-
In this section, we present the representations for the hadron multiplets required in this study. Under the flavor
$S U(3) $ symmetry, the b quark is a singlet, whereas light quark q belongs to fundamental representation 3. Thus, the b-baryon contains an antitriplet and a sextet in the$S U(3) $ space, which are respectively denoted as$ {\cal{B}} $ and$ {\cal{C}} $ $ \begin{array}{l} \left({\cal{B}}\right)^{i j} = \left(\begin{array}{*{20}{c}} {0 }& {\Lambda_{b}^{0}} & {\Xi_{b}^{0}} \\ {-\Lambda_{b}^{0}} & {0 }& {\Xi_{b}^-} \\ {-\Xi_{b}^{0}} & {-\Xi_{b}^-} & {0} \end{array}\right)\, ,\end{array} $
$ \left({\cal{C}}\right)^{i j} = \left(\begin{array}{*{20}{c}} {\Sigma_{b}^+} & {\dfrac{\Sigma_{b}^{0}}{\sqrt{2}}} & {\dfrac{\Xi_{b}^{\prime 0}}{\sqrt{2}}} \\ {\dfrac{\Sigma_{b}^{0}}{\sqrt{2}}} & {\Sigma_{b}^-} & { \dfrac{\Xi_{b}^{\prime-}}{\sqrt{2}} }\\ {\dfrac{\Xi_{b}^{\prime 0}}{\sqrt{2}}} & {\dfrac{\Xi_{b}^{\prime-}}{\sqrt{2}}} & {\Omega_{b}^-} \end{array}\right) \, . $
(1) The bottom meson forms an
$S U(3) $ antitriplet:$ B_i = \left(\begin{array}{*{20}{c}} {B^-, }& {\overline{B}^0, }& {\overline{B}^0_s} \end{array} \right) \, . $
(2) The charmonium pentaquark addressed in this study contains at least three light quarks in addition to a
$ c\bar c $ pair, i.e., [$ c\bar c q q q $ ]. Under the flavor$S U(3) $ symmetry, the heavy quarks are singlet, and the light quark transforms under the flavor$S U(3) $ symmetry as$ 3 \otimes 3 \otimes 3 = 1\oplus8\oplus8\oplus10 $ . We express the octet pentaquark as$ {\cal{P}}_i^j = \left(\begin{array}{*{20}{c}} {\dfrac{P_{\Sigma^0}}{\sqrt{2}}+\dfrac{P_{\Lambda}}{\sqrt{6}}}& { P_{\Sigma^+}}& { P_p }\\ {P_{\Sigma^-}}& { -\dfrac{P_{\Sigma^0}}{\sqrt{2}}+\dfrac{P_{\Lambda}}{\sqrt{6}}}& { P_n }\\ {P_{\Xi^-}}& { P_{\Xi^0}}& { -\dfrac{P_{\Lambda}}{\sqrt{6}} }\end{array}\right) \, . $
(3) Discoverying these pentaquarks in the multiplet is a possible approach to verify the relevant theoretical model.
For the meson sector, the light pseudoscalar mesons form an octet:
$ (M_{8})_i^j=\left(\begin{array}{*{20}{c}} {\dfrac{\pi^0}{\sqrt{2}}+\dfrac{\eta}{\sqrt{6}} }& {\pi^+}& { K^+}\\ { \pi^-}&{-\dfrac{\pi^0}{\sqrt{2}}+\dfrac{\eta}{\sqrt{6}}}&{{K^0}}\\ { K^-}&{\overline{K}^0}& {-2\dfrac{\eta}{\sqrt{6}} } \end{array}\right)\, .$
(4) Here, η is considered only as a member of octet, while singlet
$ \eta_1 $ is not considered to avoid the octet-singlet mixture complexity.Light baryons made of three light quarks are expressed as follows:
$ T_{8}=\left(\begin{array}{*{20}{c}} {\dfrac{1}{\sqrt{2}} \Sigma^{0}+\dfrac{1}{\sqrt{6}} \Lambda^{0}}& { \Sigma^+}& { p }\\ {\Sigma^-}& { -\dfrac{1}{\sqrt{2}} \Sigma^{0}+\dfrac{1}{\sqrt{6}} \Lambda^{0}}& { n }\\ {\Xi^-}& { \Xi^{0}}& { -\sqrt{\dfrac{2}{3}} \Lambda^{0}} \end{array}\right) \, . $
(5) Singly charmed baryons can form an antitriplet or a sextet. In the former case, we have the following matrix expression:
$ T_{\bf{c\bar 3}} = \left(\begin{array}{*{20}{c}} {0} & {\Lambda_c^+} & {\Xi_c^+ }\\ {-\Lambda_c^+}& { 0}& { \Xi_c^0 }\\{ -\Xi_c^+ }& { -\Xi_c^0 }& { 0 } \end{array} \right)\, , $
(6) and in the latter case, we have the following matrix expression:
$ T_{\bf{c 6}} = \left(\begin{array}{*{20}{c}} {\Sigma_{c}^{++}}& { \dfrac{1}{\sqrt{2}} \Sigma_{c}^+}& { \dfrac{1}{\sqrt{2}} \Xi_{c}^{\prime+} }\\ {\dfrac{1}{\sqrt{2}} \Sigma_{c}^+}& { \Sigma_{c}^{0}}& { \dfrac{1}{\sqrt{2}} \Xi_{c}^{\prime 0} }\\ {\dfrac{1}{\sqrt{2}} \Xi_{c}^{\prime+}}& { \dfrac{1}{\sqrt{2}} \Xi_{c}^{\prime 0}}& { \Omega_{c}^{0}} \end{array}\right) \, . $
(7) The anticharmed meson forms an
$S U(3) $ triplet:$ \overline{D}^i = \left(\begin{array}{*{20}{c}} {\overline{D}^0, }&{ D^-, }& {D^-_s} \end{array} \right) \, . $
(8) The best calculation process for the magnitudes of CKM matrix elements [57] is as follows:
$ \begin{array}{l} \left[\begin{array}{*{20}{l}} {\left|V_{u d}\right|}& {\left|V_{u s}\right|}& {\left|V_{u b}\right| }\\ {\left|V_{c d}\right|}& { \left|V_{c s}\right|}& { \left|V_{c b}\right| }\\ {\left|V_{t d}\right|}& { \left|V_{t s}\right|}& { \left|V_{t b}\right|} \end{array}\right] = \\ \left[\begin{array}{*{20}{c}} { 0.97370 \pm 0.00014 } & { 0.2245 \pm 0.0008 } & { 0.00382 \pm 0.00024 }\\ {0.221 \pm 0.004}& { 0.987 \pm 0.011}& { 0.0410 \pm 0.0014} \\ {0.0080 \pm 0.0003}& { 0.0388 \pm 0.0011}& { 1.013 \pm 0.030} \end{array} \right] , \end{array}$
(9) which will be useful in the subsequent discussions.
To describe the various decay modes in the frame of
$S U(3) $ analysis, we must construct the hadron-level effective Hamiltonian with representations for the initial and final states listed above. It is worth stressing that a hadron in the final state must be created by its antiparticle field. For instance, we need a$ \overline{P}_{\Lambda} $ field in the Hamiltonian to create a$ P_{\Lambda} $ pentaquark in the final state. The constructions of a hadron-level effective Hamiltonian are presented in the following sections, resulting in simple relations among the decay amplitudes. -
First, we discuss b-baryon decays into an octet pentaquark and a light meson. The leading-order effective Hamiltonian is given by
$ {\cal{H}}_{ \rm{w.e.}}(b \rightarrow q c \bar{c})=\frac{G_{F}}{\sqrt{2}}\bigg(V_{c b} V_{c q}^{*}\left(C_{1} O_{1}+C_{2} O_{2}\right)\bigg) \, , $
(10) with
$ \begin{aligned}[b] & O_{1} = \left(\bar{c}_{\alpha} b_{\beta}\right)_{V-A}\left(\bar{q}_{\beta} c_{\alpha}\right)_{V-A} \, , \\ & O_{2} = \left(\bar{c}_{\alpha} b_{\alpha}\right)_{V-A}\left(\bar{q}_{\beta} c_{\beta}\right)_{V-A} \, , \end{aligned} $
(11) where q can be d or s.
$ G_F $ and$ V_{ij} $ denote the Fermi coupling constant and a CKM matrix element, respectively;$ O_i $ is the low-energy effective operator; and$ C_i $ is the corresponding Wilson coefficient. We have neglected contributions from penguin diagrams; they are substantially suppressed in relation to the tree diagrams. Operators$ O_i $ transfer under the flavor$S U(3) $ symmetry as 3. The corresponding quark level transition$ b\to c\bar c d/s $ can form an effective vertex, H, with$ (H)^{1}=0 $ ,$ (H)^{2}=V_{c d}^{*} $ , and$ (H)^{3}=V_{c s}^{*} $ .At the hadron level, for a b-baryon that belongs to the antitriplet decays into an octet pentaquark and a light meson, the effective Hamiltonian is constructed as
$\begin{aligned}[b] {\cal H}_{\rm eff}=\;& a_1({\cal{B}})^{il}(H)^m \epsilon_{ijk} ({\cal{\overline{P}}})^k_l (\overline{M})^j_m \\ &+ a_2({\cal{B}})^{im}(H)^j \epsilon_{ijk} ({\cal{\overline{P}}})^k_l (\overline{M})^l_m \\ &+ a_3({\cal{B}})^{lm}(H)^i \epsilon_{ijk} ({\cal{\overline{P}}})^k_l (\overline{M})^j_m \, . \end{aligned} $
(12) For a b-baryon belonging to the sextet, the effective Hamiltonian is expressed as
$\begin{aligned}[b] {\cal H}_{\rm eff}=\;& b_1({\cal{C}})^{il}(H)^m \epsilon_{ijk} ({\cal{\overline{P}}})^k_l (\overline{M})^j_m \\ & +b_2({\cal{C}})^{im}(H)^j \epsilon_{ijk} ({\cal{\overline{P}}})^k_l (\overline{M})^l_m \\ & +b_3({\cal{C}})^{lm}(H)^i \epsilon_{ijk} ({\cal{\overline{P}}})^k_l (\overline{M})^j_m \, .\end{aligned} $
(13) In the above expressions, we suppressed the Lorentz indices and spinor forms, concentrating only on the flavor
$S U(3) $ indices. Here,$ a_i $ and$ b_i $ are the$S U(3) $ irreducible nonperturbative amplitudes. Topological diagrams for these decay modes are shown in Fig. 1. The individual decay amplitude can be obtained by expanding Eqs. (12) and (13); its values are listed in Tables 1 and 2. A lot of valuable information can be extracted from these results. Interesting properties are presented next.Figure 1. (color online) Topological diagrams for b-baryon decays into an octet pentaquark and a light meson. Panel (a) corresponds to terms
$ a_{3} $ ,$ a_{4} $ ,$ a_{5} $ and$ b_{2} $ ,$ b_{3} $ ,$ b_{4} $ in Eqs. (12) and (13), respectively. Panel (b) corresponds to terms$ a_{1} $ ,$ a_{2} $ , and$ b_{1} $ .channel amplitude channel amplitude $ \Lambda_b^0\to P_{\Sigma^-} \pi^+ $ $ \left(a_3-a_2\right) V_{\text{cs}}^* $ $ \Lambda_b^0\to P_{\Sigma^-} K^+ $ $ -a_3 V_{\text{cd}}^* $ $ \Lambda_b^0\to P_{\Sigma^0} \pi^0 $ $ \left(a_3-a_2\right) V_{\text{cs}}^* $ $ \Lambda_b^0\to P_{\Sigma^0} K^0 $ $ \dfrac{a_3}{\sqrt{2}}V_{\text{cd}}^* $ $ \Lambda_b^0\to P_{\Sigma^+} \pi^- $ $ \left(a_3-a_2\right) V_{\text{cs}}^* $ $ \Lambda_b^0\to P_{p} \pi^- $ $ \left(a_1+a_2-a_3\right) V_{\text{cd}}^* $ $ \Lambda_b^0\to P_{p} K^- $ $ a_1 V_{\text{cs}}^* $ $ \Lambda_b^0\to P_{n} \pi^0 $ $ -\dfrac{\left(a_1+a_2-a_3\right) }{\sqrt{2}}V_{\text{cd}}^* $ $ \Lambda_b^0\to P_{n} \overline K^0 $ $ a_1 V_{\text{cs}}^* $ $ \Lambda_b^0\to P_{\Lambda} K^0 $ $ -\dfrac{\left(2 a_1+2 a_2-a_3\right) }{\sqrt{6}}V_{\text{cd}}^* $ $ \Xi_b^0\to P_{\Lambda} \overline K^0 $ $ -\dfrac{\left(a_1+a_2+a_3\right) }{\sqrt{6}}V_{\text{cs}}^* $ $ \Xi_b^0\to P_{\Sigma^0} \pi^0 $ $ \dfrac{\left(-a_1+a_2\right)}{2} V_{\text{cd}}^* $ $ \Xi_b^0\to P_{\Sigma^0} \overline K^0 $ $ \dfrac{\left(a_1+a_2-a_3\right) }{\sqrt{2}}V_{\text{cs}}^* $ $ \Xi_b^0\to P_{\Sigma^+} \pi^- $ $ -a_1 V_{\text{cd}}^* $ $ \Xi_b^0\to P_{\Sigma^+} K^- $ $ -\left(a_1+a_2-a_3\right) V_{\text{cs}}^* $ $ \Xi_b^0\to P_{p} K^- $ $ \left(a_2-a_3\right) V_{\text{cd}}^* $ $ \Xi_b^-\to P_{\Lambda} K^- $ $ \dfrac{\left(a_1+a_2+a_3\right) }{\sqrt{6}}V_{\text{cs}}^* $ $ \Xi_b^0\to P_{\Lambda} \pi^0 $ $ \dfrac{\left(a_1+a_2-2 a_3\right) }{2 \sqrt{3}}V_{\text{cd}}^* $ $ \Xi_b^-\to P_{\Sigma^-} \overline K^0 $ $ \left(a_1+a_2-a_3\right) V_{\text{cs}}^* $ $ \Xi_b^0\to P_{n} \overline K^0 $ $ a_2 V_{\text{cd}}^* $ $ \Xi_b^-\to P_{\Sigma^0} K^- $ $ \dfrac{\left(a_1+a_2-a_3\right) }{\sqrt{2}}V_{\text{cs}}^* $ $ \Xi_b^-\to P_{\Lambda} \pi^- $ $ \dfrac{\left(a_1+a_2-2 a_3\right) }{\sqrt{6}}V_{\text{cd}}^* $ $ \Xi_b^-\to P_{\Sigma^-} \pi^0 $ $ -\dfrac{\left(a_1+a_2\right)}{\sqrt{2}} V_{\text{cd}}^* $ $ \Xi_b^0\to P_{\Sigma^-} \pi^+ $ $ a_2 V_{\text{cd}}^* $ $ \Xi_b^-\to P_{n} K^- $ $ -a_3 V_{\text{cd}}^* $ $ \Xi_b^-\to P_{\Sigma^0} \pi^- $ $ \dfrac{\left(a_1+a_2\right) }{\sqrt{2}}V_{\text{cd}}^* $ Table 1. Amplitudes for b-baryon (antitriplet) decays into a pentaquark and a light meson.
channel amplitude channel amplitude $ \Sigma_{b}^{+}\to P_{\Lambda} \pi^+ $ $ -\dfrac{\left(b_2+b_3\right)}{\sqrt{6}} V_{\text{cs}}^* $ $ \Sigma_{b}^{+}\to P_{\Lambda} K^+ $ $ \dfrac{\left(-2 b_2+b_3\right)}{\sqrt{6}} V_{\text{cd}}^* $ $ \Sigma_{b}^{+}\to P_{\Sigma^0} \pi^+ $ $ \dfrac{\left(b_2-b_3\right) }{\sqrt{2}}V_{\text{cs}}^* $ $ \Sigma_{b}^{+}\to P_{\Sigma^0} K^+ $ $ \dfrac{b_3}{\sqrt{2}}V_{\text{cd}}^* $ $ \Sigma_{b}^{+}\to P_{\Sigma^+} \pi^0 $ $ \dfrac{\left(b_3-b_2\right) }{\sqrt{2}}V_{\text{cs}}^* $ $ \Sigma_{b}^{+}\to P_{\Sigma^+} K^0 $ $ -b_1 V_{\text{cd}}^* $ $ \Sigma_{b}^{+}\to P_{p} \overline K^0 $ $ b_1 V_{\text{cs}}^* $ $ \Sigma_{b}^{+}\to P_{n} \pi^+ $ $ b_2 V_{\text{cd}}^* $ $ \Sigma_{b}^{0}\to P_{\Lambda} \pi^0 $ $ \dfrac{\left(b_2+b_3\right) }{\sqrt{6}}V_{\text{cs}}^* $ $ \Sigma_{b}^{0}\to P_{\Lambda} K^0 $ $ -\dfrac{\left(2 b_2-b_3\right) }{2 \sqrt{3}}V_{\text{cd}}^* $ $ \Sigma_{b}^{0}\to P_{\Sigma^-} \pi^+ $ $ \dfrac{\left(b_2-b_3\right) }{\sqrt{2}}V_{\text{cs}}^* $ $ \Sigma_{b}^{0}\to P_{\Sigma^-} K^+ $ $ \dfrac{b_3}{\sqrt{2}}V_{\text{cd}}^* $ $ \Sigma_{b}^{0}\to P_{\Sigma^+} \pi^- $ $ \dfrac{\left(b_3-b_2\right) }{\sqrt{2}}V_{\text{cs}}^* $ $ \Sigma_{b}^{+}\to P_{p} \pi^0 $ $ -\dfrac{\left(b_1-b_2+b_3\right) }{\sqrt{2}}V_{\text{cd}}^* $ Continued on next page Table 2. Amplitudes for b-baryon (sextet) decays into a pentaquark and a light meson.
Table 2-continued from previous page channel amplitude channel amplitude $ \Sigma_{b}^{0}\to P_{p} K^- $ $ -\dfrac{b_1}{\sqrt{2}}V_{\text{cs}}^* $ $ \Sigma_{b}^{0}\to P_{\Sigma^0} K^0 $ $ \dfrac{\left(2 b_1+b_3\right)}{2} V_{\text{cd}}^* $ $ \Sigma_{b}^{0}\to P_{n} \overline K^0 $ $ \dfrac{b_1}{\sqrt{2}}V_{\text{cs}}^* $ $ \Sigma_{b}^{0}\to P_{p} \pi^- $ $ -\dfrac{\left(b_1-b_2+b_3\right) }{\sqrt{2}}V_{\text{cd}}^* $ $ \Sigma_{b}^{-}\to P_{\Lambda} \pi^- $ $ \dfrac{\left(b_2+b_3\right) }{\sqrt{6}}V_{\text{cs}}^* $ $ \Sigma_{b}^{0}\to P_{n} \pi^0 $ $ -\dfrac{\left(b_1+b_2+b_3\right)}{2} V_{\text{cd}}^* $ $ \Sigma_{b}^{-}\to P_{\Sigma^-} \pi^0 $ $ \dfrac{\left(b_3-b_2\right) }{\sqrt{2}}V_{\text{cs}}^* $ $ \Sigma_{b}^{-}\to P_{\Sigma^-} K^0 $ $ \left(b_1+b_3\right) V_{\text{cd}}^* $ $ \Sigma_{b}^{-}\to P_{\Sigma^0} \pi^- $ $ \dfrac{\left(b_2-b_3\right) }{\sqrt{2}}V_{\text{cs}}^* $ $ \Sigma_{b}^{-}\to P_{n} \pi^- $ $ -\left(b_1+b_3\right) V_{\text{cd}}^* $ $ \Sigma_{b}^{-}\to P_{n} K^- $ $ -b_1 V_{\text{cs}}^* $ $ \Xi_{b}^{\prime0}\to P_{\Lambda} \pi^0 $ $ \dfrac{\left(3 b_1-b_2+2 b_3\right) }{2 \sqrt{6}}V_{\text{cd}}^* $ $ \Xi_{b}^{\prime0}\to P_{\Lambda} \overline K^0 $ $ -\dfrac{\left(3 b_1+b_2+b_3\right) }{2 \sqrt{3}}V_{\text{cs}}^* $ $ \Xi_{b}^{\prime0}\to P_{\Sigma^-} \pi^+ $ $ -\dfrac{b_2}{\sqrt{2}}V_{\text{cd}}^* $ $ \Xi_{b}^{\prime0}\to P_{\Sigma^0} \overline K^0 $ $ -\dfrac{\left(b_1-b_2+b_3\right)}{2} V_{\text{cs}}^* $ $ \Xi_{b}^{\prime0}\to P_{\Sigma^0} \pi^0 $ $ \dfrac{\left(b_1-b_2\right) }{2 \sqrt{2}}V_{\text{cd}}^* $ $ \Xi_{b}^{\prime0}\to P_{\Sigma^+} K^- $ $ \dfrac{\left(b_1-b_2+b_3\right) }{\sqrt{2}}V_{\text{cs}}^* $ $ \Xi_{b}^{\prime0}\to P_{\Sigma^+} \pi^- $ $ \dfrac{b_1}{\sqrt{2}}V_{\text{cd}}^* $ $ \Xi_{b}^{\prime-}\to P_{\Lambda} K^- $ $ \dfrac{\left(3 b_1+b_2+b_3\right) }{2 \sqrt{3}}V_{\text{cs}}^* $ $ \Xi_{b}^{\prime0}\to P_{p} K^- $ $ \dfrac{\left(b_2-b_3\right) }{\sqrt{2}}V_{\text{cd}}^* $ $ \Xi_{b}^{\prime-}\to P_{\Sigma^-} \overline K^0 $ $ -\dfrac{\left(b_1-b_2+b_3\right) }{\sqrt{2}}V_{\text{cs}}^* $ $ \Xi_{b}^{\prime0}\to P_{n} \overline K^0 $ $ \dfrac{b_2}{\sqrt{2}}V_{\text{cd}}^* $ $ \Xi_{b}^{\prime-}\to P_{\Sigma^0} K^- $ $ -\dfrac{\left(b_1-b_2+b_3\right)}{2} V_{\text{cs}}^* $ $ \Xi_{b}^{\prime-}\to P_{\Lambda} \pi^- $ $ \dfrac{\left(3 b_1-b_2+2 b_3\right) }{2 \sqrt{3}}V_{\text{cd}}^* $ $ \Xi_{b}^{\prime-}\to P_{\Sigma^-} \pi^0 $ $ \dfrac{\left(b_1+b_2\right)}{2} V_{\text{cd}}^* $ $ \Xi_{b}^{\prime-}\to P_{\Sigma^0} \pi^- $ $ -\dfrac{\left(b_1+b_2\right)}{2} V_{\text{cd}}^* $ $ \Xi_{b}^{\prime-}\to P_{n} K^- $ $ -\dfrac{b_3}{\sqrt{2}}V_{\text{cd}}^* $ $ \Omega_{b}^{-}\to P_{\Lambda} K^- $ $ \dfrac{\left(-b_2+2 b_3\right) }{\sqrt{6}}V_{\text{cd}}^* $ $ \Omega_{b}^{-}\to P_{\Sigma^-} \overline K^0 $ $ -b_2 V_{\text{cd}}^* $ $ \Omega_{b}^{-}\to P_{\Sigma^0} K^- $ $ -\dfrac{b_2}{\sqrt{2}}V_{\text{cd}}^* $ 1. Tables 1 and 2 are arranged according to the dependence on the CKM matrix elements; the
$ c\to s $ transition is proportional to$ |V_{cs}^*|\sim 1 $ , whereas the$ c\to d $ transition is Cabibbo-suppressed$ |V_{cd}^*|\sim 0.2 $ .2. A number of relations for different decay widths can be readily extracted from Table 1:
$\begin{aligned}[b]{{\Gamma}}\left({{\Lambda}}_{{b}}^{{0}} \rightarrow {{P}}_{{p}} {{K}}^-\right)=\;&{{\Gamma}}\left({{\Lambda}}_{{b}}^{{0}} \rightarrow {{P}}_{{n}} \bar{{{K}}}^{{0}}\right), \\ {{\Gamma}}\left({{\Lambda}}_{{b}}^{{0}} \rightarrow {{P}}_{{p}} {{\pi}}^-\right)=\;&2 {{\Gamma}}\left({{\Lambda}}_{{b}}^{{0}} \rightarrow {{P}}_{{n}} {{\pi}}^{{0}}\right), \\ {{\Gamma}}\left({{\Lambda}}_{{b}}^{{0}} \rightarrow {{P}}_{{{\Sigma}}^-} {{K}}^+\right)=\;&2 {{\Gamma}}\left({{\Lambda}}_{{b}}^{{0}} \rightarrow {{P}}_{{{\Sigma}}^{{0}}} {{K}}^{{0}}\right), \\ {{\Gamma}}\left({{\Lambda}}_{{b}}^{{0}} \rightarrow {{P}}_{{{\Sigma}}^-} {{\pi}}^+\right)=\;&{{\Gamma}}\left({{\Lambda}}_{{b}}^{{0}} \rightarrow {{P}}_{{{\Sigma}}^+} {{\pi}}^-\right) \\ =\;&{{\Gamma}}\left({{\Lambda}}_{{b}}^{{0}} \rightarrow {{P}}_{{{\Sigma}}^{{0}}} {{\pi}}^{{0}}\right), \\ {{\Gamma}}\left({{\Xi}}_{{b}}^{{0}} \rightarrow {{P}}_{{{\Lambda}}} \bar{{{K}}}^{{0}}\right)=\;&{{\Gamma}}\left({{\Xi}}_{{b}}^- \rightarrow {{P}}_{{{\Lambda}}} {{K}}^-\right), \\ {{\Gamma}}\left({{\Xi}}_{{b}}^- \rightarrow {{P}}_{{{\Sigma}}^-} {{\pi}}^{{0}}\right)=\;&{{\Gamma}}\left({{\Xi}}_{{b}}^- \rightarrow {{P}}_{{{\Sigma}}^{{0}}} {{\pi}}^-\right), \\ {{\Gamma}}\left({{\Xi}}_{{b}}^- \rightarrow {{P}}_{{{\Lambda}}} {{\pi}}^-\right)=\;&2 {{\Gamma}}\left({{\Xi}}_{{b}}^{{0}} \rightarrow {{P}}_{{{\Lambda}}} {{\pi}}^{{0}}\right), \\ {{\Gamma}}\left({{\Xi}}_{{b}}^- \rightarrow {{P}}_{{{\Sigma}}^-} \bar{{{K}}}^{{0}}\right)=\;&{{\Gamma}}\left({{\Xi}}_{{b}}^{{0}} \rightarrow {{P}}_{{{\Sigma}}^+} {{K}}^-\right) \\ =\;&2 {{\Gamma}}\left({{\Xi}}_{{b}}^{{0}} \rightarrow {{P}}_{{{\Sigma}}^{{0}}} \bar{{{K}}}^{{0}}\right), \\ =\;&2 {{\Gamma}}\left({{\Xi}}_{{b}}^- \rightarrow {{P}}_{{{\Sigma}}^{{0}}} {{K}}^-\right), \\ \Gamma\left(\Lambda_b^0 \rightarrow P_{\Sigma^-} K^+\right)=\;&\Gamma\left(\Xi_b^- \rightarrow P_n K^-\right), \\ \Gamma\left(\Xi_b^0 \rightarrow P_{\Sigma^-} \pi^+\right)=\;&\Gamma\left(\Xi_b^0 \rightarrow P_n \bar{K}^0\right) .\end{aligned}$
(14) Likewise, the following relations can be deduced from Table 2:
$ \begin{aligned}[b] {{\Gamma}}({{\Omega}}_{{b}}^-\to {{P}}_{{{\Sigma}}^-} \overline {{K}}^{{0}} ) =\;& 2{{\Gamma}}({{\Omega}}_{{b}}^-\to {{P}}_{{{\Sigma}}^{{0}}} {{K}}^- ) \, , \\ {{\Gamma}}({{\Xi}}_{{b}}^{\prime{{0}}}\to {{P}}_{{{\Lambda}}} \overline {{K}}^{{0}} ) =\;& {{\Gamma}}({{\Xi}}_{{b}}^{\prime-}\to {{P}}_{{{\Lambda}}} {{K}}^- ) \, , \\ {{\Gamma}}({{\Xi}}_{{b}}^{\prime{{0}}}\to {{P}}_{{{\Sigma}}^+} {{K}}^- ) =\;& {{\Gamma}}({{\Xi}}_{{b}}^{\prime-}\to {{P}}_{{{\Sigma}}^-} \overline {{K}}^{{0}} ) \\ =\;&{{ 2{{\Gamma}}({{\Xi}}_{{b}}^{\prime{{0}}}\to {{P}}_{{{\Sigma}}^{{0}}} \overline {{K}}^{{0}} )}} \\ =\;&{{ 2{{\Gamma}}({{\Xi}}_{{b}}^{\prime-}\to {{P}}_{{{\Sigma}}^{{0}}} {{K}}^- ) \, , }} \\ {{\Gamma}}({{\Xi}}_{{b}}^{\prime-}\to {{P}}_{{{\Lambda}}} {{\pi}}^- ) =\;& 2{{\Gamma}}({{\Xi}}_{{b}}^{\prime{{0}}}\to {{P}}_{{{\Lambda}}} {{\pi}}^{{0}} ) \, , \\ {{\Gamma}}({{\Xi}}_{{b}}^{\prime-}\to {{P}}_{{{\Sigma}}^-} {{\pi}}^{{0}} ) =\;& {{\Gamma}}({{\Xi}}_{{b}}^{\prime-}\to {{P}}_{{{\Sigma}}^{{0}}} {{\pi}}^- ) \, , \\ {{\Gamma}}({{\Sigma}}_{{b}}^+\to {{P}}_{{{\Lambda}}} {{\pi}}^+ ) =\;& {{\Gamma}}({{\Sigma}}_{{b}}^-\to {{P}}_{{{\Lambda}}} {{\pi}}^- ) \, , \\ {{\Gamma}}({{\Sigma}}_{{b}}^+\to {{P}}_{{{\Sigma}}^{{0}}} {{\pi}}^+ ) =\;& {{\Gamma}}({{\Sigma}}_{{b}}^-\to {{P}}_{{{\Sigma}}^{{0}}} {{\pi}}^- ) \, , \\ {{\Gamma}}({{\Sigma}}_{{b}}^+\to {{P}}_{{p}} \overline {{K}}^{{0}} ) =\;& {{\Gamma}}({{\Sigma}}_{{b}}^-\to {{P}}_{n} {{K}}^- ) \, , \\ {{\Gamma}}({{\Sigma}}_{{b}}^+\to {{P}}_{{{\Lambda}}} {{\pi}}^+ ) =\;& {{\Gamma}}({{\Sigma}}_{{b}}^{{{0}}}\to {{P}}_{{{\Lambda}}} {{\pi}}^{{0}} ) \, , \\ {{\Gamma}}({{\Sigma}}_{{b}}^+\to {{P}}_{{{\Lambda}}} {{K}}^+ ) =\;& 2{{\Gamma}}({{\Sigma}}_{{b}}^{{{0}}}\to {{P}}_{{{\Lambda}}} {{K}}^{{0}} ) \, , \end{aligned} $
$ \begin{aligned}[b] {{\Gamma}}({{\Sigma}}_{{b}}^+\to {{P}}_{{{\Sigma}}^{{0}}} {{K}}^+ ) =\;& {{\Gamma}}({{\Sigma}}_{{b}}^{{{0}}}\to {{P}}_{{{\Sigma}}^-} {{K}}^+ ) \, , \\ {{\Gamma}}({{\Sigma}}_{{b}}^+\to {{P}}_{{p}} {{\pi}}^{{0}} ) =\;& {{\Gamma}}({{\Sigma}}_{{b}}^{{{0}}}\to {{P}}_{{p}} {{\pi}}^- ) \, , \\ {{\Gamma}}({{\Sigma}}_{{b}}^+\to {{P}}_{{p}} \overline {{K}}^{{0}} ) =\;& 2{{\Gamma}}({{\Sigma}}_{{b}}^{{{0}}}\to {{P}}_{n} \overline {{K}}^{{0}} ) \\ =\;&{{ 2{{\Gamma}}({{\Sigma}}_{{b}}^{{{0}}}\to {{P}}_{{p}} {{K}}^- ) \, , }} \\ {{\Gamma}}({{\Sigma}}_{{b}}^+\to {{P}}_{{{\Sigma}}^{{0}}} {{\pi}}^+ ) =\;& {{\Gamma}}({{\Sigma}}_{{b}}^+\to {{P}}_{{{\Sigma}}^+} {{\pi}}^{{0}} ) \\ =\;&{{ {{\Gamma}}({{\Sigma}}_{{b}}^{{{0}}}\to {{P}}_{{{\Sigma}}^+} {{\pi}}^- )}}\\ =\;&{{ {{\Gamma}}({{\Sigma}}_{{b}}^{{{0}}}\to {{P}}_{{{\Sigma}}^-} {{\pi}}^+ )}}\\ =\;&{{ {{\Gamma}}({{\Sigma}}_{{b}}^-\to {{P}}_{{{\Sigma}}^-} {{\pi}}^{{0}} ) \, , }} \\ {{\Gamma}}({{\Sigma}}_{{b}}^{{{0}}}\to {{P}}_{{{\Lambda}}} {{\pi}}^{{0}} ) =\;& {{\Gamma}}({{\Sigma}}_{{b}}^-\to {{P}}_{{{\Lambda}}} {{\pi}}^- ) \, , \\ \Gamma(\Omega_{b}^-\to P_{\Sigma^-} \overline K^0 ) =\;&\Gamma(\Sigma_{b}^+\to P_{n} \pi^+ ) \\ =\;&2\Gamma(\Xi_{b}^{\prime0}\to P_{n} \overline K^0 )\\ =\;&2\Gamma(\Xi_{b}^{\prime0}\to P_{\Sigma^-} \pi^+ ) \, , \\ \Gamma(\Sigma_{b}^+\to P_{\Sigma^0} K^+ ) =\;&\Gamma(\Xi_{b}^{\prime-}\to P_{n} K^- ) \\ \Gamma(\Sigma_{b}^+\to P_{\Sigma^+} K^0 ) =\;&2\Gamma(\Xi_{b}^{\prime0}\to P_{\Sigma^+} \pi^- ) \, , \\ \Gamma(\Sigma_{b}^-\to P_{\Sigma^-} K^0 ) =\;&\Gamma(\Sigma_{b}^-\to P_{n} \pi^- ) \, . \end{aligned} $
(15) The relations marked in bold are upheld by the I-spin symmetry; they are more reliable than the U- and V-spin relations. The abovementioned results constitute the relative relations; absolute decay rates require a reliable computation of the irreducible nonperturbative amplitudes. However, this is a daunting task, notably beyond the theoretical methods presently available. Moreover, the decay modes of
$ \Omega_b^- $ might be experimentally more important, given that the decays of$ \Sigma_b $ and$ \Xi_{b} $ are dominated by strong interactions.3. Let us take
$ P_c(4312) $ as$ P_p $ and$ P_{cs}(4459) $ as$ P_{\Lambda} $ in Eq. (3) according to the different light valence quark components. Then, some of the abovementioned relations facilitate the exploration of new decay modes. Combined with the strong decays of pentaquarks, we next report on some cascade decay modes that are likely to be utilized to reconstruct the pentaquarks.However, it is necessary to point out that the abovementioned relations between decay widths are only an estimate because they were obtained in the flavor
$S U(3) $ symmetry limit, in which the mass differences between final state hadrons have been ignored. In addition, the hadronization processes influence the relations derived in this study. Although the$S U(3) $ breaking effects might be sizable, our qualitative results should be relatively robust, unless the flavor symmetry is broken in a much stronger manner in bottom quark decays than empirically anticipated. With more data from LCHb and other experiments in the future, a rigorous analysis will be necessary [58, 59]. -
At the hadron level, for a B-meson which belongs to an
$S U(3) $ antitriplet decay into an octet pentaquark and a light antibaryon, the corresponding effective Hamiltonian is constructed as$\begin{aligned}[b]{\cal H}_{\rm eff}=\;& c_1 (B)_n (H)^n \epsilon_{ijk} ({\cal{\overline{P}}})^k_l \epsilon^{ilm} (T_8)^j_m \\ &+ c_2 (B)_n (H)^l \epsilon_{ijk} ({\cal{\overline{P}}})^k_l \epsilon^{inm} (T_8)^j_m \\ &+ c_3 (B)_n (H)^j \epsilon_{ijk} ({\cal{\overline{P}}})^k_l \epsilon^{inm} (T_8)^l_m \, .\end{aligned}$
(16) The topological diagrams for these decays are presented in Fig. 2. The decay amplitudes for different channels can be deduced from the Hamiltonian in Eq. (16); they are listed in Table 3. From these amplitudes, we can find the relations for decay widths in the
$S U(3) $ symmetry limit:Figure 2. (color online) Topological diagrams for a B-meson decay into an octet pentaquark and a light antibaryon. Panel (a) refers to terms
$ c_{2} $ and$ c_{3} $ whereas panel (b) refers to term$ c_{1} $ in Eq. (16).channel amplitude channel amplitude $ B^-\to P_{\Lambda} \overline p $ $ -\dfrac{\left(2 c_2+c_3\right) }{\sqrt{6}}V_{\text{cs}}^* $ $ B^-\to P_{\Sigma^-} \overline \Lambda^0 $ $ \dfrac{\left(c_2-c_3\right) }{\sqrt{6}}V_{\text{cd}}^* $ $ B^-\to P_{\Sigma^-} \overline n $ $ -c_3 V_{\text{cs}}^* $ $ B^-\to P_{\Lambda} \overline \Sigma^- $ $ \dfrac{\left(c_2-c_3\right) }{\sqrt{6}}V_{\text{cd}}^* $ $ B^-\to P_{\Sigma^0} \overline p $ $ -\dfrac{c_3}{\sqrt{2}}V_{\text{cs}}^* $ $ B^-\to P_{\Sigma^-} \overline \Sigma^0 $ $ \dfrac{\left(c_2+c_3\right) }{\sqrt{2}}V_{\text{cd}}^* $ $ \overline B^0\to P_{\Lambda} \overline n $ $ -\dfrac{\left(2 c_2+c_3\right) }{\sqrt{6}}V_{\text{cs}}^* $ $ B^-\to P_{\Sigma^0} \overline \Sigma^- $ $ -\dfrac{\left(c_2+c_3\right) }{\sqrt{2}}V_{\text{cd}}^* $ $ \overline B^0\to P_{\Sigma^0} \overline n $ $ \dfrac{c_3}{\sqrt{2}}V_{\text{cs}}^* $ $ B^-\to P_{n} \overline p $ $ c_2 V_{\text{cd}}^* $ $ \overline B^0\to P_{\Sigma^+} \overline p $ $ -c_3 V_{\text{cs}}^* $ $ \overline B^0\to P_{\Lambda} \overline \Lambda^0 $ $ \dfrac{\left(6 c_1+c_2+5 c_3\right)}{6} V_{\text{cd}}^* $ $ \overline B^0_s\to P_{\Lambda} \overline \Lambda^0 $ $ \dfrac{\left(3 c_1+2 c_2+c_3\right)}{3} V_{\text{cs}}^* $ $ \overline B^0\to P_{\Lambda} \overline \Sigma^0 $ $ -\dfrac{\left(c_2-c_3\right) }{2 \sqrt{3}}V_{\text{cd}}^* $ $ \overline B^0_s\to P_{\Sigma^-} \overline \Sigma^+ $ $ \left(c_1+c_3\right) V_{\text{cs}}^* $ $ \overline B^0\to P_{\Sigma^-} \overline \Sigma^+ $ $ \left(c_1+c_2+c_3\right) V_{\text{cd}}^* $ $ \overline B^0_s\to P_{\Sigma^0} \overline \Sigma^0 $ $ \left(c_1+c_3\right) V_{\text{cs}}^* $ $ \overline B^0\to P_{\Sigma^0} \overline \Lambda^0 $ $ -\dfrac{\left(c_2-c_3\right)}{2 \sqrt{3}} V_{\text{cd}}^* $ $ \overline B^0_s\to P_{\Sigma^+} \overline \Sigma^- $ $ \left(c_1+c_3\right) V_{\text{cs}}^* $ $ \overline B^0\to P_{\Sigma^0} \overline \Sigma^0 $ $ \dfrac{\left(2 c_1+c_2+c_3\right)}{2} V_{\text{cd}}^* $ $ \overline B^0_s\to P_{p} \overline p $ $ c_1 V_{\text{cs}}^* $ $ \overline B^0\to P_{\Sigma^+} \overline \Sigma^- $ $ c_1 V_{\text{cd}}^* $ $ \overline B^0_s\to P_{n} \overline n $ $ c_1 V_{\text{cs}}^* $ $ \overline B^0\to P_{p} \overline p $ $ \left(c_1+c_2\right) V_{\text{cd}}^* $ $ \overline B^0\to P_{n} \overline n $ $ \left(c_1+c_2+c_3\right) V_{\text{cd}}^* $ $ \overline B^0_s\to P_{\Lambda} \overline \Xi^0 $ $ \dfrac{\left(c_2+2 c_3\right) }{\sqrt{6}}V_{\text{cd}}^* $ $ \overline B^0_s\to P_{\Sigma^-} \overline \Xi^+ $ $ c_2 V_{\text{cd}}^* $ $ \overline B^0_s\to P_{\Sigma^0} \overline \Xi^0 $ $ -\dfrac{c_2}{\sqrt{2}}V_{\text{cd}}^* $ $ \overline B^0_s\to P_{p} \overline \Sigma^- $ $ -c_3 V_{\text{cd}}^* $ $ \overline B^0_s\to P_{n} \overline \Lambda^0 $ $ -\dfrac{\left(2 c_2+c_3\right) }{\sqrt{6}}V_{\text{cd}}^* $ $ \overline B^0_s\to P_{n} \overline \Sigma^0 $ $ \dfrac{c_3}{\sqrt{2}} V_{\text{cd}}^* $ Table 3. Amplitudes for B-meson decays into a pentaquark and a light baryon.
$ \begin{aligned}[b] \Gamma(B^-\to P_{\Lambda} \overline \Sigma^-) =\;& \Gamma(B^-\to P_{\Sigma^-} \overline \Lambda^0) \\ =\;& 2\Gamma(\overline B^0\to P_{\Lambda} \overline \Sigma^0) \\ =\;& 2\Gamma(\overline B^0\to P_{\Sigma^0} \overline \Lambda^0) \, , \\ \Gamma(B^-\to P_{\Sigma^-} \overline \Sigma^0) =\;& \Gamma (B^-\to P_{\Sigma^0} \overline \Sigma^- ) \, , \\ \Gamma(B^-\to P_{\Sigma^-} \overline n) =\;& \Gamma(\overline B^0\to P_{\Sigma^+} \overline p) \\ =\;& 2\Gamma(\overline B^0\to P_{\Sigma^0} \overline n) \\ =\;& 2\Gamma(B^-\to P_{\Sigma^0} \overline p) \, , \\ \Gamma(B^-\to P_{\Lambda} \overline p)=\;& \Gamma(\overline B^0\to P_{\Lambda} \overline n) \, , \\ \Gamma(\overline B^0_s\to P_{p} \overline \Sigma^-) =\;& 2\Gamma(\overline B^0_s\to P_{n} \overline \Sigma^0) \, , \\ \Gamma(\overline B^0\to P_{\Sigma^-} \overline \Sigma^+) =\;& \Gamma(\overline B^0\to P_{n} \overline n) \, , \\ \Gamma(\overline B^0_s\to P_{\Sigma^-} \overline \Sigma^+) =\;& \Gamma(\overline B^0_s\to P_{\Sigma^0} \overline \Sigma^0) \\ =\;& \Gamma(\overline B^0_s\to P_{\Sigma^+} \overline \Sigma^-) \, , \\ \Gamma(\overline B^0_s\to P_{\Sigma^-} \overline \Xi^+) =\;& \Gamma(B^-\to P_{n} \overline p) \\ =\;& 2\Gamma(\overline B^0_s\to P_{\Sigma^0} \overline \Xi^0) \, , \\ \Gamma(\overline B^0_s\to P_{p} \overline p) =\;& \Gamma(\overline B^0_s\to P_{n} \overline n) \, .\end{aligned} $
(17) Amplitude analyses of
$ B_s^0 \to J/\psi \, p \, \bar p $ and$ B^- \to J/\psi \Lambda \, \overline{p} $ were recently performed by the LHCb Collaboration, and evidences for charmonium pentaquarks were reported. Unlike baryonic decays, mesonic decays offer a cleaner environment to search for new pentaquarks. The relations in Eq. (17) can be utilized to find new decay channels; for instance, Cabibbo-allowed processes$ \overline B^0\to P_{\Lambda} \overline n $ ,$ \overline B^0\to P_{\Sigma^+} \overline p $ , and$ \overline B^0_s\to P_{n} \overline n $ have the potential to be experimentally discovered in the future. -
The particular decay processes of
$ P_c $ states in the detectors can be adapted as signatures to reconstruct these exotic states. Currently, the experimental searches for pentaquarks mainly focus on the strong decays of$ P_c $ ; this is the case of$ P_c(4312) \to J/\psi \, p $ [6] and$ P_{cs}(4459) \to J/\psi \Lambda $ [7]. The effective Hamiltonian for an octet pentaquark decay into$ J/\psi $ plus a light baryon is expressed as$ {\cal H}_{\rm eff}= d_1 \epsilon^{ijk} ({\cal{P}})^l_k \epsilon_{ilm} (\overline{T}_8)^m_j J/\psi \, . $
(18) These processes belong to strong decays. Therefore, there are no effective vertices; this is a unique property compared with the weak decays of a b-baryon and B-meson. The decay amplitudes deduced from Eq. (18) are presented in Table 4, showing that all the decay widths are the same:
channel amplitude channel amplitude $ P_{\Lambda}\to \Lambda^0 J/\psi $ $ -d_1 $ $ P_{\Sigma^-}\to \Sigma^+ J/\psi $ $ -d_1 $ $ P_{\Sigma^0}\to \Sigma^0 J/\psi $ $ -d_1 $ $ P_{\Sigma^+}\to \Sigma^- J/\psi $ $ -d_1 $ $ P_{p}\to \Xi^- J/\psi $ $ -d_1 $ $ P_{n}\to \Xi^0 J/\psi $ $ -d_1 $ $ P_{\Lambda}\to \Lambda_c^+ D^-_s $ $ -\sqrt{\dfrac{2}{3}} e_1 $ $ P_{\Lambda}\to \Xi_{c}^{\prime+} D^- $ $ -\dfrac{\sqrt{3}}{2} e_2 $ $ P_{\Lambda}\to \Xi_c^+ D^- $ $ -\dfrac{e_1}{\sqrt{6}} $ $ P_{n}\to \Sigma_{c}^{0} \overline D^0 $ $ -e_2 $ $ P_{\Lambda}\to \Xi_c^0 \overline D^0 $ $ \dfrac{e_1}{\sqrt{6}} $ $ P_{\Lambda}\to \Xi_{c}^{\prime0} \overline D^0 $ $ \dfrac{\sqrt{3} e_2}{2} $ $ P_{\Sigma^-}\to \Xi_c^0 D^- $ $ e_1 $ $ P_{\Sigma^-}\to \Sigma_{c}^{0} D^-_s $ $ e_2 $ $ P_{\Sigma^0}\to \Xi_c^+ D^- $ $ \dfrac{e_1}{\sqrt{2}} $ $ P_{\Sigma^-}\to \Xi_{c}^{\prime0} D^- $ $ -\dfrac{e_2}{\sqrt{2}} $ $ P_{\Sigma^0}\to \Xi_c^0 \overline D^0 $ $ \dfrac{e_1}{\sqrt{2}} $ $ P_{\Sigma^0}\to \Sigma_{c}^{+} D^-_s $ $ e_2 $ $ P_{\Sigma^+}\to \Xi_c^+ \overline D^0 $ $ -e_1 $ $ P_{\Sigma^0}\to \Xi_{c}^{\prime+} D^- $ $ -\dfrac{e_2}{2} $ $ P_{p}\to \Lambda_c^+ \overline D^0 $ $ e_1 $ $ P_{\Sigma^0}\to \Xi_{c}^{\prime0} \overline D^0 $ $ -\dfrac{e_2}{2} $ $ P_{n}\to \Lambda_c^+ D^- $ $ e_1 $ $ P_{\Sigma^+}\to \Sigma_{c}^{++} D^-_s $ $ -e_2 $ $ P_{\Sigma^+}\to \Xi_{c}^{\prime+} \overline D^0 $ $ \dfrac{e_2}{\sqrt{2}} $ $ P_{p}\to \Sigma_{c}^{++} D^- $ $ e_2 $ $ P_{p}\to \Sigma_{c}^{+} \overline D^0 $ $ -\dfrac{e_2}{\sqrt{2}} $ $ P_{n}\to \Sigma_{c}^{+} D^- $ $ \dfrac{e_2}{\sqrt{2}} $ Table 4. Amplitudes for strong decays of pentaquarks
$ \begin{aligned}[b] \Gamma(P_{\Lambda}\to \Lambda^0 J/\psi)&= \Gamma(P_{\Sigma^-}\to \Sigma^- J/\psi) \\ &= \Gamma(P_{\Sigma^0}\to \Sigma^0 J/\psi) \\&= \Gamma(P_{\Sigma^+}\to \Sigma^+ J/\psi) \\&= \Gamma(P_{p}\to p J/\psi) \\&= \Gamma(P_{n}\to n J/\psi) \, . \end{aligned} $
(19) Other possible processes include an octet pentaquark decay into an anticharmed meson plus a singly charmed baryon in an antitriplet or a sextet:
$\begin{aligned}[b] {\cal H}_{eff}= \;&e_1 \epsilon^{ijk} ({\cal{P}})^l_k (\overline{T}_{\bf{c\bar 3}})_{il} D_j \\ &+ e_2 \epsilon^{ijk} ({\cal{P}})^l_k (\overline{T}_{\bf{c 6}})_{il} D_j \, .\end{aligned} $
(20) The corresponding decay amplitudes are presented in Table 4, which lists the relations among various decay widths:
$ \begin{align} 2\Gamma(P_{p}\to \Lambda_c^+ \overline D^0) &=2\Gamma(P_{n}\to \Lambda_c^+ D^-) \\ &= 2\Gamma(P_{\Sigma^-}\to \Xi_c^0 D^-) \\ &= 2\Gamma(P_{\Sigma^+}\to \Xi_c^+ \overline D^0) \\ &= 3\Gamma(P_{\Lambda}\to \Lambda_c^+ D^-_s) \\ &= 4\Gamma(P_{\Sigma^0}\to \Xi_c^+ D^-) \\ &= 4\Gamma(P_{\Sigma^0}\to \Xi_c^0 \overline D^0) \\ &= 12\Gamma(P_{\Lambda}\to \Xi_c^+ D^-) \\ &= 12\Gamma(P_{\Lambda}\to \Xi_c^0 \overline D^0) \, , \end{align} $
$ \begin{aligned}[b] 3\Gamma(P_{\Sigma^-}\to \Sigma_{c}^{0} D^-_s) &= 3\Gamma(P_{n}\to \Sigma_{c}^{0} \overline D^0) \\ &= 3\Gamma(P_{\Sigma^+}\to \Sigma_{c}^{++} D^-_s) \\ &= 3\Gamma(P_{\Sigma^0}\to \Sigma_{c}^+ D^-_s) \\ &= 3\Gamma(P_{p}\to \Sigma_{c}^{++} D^-) \\ &=4\Gamma(P_{\Lambda}\to \Xi_{c}^{\prime+} D^-)\\ &= 4\Gamma(P_{\Lambda}\to \Xi_{c}^{\prime0} \overline D^0) \\ &= 6\Gamma(P_{\Sigma^+}\to \Xi_{c}^{\prime+} \overline D^0)\\ &= 6\Gamma(P_{p}\to \Sigma_{c}^+ \overline D^0) \\ &= 6\Gamma(P_{\Sigma^-}\to \Xi_{c}^{\prime0} D^-) \\ &= 6\Gamma(P_{n}\to \Sigma_{c}^+ D^-) \\ &= 12\Gamma(P_{\Sigma^0}\to \Xi_{c}^{\prime0} \overline D^0) \\ &= 12\Gamma(P_{\Sigma^0}\to \Xi_{c}^{\prime+} D^-) \, . \end{aligned}$
(21) If we take
$ P_c(4312) $ as$ P_p $ and$ P_{cs}(4459) $ as$ P_{\Lambda} $ in Eq. (3), the discovery cascade decay modes reported by the LHCb Collaboration are$ \begin{array}{c} \Lambda_b^0 \to P_p \, K^- \to J/\psi \, p \, K^- \, , \\ \Xi_b^- \to P_{\Lambda} \, K^- \to J/\psi \, \Lambda \, K^- \, .\end{array} $
(22) According to the results in Secs. III and IV, we can obtain the cascade decay modes of a b-baryon, which might be useful for finding new pentaquark states. In addition, there are cascade decay modes of a B-meson with probability of being experimentally discovered. All of them are presented in Table 5.
Cascade Channel Cascade Channel $ \Lambda_b^0\to $ $ P_{n} + \overline K^0 \to $ $ n + J/\psi+ \overline K^0 $ $ \overline B^0_s\to $ $ P_{n} + \overline n \to $ $ n + J/\psi + \overline n $ $ \Lambda_b^0\to $ $ P_{n} + \overline K^0 \to $ $ \Lambda_c^+ + D^- + \overline K^0 $ $ \overline B^0_s\to $ $ P_{n} + \overline n \to $ $ \Lambda_c^+ + D^- + \overline n $ $ \Lambda_b^0\to $ $ P_{n} + \overline K^0 \to $ $ \Sigma_{c}^{0} + \overline D^0 + \overline K^0 $ $ \overline B^0_s\to $ $ P_{n} + \overline n \to $ $ \Sigma_{c}^{0} + \overline D^0 + \overline n $ $ \Xi_b^0\to $ $ P_{\Lambda} + \overline K^0 \to $ $ \Lambda^0 + J/\psi + \overline K^0 $ $ \overline B^0\to $ $ P_{\Lambda} + \overline n \to $ $ \Lambda^0 + J/\psi + \overline n $ $ \Xi_b^0\to $ $ P_{\Lambda} + \overline K^0 \to $ $ \Xi_{c}^{\prime+} + D^- + \overline K^0 $ $ \overline B^0\to $ $ P_{\Lambda} + \overline n \to $ $ \Xi_{c}^{\prime+} + D^- + \overline n $ $ \Xi_b^0\to $ $ P_{\Lambda} + \overline K^0 \to $ $ \Xi_{c}^{\prime0} + \overline D^0 + \overline K^0 $ $ \overline B^0\to $ $ P_{\Lambda} + \overline n \to $ $ \Xi_{c}^{\prime0} + \overline D^0 + \overline n $ $ \Sigma_{b}^{+}\to $ $ P_{p} + \overline K^0 \to $ $ p + J/\psi + \overline K^0 $ $ \overline B^0\to $ $ P_{\Sigma^+} + \overline p \to $ $ \Sigma^+ + J/\psi + \overline p $ $ \Sigma_{b}^{+}\to $ $ P_{p} + \overline K^0 \to $ $ \Lambda_c^+ + \overline D^0 + \overline K^0 $ $ \overline B^0\to $ $ P_{\Sigma^+} + \overline p \to $ $ \Xi_c^+ + \overline D^0 + \overline p $ $ \Sigma_{b}^{+}\to $ $ P_{p} + \overline K^0 \to $ $ \Sigma_{c}^{++} + D^- + \overline K^0 $ $ \overline B^0\to $ $ P_{\Sigma^+} + \overline p \to $ $ \Sigma_{c}^{++} + D^-_s + \overline p $ $ \Sigma_{b}^{-}\to $ $ P_{n} + K^- \to $ $ n + J/\psi + K^- $ $ \Lambda_b^0\to $ $ P_{n} + \pi^0 \to $ $ n + J/\psi + \pi^0 $ $ \Sigma_{b}^{-}\to $ $ P_{n} + K^- \to $ $ \Lambda_c^+ + D^- + K^- $ $ \Sigma_{b}^{-}\to $ $ P_{n} + K^- \to $ $ \Sigma_{c}^{0} + \overline D^0 + K^- $ Table 5. Cascade decay modes of b-baryon and B-meson with potential to be experimentally discovered.
Note that the singly Cabibbo-suppressed decays of b-baryon are also presented in this table because a pentaquark has been identified through Cabibbo-suppressed process
$ \Lambda_b^0 \to P_c \, \pi^- \to J/\psi \, p \, \pi^- $ by the LHCb Collaboration [60]. Given that most of the multiquark states ($ X, Y, Z, P_c $ ) have been observed in the B-meson and b-baryondecays, we anticipate that some of the cascade modes in Table 5 will be measured in the near future.
Production of charmonium pentaquarks from b-baryon and B-meson decays: SU(3) analysis
- Received Date: 2023-11-28
- Available Online: 2024-05-15
Abstract: Here, we study the production of charmonium pentaquarks