ Ce	0.724	-0.0044	0.0160	13.3	
$^{142}\mathrm{Ce}$	0.600	- 0.0050	0.0100	13.2	
¹⁴⁴ Ce	0.295	-0.0050	0.0150	13.8	
¹⁴⁶ Ce	0.224	-0.0050	0.0150	14.2	
¹⁴⁸ Ce	0.165	-0.0050	0.0125	17.6	
¹⁵⁰ Ce	0.090	-0.0050	0.0120	16.8	

Table 2 Comparison of B(E2) values in Ce nuclei.

Nucleus	<i>I</i> ;	I_f	$Exp(e^2 fm^4)$	$Cal(e^2 fm^4)$
¹²⁸ Ce	2,+	0,'	4360	4350
	4,'	2,	7240	7220
	6 ₁ ,	41	5590	8420
	81	61	< 5320	8810
	10^{+}_{1}	81	5130	8640
¹³⁰ Ce	21	0_1^{+}	3480	3650
	41'	2 ₁ ⁺	5590	5530
	6 ₁ '	4_1^*	3590	6120
	81	6 ₁ +	>4570	6140
$^{132}\mathrm{Ce}$	2,	0_1^+	3790	3390
	4 ₁ ⁺	2,	3550	5390
	61	4 ₁ ⁺	5580	6050
	8_1^+	61+	2670	6040
	10 _t +	81	1750	5540
¹³⁴ Ce	2_1^+	0_1^+	2060	2045
¹³⁶ Ce	21	0_{t}^{\star}	>2.2	16.1
	41'	21+	330	324
	6 ₁ +	4 _i +	>0.2	456
	101'	81	7	488
¹³⁸ Ce	2_1^*	0_1^+	92	92.7
	101	8,4	0.4	88
¹⁴² Ce	2,	0_1^+	920	930
	41+	2_1^+	1160	1460
	22	2,+	>5	1440
	23	2,*	310	1
	2 ₃ ⁺ 2 ₃ ⁺ 2 ₁ ⁺ 2 ₁ ⁺	0_{1}^{+}	140	0
¹⁴⁶ Ce	21	0_1^+	1860	1826
148Ce	21	0,+	3950	3920
¹⁵⁰ Ce	21	0,+	5580	5680

Using these parameters, we calculate the energy levels and B(E2) value(ratios) for each nucleus. The comparisons between calculated and experimental energy levels and B(E2) value $^{[30-36]}$ for $^{128-150}$ Ce are shown in Figs. 1-6 and table 2, respectively. In general, the agreement is quite good, especially for the ground state band levels with $J^{\pi} \leq 8^+$, despite some discrepancies. In general, the lighter even Ce isotopes exhibit staggering in the gamma band. However, the staggering phenomenon in calculation is stronger than that in experiment. The agreement between the calculated and experimental data may be improved by the use of cubic terms $^{[37]}$ in IBM-1 and the quadrupole interaction between like nucleons $^{[38-41]}$ in IBM-2.

3.1 128-136 Ce

The calculated spectra and experimental spectra are compared in Figs. 1—3. The energy spectra in all five nuclei are reproduced fairly well. The yrast states 2⁺,4⁺,6⁺,8⁺ and second 2⁺ state are in more or less correct positions, although the yrast bands are little bit too stretched. The two-phonon states are slightly split in energy, which may be understood by means of a small anharmonic term in the vibration. The presumed three-phonon states, however, have a much larger energy splitting, with the exception of ¹³⁰Ce, with the highest and lowest states within a multiplet several hundreds of keV apart. It is difficult to envisage such a large energy splitting as caused by anharmonicties alone.

Fig. 1 Spectra for ¹²⁸Ce and ¹³⁰Ce.

Fig. 2 Spectra for ¹³²Ce and ¹³⁴Ce.

The low spin states of the lighter even Ce isotopes are interesting for several reasons. In the chart of nuclides the light even Ce isotopes are located in a part of the $A \sim 130$ region where the nuclei may start to form a transition path to strongly quadrupole deformed shapes with a more rigid triaxiality than in xenon and barium nuclei. We compare the low spin spectra of the lighter even Ce isotopes with the spectra of the neighboring Xe and Ba isotopes. The main features of the spectra, the occurrence of a quasi-gamma band, are quite similar. Independently of specific model, this similarity proves the collective character of the low-lying levels in these nuclei. However, the staggering of the levels in the quasi-gamma band is much less pronounced in the light-

Fig. 3 Spectum for ¹³⁶Ce.

er even Ce isotopes than in the xenon and barium nuclei. This indicates a stronger triaxial rigidity. It is also interesting to note that in ¹³⁶Ce, there is a backbending in the ground state band, which maybe a candidate of the collective backbending mechanism put forward in Ref^[42].

3.2 ¹³⁸⁻¹⁴²Ce

The calculated spectra and experimental spectra are compared in Fig. 4. In both nuclei,

Fig. 4 Spectra for ¹³⁸Ce and ¹⁴²Ce.

calculation by the relatively large ε_d value.

the quality of agreement between theory and experimental data is good. The 6_1^+ and 3_1^+ states become too high and the 0_3^+ is visibly too low for ¹³⁸Ce. The 0_3^+ state is treated as an intruder state. For the 2_2^+ and 0_3^+ are very smaller than those of the experimental 2_2^+ and 0_3^+ states. As a consequence, they are considered intruder states also. Both nuclei are vibrational. This is also true in our

3.3 ¹⁴⁴⁻¹⁵⁰Ce

The calculated spectra and experimental spectra are compared in Fig. 5 and Fig. 6. There is no information for the side bands in 150 Ce. The present calculation gives very good reproduction of the ground-state band. The quasi-beta and quasi-gamma are reasonably well reproduced. In particular, the higher spin states in the ground state band up to 10^+ are well reproduced for the $^{146-148}$ Ce. In comparison with 138,142 Ce, the ε_d values in $^{144-150}$ Ce have a big drop. This makes $^{144-150}$ Ce closer to the rotational limit. From 146 Ce onward, the isotopes are nearly perfect rotors.

Fig. 5 Spectra for 144 Ce and 146 Ce.

Fig. 6 Spectra for ¹⁴⁸Ce and ¹⁵⁰Ce.

In addition, to explore the transitional properties in the Ce isotopes, we analyzed the systematic of the spectra and electromagnetic transition properties. They are given in Table 3, where the ratios $R = E(2_2^+)/E(2_1^+)$, $R_{4/2} = E(4_1^+)/E(2_1^+)$, $R_{6/2} = E(6_1^+)/E(2_1^+)$, $R_1 = B(E2; 4_1^+ \rightarrow 2_1^+)/B(E2; 2_1^+ \rightarrow 0_1^+)$, $R_2 = B(E2; 2_2^+ \rightarrow 0_1^+)/B(E2; 2_2^+ \rightarrow 2_1^+)$ are given.

It is obvious that the R reflects vibrator to a stable deformed character in the even Ce isotopes. Similar results are found for $R_{4/2}$ and $R_{6/2}$ values.

Table 3 Comparison of the experimental and calculated values for 128-150 Ce.

Table 3	Companison of the experimental tall the control of the experimental tall the experimenta								
R Nucleus Exp	R		1/2		6/2	R_1		R_2	R_2
	Cal	Ехр	Cal	Exp	Cal	Exp	Cal	Exp	Cal
-	2.1	2.9	2.9	5.59	5.7	1.66	1.66		0.150
3.3	1.9	2.7	2.6	5.2	4.9	1.60	1.52		0.060
2.5	2.5	2.6	2.7	4.7	5.2	0.94	1.59		0.150
2.3	1.8	2.5	2.3	4.5	4.1		2.34		0.153
1.9	1.8	2.3	2.3	4.0	3.7	< 150	2.01		0.030
1.9	1.9	2.3	2.2	2.9	3.5		1.61		0.001
2.4	1.9	1.9	2.1		3.4	1.26	1.57		0.003
3.8	4.6	2.4	2.3	2.9	4.0		1.63		0.010
4.9	5.0	2.6	2.6	4.5	4.8		1.64		0.040
6.2	5.6	2.8	2.9	5.3	5.7		1.61		0.140
	3.3	3.2	3.3	6.3	6.9		1.39		0.300
	3.3 2.5 2.3 1.9 1.9 2.4 3.8 4.9	R Exp Cal 2.1 3.3 1.9 2.5 2.5 2.3 1.8 1.9 1.8 1.9 1.9 2.4 1.9 3.8 4.6 4.9 5.0 6.2 5.6	R R Exp Cal Exp 2.1 2.9 3.3 1.9 2.7 2.5 2.5 2.6 2.3 1.8 2.5 1.9 1.8 2.3 1.9 1.9 2.3 2.4 1.9 1.9 3.8 4.6 2.4 4.9 5.0 2.6 6.2 5.6 2.8	R $R_{4/2}$ Exp Cal 2.1 2.9 3.3 1.9 2.5 2.6 2.3 1.8 1.9 1.8 2.3 2.3 1.9 1.9 2.4 1.9 3.8 4.6 4.9 5.0 2.6 2.6 6.2 5.6	R $R_{4/2}$ R Exp Cal Exp 2.1 2.9 2.9 5.59 3.3 1.9 2.7 2.6 5.2 2.5 2.5 2.6 2.7 4.7 2.3 1.8 2.5 2.3 4.5 1.9 1.8 2.3 2.3 4.0 1.9 1.9 2.3 2.2 2.9 2.4 1.9 1.9 2.1 3.8 4.6 2.4 2.3 2.9 4.9 5.0 2.6 2.6 4.5 6.2 5.6 2.8 2.9 5.3	R $R_{4/2}$ $R_{6/2}$ Exp Cal Exp Cal 2.1 2.9 2.9 5.59 5.7 3.3 1.9 2.7 2.6 5.2 4.9 2.5 2.5 2.6 2.7 4.7 5.2 2.3 1.8 2.5 2.3 4.5 4.1 1.9 1.8 2.3 2.3 4.0 3.7 1.9 1.9 2.3 2.2 2.9 3.5 2.4 1.9 1.9 2.1 3.4 3.8 4.6 2.4 2.3 2.9 4.0 4.9 5.0 2.6 2.6 4.5 4.8 6.2 5.6 2.8 2.9 5.3 5.7	R $R_{4/2}$ $R_{6/2}$ R_{6	R $R_{4/2}$ $R_{6/2}$ $R_{6/2}$ R_1 Exp Cal Exp Cal Exp Cal 2.1 2.9 2.9 5.59 5.7 1.66 1.66 3.3 1.9 2.7 2.6 5.2 4.9 1.60 1.52 2.5 2.5 2.6 2.7 4.7 5.2 0.94 1.59 2.3 1.8 2.5 2.3 4.5 4.1 2.34 1.9 1.8 2.3 2.3 4.0 3.7 <150	R $R_{4/2}$ $R_{6/2}$ R_{1} R_{1} R_{1} R_{1} R_{1} R_{2} R_{1} R_{2} R_{1} R_{2} <th< td=""></th<>

Besides the energy levels, we are also interested in the electromagnetic properties of Ce isotopes, particularly in the electric E2 transition. Table 2 and Table 3 give the comparison between calculated and experimental B(E2) values and ratios for the three limiting symmetries in all the nuclei. Results obtained in the present work are in good agreement with experiment. This reflects a transition from U(5) to SU(3).

4 Conclusion

We have given, in schematic way, a detailed study of the energy levels and E2 transition of Ce isotopes in the IBM-1. A good agreement is obtained for both the spectra and the E2 transition. The even Ce isotopes are in the vibrational to rotational transition. From ¹⁴⁶ Ce onward, the spectra are well described by the SU(3) limit. It is remarkable properties of the even Ce isotopes. More data in future experiment, especially B(E2) values, will be important in verifying our conclusion.

The authors are greatly indebted to Prof. G. L. Long for his continuing interest in this work and his many suggestions.

References

- 1 Casten R F, Brentano P Von. Phys. Lett., 1985, 152:22
- 2 LONG G L, SUO Y. Commun. Theor. Phys., 1997, 27:67
- 3 Obrien N J, Galindo-Uribarri A, Janzen V P et al. Phys. Rev., 1999, C59:1334
- 4 Gade A, Wiedenhover I, Diefenbach I et al. Nucl. Phys., 1998, A643:225
- 5 Zamfir N.V., Cottle P.D., Casten R.F. et al. Phys. Rev., 1997, C55; R1007
- 6 Zamfir N V, CHOU W T, Casten R F. Phys. Rev., 1998, C57:427
- 7 LI ZhongZe, LIU FengYing, ZHANG JinFu et al. Commun. Theor. Phys., 2000, 33:593
- 8 Scholten O. The Interacting Boson Approximation Model and Applications, Ph. D. Thesis, Groningen University 1980
- 9 Maino G, Ventra A. Lett. Nuovo Giemento., 1982, 34:79; Nuovo Giemento., 1983, 73A:1
- 10 LONG Guilla, ZHU Shengliang, ZHANG JinYu et al. Commun. Theor. Phys., 1998, 29:65
- 11 LONG G.L. Science and Technology of Tsingha University, 1996, 1:231
- 12 Casten R F. Nucl. Phys., 1985, A443:1

- 13 Casten R F. Phys. Lett., 1985, 152B:145
- 14 S. Raman, Nestor Jr C W, Bhatt K H. Phys. Rev., 1988, C37:805
- 15 Jachello F, Zamfir N V, Casten R F. Phys. Rev. Lett., 1998, 81:1191
- 16 Elliott J P, Evans J A, LONG G L. J. Phys., 1992, A25:4633
- 17 Evans J A, Long G L, Elliott J P. Nucl. Phys., 1993, A561;201
- 18 Elliott J P, Evans J A, LONG G L et al. J. Phys., 1994, A27:4465
- 19 Elliott J P, Evans J A, Lac V S et al. Nucl. Phys., 1996, A609:1
- 20 Warner D.D., Casten R.F. Phys. Rev. Lett., 1982, 48:1385
- 21 lachello F, Arima A. The Interacting Boson Model, Cambridge University Press, Cambridge, 1987
- 22 LOGN G L, Elliott J P. In Understanding the Variety of Nuclear Excitations, Eds A. Coveilo World Scientific, 1990, p361
- 23 LONG G L, ZHU S J, TIAN L et al. Phys. Lett., 1995, B345:351
- 24 LONG G L, ZHU S J, TIAN L et al. Chin. J. Nucl. Phys., 1995, 17:149
- 25 LONG G L, ZHANG JinYu, TIAN Lin et al. Commun. Theor. Phys., 1998, 29;249
- 26 LONG G L, ZHU S J, SUN H Z. J. Phys., 1995, G21:331
- 27 LONG G L, JI H Y. Phys. Rev., 1998, C57:1686
- 28 LONG G L, ZHANG W L, JI H Y et al. J. Phys., 1998, G24:2133
- 29 LONG G L, JI H Y, ZHU S J. Commun. Theor. Phys., 1999, 32:489
- 30 Nuclear Data Sheets., 1981, 34:490
- 31 Nuclear Data Sheets., 1987, 52:336
- 32 Nuclear Data Sheets., 1991, 63:676
- 33 Nuclear Data Sheets., 1992, 65:300
- 34 Nuclear Data Sheets., 1993, 69:114
- 35 ZHUSJ, LUQH, Hamilton J H et al. Phys. Lett., 1995, B357:273
- 36 ZHU LingYan, ZHU ShengJiang, LI Ming et al. High Energy Phys. and Nucl. Phys. (in Chinese), 1998, 22:885 (朱凌燕,朱胜江,李明等. 高能物理与核物理, 1998, 22:885)
- 37 Heyde K, Isacker P Van, Waroquier M et al. Phys. Rev., 1984, C29:1420
- 38 LONG G L, LIU Y X, SUN H Z. J. Anhui University. (in Chinese), 1989, 13:96 (龙桂鲁,刘玉鑫,孙洪洲. 安徽大学学报, 1989, 13:96)
- 39 LONG G L, LIU Y X, SUN H Z. J. Phys., 1990, G16:813
- 40 LIU Y X, LONG G L, SUN H Z. J. Phys., 1991, G17:877
- 41 LIU Y X, LONG G L, SUN H Z. High Energy Phys. and Nucl. Phys. (in Chinese), 1991, 15:245 (刘玉鑫, 龙桂鲁, 孙洪洲. 高能物理与核物理,1991,15:245)
- 42 LONG G L. Phys. Rev., 1997, C55:3163

128-150 Ce 偶偶核的低能谱和电磁跃迁的相互作用 玻色子模型*

张进富^{1,3} 朴在渊^{1,2} 刘凤英¹ 1(清华大学物理系 北京 100084) 2(金日成综合大学原子能系 平壤) 3(赤峰民族师范高等专科学校物理系 赤峰 024001)

摘要 采用相互作用玻色子模型研究了 $^{128-150}$ Ce 同位素核的低能正字称态的能谱和电磁跃迁. 应用简单的哈密顿量很好的描述它们的能谱和 E2 跃迁. 研究表明,这些偶偶 Ce 核是属于 U(5)到 SU(3)过渡核,而 146 Ce 以后的核基本是完全的转动核.

关键词 能谱 电磁跃迁 低能正字称集体态

2000-04-17 收稿

^{*} 国家自然科学基金(19775026),教育部杰出大学青年教师基金,霍英东教育基金资助