-
The first LHAASO catalog of gamma-ray sources includes 90 sources, 35 of which are associated with pulsars. We assume these sources to be PWNe or pulsar halos. In the LHAASO catalog paper, their morphology is uniformly described using a Gaussian template [8]. While this approach effectively captures the signals near the pulsars, it may not accurately describe the gamma-ray signals at larger angular distances, considering the possible escape of the parent electrons from the central zone. In this study, we adopted a two-zone diffusion model to describe the gamma-ray surface brightness of these sources, ensuring that the central morphology of each source is in agreement with the LHAASO measurements. The leakage flux can then be estimated by extrapolating from the two-zone diffusion model.
-
We assume that the electron propagation for the LHAASO PWNe/halos can be described by the diffusion-loss equation
$ \begin{aligned}[b] \frac{\partial N\left(E_e, \boldsymbol{r}, t\right)}{\partial t}=\;&\nabla \cdot\left[D\left(E_e\right) \nabla N\left(E_e, \boldsymbol{r}, t\right)\right]\\&+\frac{\partial\left[b\left(E_e\right) N\left(E_e, \boldsymbol{r}, t\right)\right]}{\partial E_e}+Q\left(E_e, \boldsymbol{r}, t\right)\, , \end{aligned} $
(1) where N is the differential electron number density at electron energy
$ E_e $ , position$ \boldsymbol{r} $ , and time t. D is the diffusion coefficient,$b\equiv |{\rm d}E_e/{\rm d}t|$ is the energy-loss rate due to electromagnetic radiation, and Q is the source term.The source is assumed to be point-like, and the electron injection rate is assumed to follow the time profile of the pulsar spin-down luminosity, i.e.,
$ \propto\left(1+t / \tau \right)^{-2} $ , where the spin-down time scale is set to be$ \tau=10\; \rm{kyr} $ . The electron injection spectrum for each source is described in power-law form. Hence, the source injection function is expressed as$ \begin{array}{*{20}{l}} Q\left(E_e, \boldsymbol{r}, t\right)= \begin{cases} q_{0}E^{-\alpha} \delta\left(\boldsymbol{r}-\boldsymbol{r}_p\right)\left[\left(t_p+\tau\right) /\left(t+\tau\right)\right]^2, & t \geq 0 \\ 0, & t<0\end{cases}\, , \end{array} $
(2) where
$ \boldsymbol{r}_p $ is the position of the pulsar, decided by the pulsar distance d given in Table 1.$ t_{p} $ is the age of the pulsar, and$ t=0 $ corresponds to the birth time of the pulsar.Name RA/(°) DEC/(°) $N_{0}/\rm{(10^{-16}cm^{-2}s^{-1}TeV^{-1})}$ Γ $\sigma/(^\circ)$ Associated Pulsar d /kpc $ t_p $ /kyr$ \dot{E} $ /(erg s−1)1LHAASO J0007+7303u $ 1.91 $ $ 73.07 $ $ 3.41 \pm 0.27 $ $ 3.4 \pm 0.12 $ $ 0.17 \pm 0.03 $ PSR J0007+7303 $ 1.4 $ $ 14 $ $ 4.50 \times 10^{35} $ 1LHAASO J0216+4237u $ 34.1 $ $ 42.63 $ $ 0.18 \pm 0.03 $ $ 2.58 \pm 0.17 $ $ 0.13^{\dagger} $ PSR J0218+4232 $ 3.15 $ $ 476000 $ $ 2.40 \times 10^{35} $ 1LHAASO J0249+6022 $ 42.39 $ $ 60.37 $ $ 0.93 \pm 0.09 $ $ 3.82 \pm 0.18 $ $ 0.38 \pm 0.08 $ PSR J0248+6021 $ 2 $ $ 62 $ $ 2.10 \times 10^{35} $ 1LHAASO J0359+5406 $ 59.78 $ $ 54.1 $ $ 0.85 \pm 0.06 $ $ 3.84 \pm 0.15 $ $ 0.3 \pm 0.04 $ PSR J0359+5414 $ 3.8^{*} $ $ 75 $ $ 1.30 \times 10^{36} $ 1LHAASO J0534+2200u $ 83.61 $ $ 22.04 $ $ 6.23 \pm 0.1 $ $ 3.19 \pm 0.03 $ $ 0.06^{\dagger} $ PSR J0534+2200 $ 2 $ $ 1 $ $ 4.50 \times 10^{38} $ 1LHAASO J0542+2311u $ 85.71 $ $ 23.2 $ $ 2.93 \pm 0.12 $ $ 3.74 \pm 0.09 $ $ 0.98 \pm 0.05 $ PSR J0543+2329 $ 1.56^{*} $ $ 253 $ $ 4.10 \times 10^{34} $ 1LHAASO J0622+3754 $ 95.5 $ $ 37.9 $ $ 1.42 \pm 0.07 $ $ 3.68 \pm 0.1 $ $ 0.46 \pm 0.03 $ PSR J0622+3749 $ 1.6 $ $ 208 $ $ 2.70 \times 10^{34} $ 1LHAASO J0631+1040 $ 97.77 $ $ 10.67 $ $ 0.54 \pm 0.06 $ $ 3.33 \pm 0.16 $ $ 0.3^{\dagger} $ PSR J0631+1037 $ 2.1 $ $ 44 $ $ 1.70 \times 10^{35} $ 1LHAASO J0634+1741u $ 98.57 $ $ 17.69 $ $ 4.42 \pm 0.15 $ $ 3.69 \pm 0.06 $ $ 0.89 \pm 0.04 $ PSR J0633+1746 $ 0.19 $ $ 342 $ $ 3.30 \times 10^{34} $ 1LHAASO J0635+0619 $ 98.76 $ $ 6.33 $ $ 0.94 \pm 0.1 $ $ 3.67 \pm 0.18 $ $ 0.6 \pm 0.07 $ PSR J0633+0632 $ 1.35 $ $ 59 $ $ 1.20 \times 10^{35} $ 1LHAASO J1740+0948u $ 265.03 $ $ 9.81 $ $ 0.41 \pm 0.04 $ $ 3.13 \pm 0.15 $ $ 0.11^{\dagger} $ PSR J1740+1000 $ 1.23 $ $ 114 $ $ 2.30 \times 10^{35} $ 1LHAASO J1809-1918u $ 272.38 $ $ -19.3 $ $ 9.46 \pm 1.27 $ $ 3.51 \pm 0.26 $ $ 0.22^{\dagger} $ PSR J1809-1917 $ 3.27 $ $ 51 $ $ 1.80 \times 10^{36} $ 1LHAASO J1813-1245 $ 273.36 $ $ -12.75 $ $ 1.42 \pm 0.27 $ $ 3.66 \pm 0.34 $ $ 0.31^{\dagger} $ PSR J1813-1245 $ 2.63 $ $ 43 $ $ 6.20 \times 10^{36} $ 1LHAASO J1825-1256u $ 276.44 $ $ -12.94 $ $ 5.08 \pm 0.42 $ $ 3.33 \pm 0.13 $ $ 0.2^{\dagger} $ PSR J1826-1256 $ 1.55 $ $ 14 $ $ 3.60 \times 10^{36} $ 1LHAASO J1825-1337u $ 276.45 $ $ -13.63 $ $ 10.1 \pm 0.61 $ $ 3.28 \pm 0.09 $ $ 0.18^{\dagger} $ PSR J1826-1334 $ 3.61 $ $ 21 $ $ 2.80 \times 10^{36} $ 1LHAASO J1837-0654u $ 279.31 $ $ -6.86 $ $ 3.06 \pm 0.21 $ $ 3.7 \pm 0.12 $ $ 0.33 \pm 0.04 $ PSR J1838-0655 $ 6.6 $ $ 23 $ $ 5.60 \times 10^{36} $ 1LHAASO J1839-0548u $ 279.79 $ $ -5.81 $ $ 3.03 \pm 0.2 $ $ 3.24 \pm 0.09 $ $ 0.22 \pm 0.02 $ PSR J1838-0537 $ 2.3^{*} $ $ 5 $ $ 6.00 \times 10^{36} $ 1LHAASO J1848-0001u $ 282.19 $ $ -0.02 $ $ 1.64 \pm 0.1 $ $ 2.75 \pm 0.07 $ $ 0.09^{\dagger} $ PSR J1849-0001 $ 1.9^{*} $ $ 43 $ $ 9.80 \times 10^{36} $ 1LHAASO J1857+0245 $ 284.37 $ $ 2.75 $ $<0.32 $ − $ 0.24 \pm 0.04 $ PSR J1856+0245 $ 6.32 $ $ 21 $ $ 4.60 \times 10^{36} $ 1LHAASO J1906+0712 $ 286.56 $ $ 7.2 $ $<0.19 $ − $ 0.21 \pm 0.05 $ PSR J1906+0722 $ 1.73^{*} $ $ 49 $ $ 1.00 \times 10^{36} $ 1LHAASO J1908+0615u $ 287.05 $ $ 6.26 $ $ 6.86 \pm 0.16 $ $ 2.82 \pm 0.03 $ $ 0.36 \pm 0.01 $ PSR J1907+0602 $ 2.37 $ $ 20 $ $ 2.80 \times 10^{36} $ 1LHAASO J1912+1014u $ 288.38 $ $ 10.5 $ $ 1.52 \pm 0.1 $ $ 3.26 \pm 0.11 $ $ 0.5 \pm 0.04 $ PSR J1913+1011 $ 4.61 $ $ 169 $ $ 2.90 \times 10^{36} $ 1LHAASO J1914+1150u $ 288.73 $ $ 11.84 $ $ 0.79 \pm 0.06 $ $ 3.41 \pm 0.13 $ $ 0.21 \pm 0.04 $ PSR J1915+1150 $ 14.01 $ $ 116 $ $ 5.40 \times 10^{35} $ 1LHAASO J1928+1746u $ 292.17 $ $ 17.89 $ $ 0.72 \pm 0.07 $ $ 3.1 \pm 0.12 $ $ 0.16^{\dagger} $ PSR J1928+1746 $ 4.34 $ $ 83 $ $ 1.60 \times 10^{36} $ 1LHAASO J1929+1846u $ 292.04 $ $ 18.97 $ $ 0.64 \pm 0.06 $ $ 3.11 \pm 0.12 $ $ 0.21^{\dagger} $ PSR J1930+1852 $ 7 $ $ 3 $ $ 1.20 \times 10^{37} $ 1LHAASO J1954+2836u $ 298.55 $ $ 28.6 $ $ 0.42 \pm 0.05 $ $ 2.92 \pm 0.14 $ $ 0.12^{\dagger} $ PSR J1954+2836 $ 1.96 $ $ 69 $ $ 1.10 \times 10^{36} $ 1LHAASO J1954+3253 $ 298.63 $ $ 32.88 $ $<0.04 $ − $ 0.17 \pm 0.03 $ PSR J1952+3252 $ 3 $ $ 107 $ $ 3.70 \times 10^{36} $ 1LHAASO J1959+2846u $ 299.78 $ $ 28.78 $ $ 0.84 \pm 0.07 $ $ 2.9 \pm 0.1 $ $ 0.29 \pm 0.03 $ PSR J1958+2845 $ 1.95 $ $ 22 $ $ 3.40 \times 10^{35} $ 1LHAASO J2005+3415 $ 301.81 $ $ 33.87 $ $ 0.56 \pm 0.05 $ $ 3.79 \pm 0.21 $ $ 0.33 \pm 0.05 $ PSR J2004+3429 $ 10.78 $ $ 18 $ $ 5.80 \times 10^{35} $ 1LHAASO J2005+3050 $ 301.45 $ $ 30.85 $ $ 0.46 \pm 0.05 $ $ 3.62 \pm 0.21 $ $ 0.27 \pm 0.05 $ PSR J2006+3102 $ 6.04 $ $ 104 $ $ 2.20 \times 10^{35} $ 1LHAASO J2020+3649u $ 305.23 $ $ 36.82 $ $ 2.29 \pm 0.09 $ $ 3.31 \pm 0.06 $ $ 0.12 \pm 0.02 $ PSR J2021+3651 $ 1.8 $ $ 17 $ $ 3.40 \times 10^{36} $ 1LHAASO J2028+3352 $ 307.21 $ $ 33.88 $ $ 1.61 \pm 0.19 $ $ 3.38 \pm 0.19 $ $ 1.7 \pm 0.23 $ PSR J2028+3332 $ 0.91^{*} $ $ 576 $ $ 3.50 \times 10^{34} $ 1LHAASO J2031+4127u $ 307.95 $ $ 41.46 $ $ 2.56 \pm 0.08 $ $ 3.45 \pm 0.06 $ $ 0.22 \pm 0.01 $ PSR J2032+4127 $ 1.33 $ $ 201 $ $ 1.50 \times 10^{35} $ 1LHAASO J2228+6100u $ 337.01 $ $ 61 $ $ 4.76 \pm 0.14 $ $ 2.95 \pm 0.04 $ $ 0.35 \pm 0.01 $ PSR J2229+6114 $ 3 $ $ 10 $ $ 2.20 \times 10^{37} $ 1LHAASO J2238+5900 $ 339.54 $ $ 59 $ $ 2.03 \pm 0.12 $ $ 3.55 \pm 0.09 $ $ 0.43 \pm 0.03 $ PSR J2238+5903 $ 2.83 $ $ 27 $ $ 8.90 \times 10^{35} $ [1] The power-law shape is defined by ${\rm d} N/{\rm d} E_\gamma = N_0(E_\gamma/50\; \mathrm{TeV})^{-\Gamma}$ . [2] The pulsar distances marked with$ * $ are "pseudo distances" (see the text for the definition). [3] The Gaussian widths marked with$ \dagger $ are the$ 95 $ % statistical upper limits. [4] PSR is an abbreviation for pulsar.Table 1. 1LHAASO sources associated with pulsars.
For the two-zone model, the diffusion coefficient takes the form
$ \begin{array}{*{20}{l}} D\left(E_e, \boldsymbol{r}\right)= \begin{cases}D_1(E_e/100\; \mathrm{TeV})^{\delta}, & \left|\boldsymbol{r}-\boldsymbol{r}_p\right|<r_{\star} \\ D_2(E_e/100\; \mathrm{TeV})^{\delta}, & \left|\boldsymbol{r}-\boldsymbol{r}_p\right| \geq r_{\star}\end{cases} \end{array} $
(3) where
$ r_{\star} $ is the size of the slow-diffusion zone,$ D_1 $ is the suppressed diffusion coefficient near the source, and$ D_2 $ is the typical diffusion coefficient of the Galaxy [17]. Both$ D_1 $ and$ D_2 $ are normalized at 100 TeV. The energy slope of the diffusion coefficient is assumed to be$ \delta=1/3 $ , as suggested by Kolmogorov’s theory [18]. Unless specified, we take$ D_1=4.5\times10^{27} $ cm$ ^2 $ s$ ^{-1} $ , as inferred from the surface brightness profile of the Geminga halo [19], and the size of the slow-diffusion zone to be$ r_{\star}=25 $ pc.For high-energy electrons (
$ E_e\gg1 $ GeV), energy losses are dominated by synchrotron radiation and inverse Compton scattering (ICS) [20], which is denoted as$ b(E_e) $ in Equation 1. We use a$3 ~ \mu$ G magnetic field to calculate the energy loss due to synchrotron radiation. For ICS, the Galactic interstellar radiation field (ISRF) is composed of the cosmic microwave background, infrared emission, and optical emission. These components are described by gray body distributions with temperatures of$ 2.7 $ K,$ 20 $ K, and$ 5000 $ K and energy densities of$ 0.26 $ eV cm−3,$ 0.3 $ eV cm−3, and$ 0.3 $ eV cm−3, respectively.We use a finite volume numerical method to solve Equation 1 to obtain the electron density
$ N(E_e, \boldsymbol{r}, t) $ [21]. Electrons produce gamma rays through ICS with the Galactic ISRF [22]. We then perform line-of-sight integration to obtain the gamma-ray surface brightness$ S(\theta, E_{\gamma}) $ around pulsars, where θ is the angular distance from pulsars. -
Among these 35 LHAASO PWNe/halos, 32 have been significantly detected by LHAASO-KM2A and were utilized in this study, excluding the Crab nebula as it is a very young source with few expected escaping electrons. In the first LHAASO catalog, their morphologies are all described by the Gaussian template, where σ represents the Gaussian width or its the
$ 95\ $ % upper limit. Their energy spectra follow a power-law shape according to${\rm d}N/{\rm d}E_\gamma = N_0(E_\gamma/50\; \mathrm{TeV})^{-\Gamma}$ . The gamma-ray spectral parameters of the LHAASO sources and parameters of the associated pulsars are listed in Table 1. For most cases, the pulsar distance, characteristic age, and spin-down luminosity are taken from the ATNF catalog [23]. When the pulsar distance is not available in the ATNF catalog, we use the "pseudo distance" derived from the empirical relation between the pulsar gamma-ray luminosity and total spin-down power [24]. Specifically, PSR J1849-0001 currently lacks gamma-ray pulse measurements. We assume its distance to be the same as that of PSR J1954+2836, as these two pulsars have similar ages and Gaussian widths. -
Based on the LHAASO measurements of the morphology and energy spectrum for each source, we can obtain the Gaussian profile at each energy point between 10 TeV and 1 PeV. Taking LHAASO J1825-1337u as an example, Fig. 1 shows the Gaussian morphology at
$ E_{\gamma}=32 $ TeV, convolved with the point spread function (PSF) of LHAASO-KM2A, where the PSF width is$ 0.3^\circ $ . The blue shaded band represents the statistical error, assuming that the errors of each parameter are independent. To accurately reproduce the gamma-ray profile within the central zone and minimize the influence of uncertainties at large angular distances, we fit the two-zone diffusion model to the Gaussian template within the 2.5σ range, employing a chi-square fitting method as follows:Figure 1. (color online) Surface brightness profile of LHAASO J1825-1337u with
$ E_{\gamma}=32 $ TeV. The blue line represents the prediction of the Gaussian profile, with the corresponding shaded area indicating the error band, assuming the parameter errors are independent of each other. The red line represents the expectation from the two-zone diffusion model. The gray shaded area indicates the fitting range.$ \begin{array}{*{20}{l}} \chi^{2}=\sum\limits_{i}^{n} \left(\dfrac{S(\theta, E_{\gamma})-S_{G}(\theta, E_{\gamma})}{\sigma_{G}^i} \right)^{2} ,\end{array} $
(4) where i is the data sampling point, n is the total number of sampling points, and the angular distance between sampling points is
$ 0.1^{\circ} $ .$ S_{G}(\theta, E_{\gamma}) $ is surface brightness predicted by the Gaussian profile,$ S(\theta, E_{\gamma}) $ is surface brightness predicted by the two-zone diffusion model, and$ \sigma_{G}^i $ is the point error based on Gaussian profile error, which is adjusted according to the sample size n. The morphology derived from the two-zone diffusion model is also convolved with the same PSF. The free parameters in the fitting process are$ q_0 $ and α, as defined in Equation (2), which determine the normalization and spectral shape of the gamma-ray emission, respectively.As shown in Fig. 1, when the gamma-ray profile calculated by the two-zone diffusion model is consistent with the LHAASO measurement within the central zone, the profile at lager angular distance is significantly higher than the Gaussian template. This discrepancy arises because electrons spread widely when they escape from the slow-diffusion zone. Consequently, there are still many residual signals even after masking a region of
$ 2.5\sigma $ . Therefore, the leakage signals are expected to contribute a considerable portion to the DGE.
A new perspective on the diffuse gamma-ray emission excess
- Received Date: 2024-07-22
- Available Online: 2024-11-15
Abstract: The Large High-Altitude Air Shower Observatory (LHAASO) recently published measurements of diffuse Galactic gamma-ray emission (DGE) in the 10−1000 TeV energy range. The measured DGE flux is significantly higher than the expectation from hadronic interactions between cosmic rays (CRs) and the interstellar medium. This excess has been proposed to originate from unknown extended sources produced by electron radiation, such as pulsar wind nebulae or pulsar halos (PWNe/halos). In this paper, we propose a new perspective to explain the DGE excess observed by LHAASO. The masking regions used in the LHAASO DGE measurement may not fully encompass the extended signals of