-
In this work, we study the cold nuclear matter effect on the prompt photon and charged hadron production, which are calculated within a NLO pQCD Monte Carlo program JETPHOX [58−60].
-
To obtain high-precision and robust results, including high-order corrections, a phenomenology study is necessary. In this work, we use NLO cross-sections to carry out the photon and charged hadron production calculations, where the NLO corrections include the NLO PDFs, the NLO FFs, the NLO hard factor [58−61], and the NLO running coupling.
It is known that the prompt photons are produced via two mechanisms. First, a photon with large
$ p_{T} $ can be directly produced in the hard scattering process, which is usually called a "direct" photon. Second, a photon may come from the collinear fragmentation of a high$ p_{T} $ parton, which is often referred to as a "fragmentation" photon. Taking the NLO corrections into account, the inclusive cross section for the prompt photon production with transverse momentum$ p_{T}^{\gamma} $ can be expressed as the sum of the direct and fragmentation photons [58, 61]:$ \begin{aligned}[b] \frac{{\rm d}\sigma_{pp \rightarrow \gamma+X}}{{\rm d}y{\rm d}^2p_{T}^{\gamma}} =& \frac{{\rm d}\sigma^{D}}{{\rm d}y{\rm d}^2p_{T}^{\gamma}} + \frac{{\rm d}\sigma^{F}} {{\rm d}y{\rm d}^2p_{T}^{\gamma}} \\ =& \frac{{\rm d}\sigma^{D}}{{\rm d}y{\rm d}^2p_{T}^{\gamma}}+\sum\limits_{k=q,\bar{q},g}\frac{{\rm d}\sigma^{k}}{{\rm d}y{\rm d}^2p_{T}^{k}}\otimes D_{\gamma/k}. \end{aligned} $
(1) The first term on the right side is the contribution of direct photon production, which includes the Born term (
$ q\bar{q}\rightarrow \gamma g $ and$ qg \rightarrow q\gamma $ ) and a contribution from the NLO corrections. The second term on the right side denotes the contribution of the fragmentation photon.In
$ p+p $ collisions, the cross sections of direct and fragmentation photons at the NLO accuracy can be expressed as follows:$ \begin{aligned}[b] \frac{{\rm d}\sigma^{D}}{{\rm d}y{\rm d}^2p_{T}^{\gamma}}=&\sum\limits_{i,j=q,\bar{q},g}\int {\rm d}x_1 {\rm d}x_2 f_{i/p}(x_1,M) f_{j/p}(x_2,M)\frac{\alpha_s(\mu_R)}{2 \pi} \\ & \times \Bigg(\frac{{\rm d}\hat{\sigma}_{ij}}{{\rm d}y{\rm d}^2p_{T}^{\gamma}}+\frac{\alpha_s(\mu_R)}{2 \pi}K_{ij}^D(\mu_R,M,M_F)\Bigg), \end{aligned} $
(2) and
$ \begin{aligned}[b] \frac{{\rm d}\sigma^{F}}{{\rm d}y{\rm d}^2p_{T}^{\gamma}}=&\sum\limits_{i,j=q,\bar{q},g}\int {\rm d}x_1 {\rm d}x_2 \frac{{\rm d}z}{z^2}f_{i/p}(x_1,M) f_{j/p}(x_2,M) \\ & \times D_{\gamma/k}(z, M_F)(\frac{\alpha_s(\mu_R)}{2 \pi})^2 \\ &\times \Bigg(\frac{{\rm d}\hat{\sigma}_{ij}^k}{{\rm d}y{\rm d}^2p_{T}^{k}}+\frac{\alpha_s(\mu_R)}{2 \pi}K_{ij,k}^F(\mu_R,M,M_F)\Bigg), \end{aligned} $
(3) where
$ \mu_R $ , M, and$ M_F $ are the renormalization, initial-state factorization, and fragmentation scales, respectively. The factorization and fragmentation scales are chosen to be on the order of the transverse momentum of the final state particle in most studies. In Eqs. (2) and (3),$ f_{i/p}(x,M) $ denotes the parton distribution function for a parton i carrying momentum fraction x from a free nucleon.$ D_{\gamma/k}(z, M_F) $ is the fragmentation function of the partons (quarks or gluons) fragmenting into a photon. In this study, we used the Bourhis-Fontannaz-Guillet (BFG) II parametrizations, which include the contributions beyond the leading-logarithms approximation [62]. z is the momentum fraction carried by a photon decayed from a parton.$ K_{ij}^D $ [63−65] and$ K_{ij,k}^F $ [66−68] are the corresponding NLO correction terms of hard factors to the direct and fragmentation photons, respectively. To simplify the calculations, we neglect the terms from the fragmentation photons, as it has been found that the fragmentation photons make less than a 10% contribution to the photon production, and the contribution decreases as the photon energy increases. Thus, in this study, we focus on the cross-sections of direct photons.It is easy to attain the expression of the cross-section of hadron production by replacing the photon fragmentation function with the hadron fragmentation function
$ D_{h/k}(z, M_F) $ as follows:$ \begin{aligned}[b] \frac{{\rm d}\sigma^{h}}{{\rm d}y{\rm d}^2p_{T}^{h}}=&\sum\limits_{i,j=q,\bar{q},g}\int {\rm d}x_1 {\rm d}x_2 \frac{{\rm d}z}{z^2}f_{i/p}(x_1,M) f_{j/p}(x_2,M) \\ &\times D_{h/k}(z, M_F)(\frac{\alpha_s(\mu_R)}{2 \pi})^2 \\ & \times \Bigg(\frac{{\rm d}\hat{\sigma}_{ij}^k}{{\rm d}y{\rm d}^2p_{T}^{k}}+\frac{\alpha_s(\mu_R)}{2 \pi}K_{ij,k}^h(\mu_R,M,M_F)\Bigg), \end{aligned} $
(4) where the Kniehl-Kramer-Potter fragmentation functions are used in our calculations [69].
-
In
$ A+A $ collisions, we only replace the nucleon parton distribution function with the nuclear-modified parton distribution function to present the cold nuclear matter effect in our calculations with JETPHOX. This simplified calculation ignores the impact of iso-spin and Cronin effects, and the dependence of CNM effects on the impact parameter is weaker. Moreover, this simplification can reduce the calculation time and demonstrate the CNM effect more effectively. As the hot nuclear matter effect is not included in our calculations, the nuclear modification factor$ R_{AA}(p_{T}) $ defined in this work only reflects the role of the cold nuclear matter effect. When the nuclear geometry is ignored, the nuclear modification factor can be simply defined as follows [70]:$ R_{AA}(p_{T})=\frac{{\rm d}\sigma_{AA\rightarrow \gamma/h+X}/{\rm d}y{\rm d}^2p_{T}}{A^2 \; {\rm d}{\sigma}_{pp\rightarrow \gamma/h+X}/{\rm d}y{\rm d}^2p_{T}}. $
(5) In
$ p+A $ collisions, the nuclear modification factor$ R_{pA}(p_{T}) $ can be expressed as$R_{pA}(p_{T})=\frac{{\rm d}\sigma_{pA\rightarrow \gamma/h+X}/{\rm d}y{\rm d}^2p_{T}}{A \; {\rm d}{\sigma}_{pp\rightarrow \gamma/h+X}/{\rm d}y{\rm d}^2p_{T}}. $
(6) It is worth mentioning that we do not consider the hot nuclear matter effect in
$ p+A $ or$ A+A $ collisions. Thus, the nuclear modification factors ($ R_{AA}(p_{T}) $ and$ R_{pA}(p_{T}) $ ) only represent cold nuclear matter effects.
Systematic studies on the nuclear parton distribution with photon and hadron productions in nuclear collisions at the LHC
- Received Date: 2023-01-27
- Available Online: 2023-07-15
Abstract: A systematic study on the impact of widely-used nuclear-modified parton distribution function (nPDF) parameterizations on the production of direct photons and charged hadrons is performed by employing a next-to-leading order Monte Carlo event generator JETPHOX in hadronic collisions at LHC energies. The nuclear modification factors of photon and charged hadron productions are studied in three types of collision systems, i.e., small (