-
To describe dark energy, we choose a model of interaction between dark energy density and dark matter density. In the flat FRW metric universe, it is assumed that dark energy and dark matter exchange energy through interaction Q [14].
$ \dot{\rho_{X}}+3H\rho_{X}=-Q, $
(1) $ \dot{\rho_{m}}+3H\rho_{m}=Q, $
(2) where
$ \rho_{X} $ is the density of dark energy and$ \rho_{m} $ is the density of matter.$ H(z)=\dfrac{\dot{a}}{a} $ represents the Hubble parameter, where$ a=1/(1+z) $ and$ \dot{a} $ means derivative with respect to time. In addition,$ \rho_{X} $ and$ \rho_{m} $ have a phenomenological relationship$ \dfrac{\rho_{X}}{\rho_{m}}\varpropto a^{\xi} $ , where ξ is the severity of the coincidence problem. Thus, we have the following expression:$ \begin{array}{*{20}{l}} Q=-H\rho_{m}(\xi+3\omega_x)\Omega_{X}, \end{array} $
(3) where
$ \omega_x $ is the equation of state of dark energy, and$ \Omega_{X} $ is the dark energy density parameter expressed as$ \Omega_{X}=(1-\Omega_{m})/[1-\Omega_{m}+\Omega_{m}(1+z)^{\xi}] $ .When
$\xi+3\omega_x=0(Q=0)$ , no interaction exists between dark energy and dark matter. When$\xi+3\omega_x > 0 (Q < 0)$ , dark matter is converted into dark energy and the coincidence problem is not alleviated. When$\xi+3\omega_x < 0 (Q > 0)$ , dark energy is converted into dark matter and the coincidence problem can be alleviated [47-49]. The parameterized Friedman equation is expressed as follows:$ E(z)^{2}=\frac{H^{2}}{H_{0}^{2}}=(1+z)^{3}[\Omega_{m}+(1-\Omega_{m})(1+z)^{-\xi}]^{-3\omega/\xi}. $
(4) -
It is believed that supermassive binary black hole unions constitute a good source of gravitational waves [50], and the Tianqin detector can detect supermassive black holes [51–54]. For these reasons, we simulated 1000 sets of gravitational wave data from the merger of two black holes with a mass of
$ 10^3 $ solar masses. The redshift (z) of these data was$ 0\sim15 $ . It is important to note that when simulating the gravitational wave data, we adopted the flat ΛCDM model with the matter density parameter set as$ \Omega_m=0.286 $ and the Hubble constant set as$ H_0= \rm 69.6~ kms^{-1}Mpc^{-1} $ with$1$ % uncertainty [55].Tianqin is a typical millihertz frequency gravitational wave observatory. Its main mission is to detect GWs from coalescing supermassive black hole binaries (SMBHBs), inspiral of stellar mass black hole binaries, Galactic ultra-binaries, extreme mass ratio inspirals (EMRIs), and stochastic GW background originating from primordial BHs or cosmic strings [51–54]. SMBHB mergers are the most powerful GW sources [50]. This is why we simulated GW data set of SMBHBs with a mass of
$ 10^3M_\odot $ and the redshift z was set in the range of$ 0\sim15 $ .We can obtain an absolute measure of the luminosity distance
$ D_{L} $ from the chirping GW signals of inspiral compact binary stars [56]. The so-called chirp mass ($ \mathcal{M}_c $ ) and luminosity distance ($ D_{L} $ ) determine the GW strain amplitude. The chirp mass can be obtained from the GW signal's phase position, so it is allowed to extract luminosity distance from the amplitude. The waveform function of GW we used is$ h(f) $ :$ \begin{array}{*{20}{l}} h(f)=\mathcal{A}f^{-7/6}\exp[{\rm i}(2\pi ft_0-\pi/4+2\psi(f/2)-\varphi_{(2.0)})], \end{array} $
(5) where the Fourier amplitude
$ \mathcal{A} $ is$ \begin{aligned}[b] \mathcal{A}=& \frac{1}{D_L}\sqrt{F_+^2(1+\cos^2(\iota))^2+4F_\times^2\cos^2(\iota)}\\ & \times \sqrt{5\pi/96}\pi^{-7/6}\mathcal{M}_c^{5/6}, \end{aligned} $
(6) here the luminosity distance
$ D_{L} $ is crucial for our purpose and can be expressed as a function of the redshift in the standard flat ΛCDM cosmological model:$ D_{L}^{GW}=\frac{1+z}{H_{0}}\int^{z}_{0}\frac{{\rm d}z'}{\sqrt{\Omega_{M}(1+z')^{3}+\Omega_{\lambda}}}, $
(7) where
$\Omega_{M}=0.286,\; \Omega_{\lambda}=0.714$ , H0 = 69.6 kms-1Mpc-1.$ M_c=(1+z)(m_{1}m_{2})^{3/5}/(m_{1}+m_{2})^{1/5} $ denotes the observed chirp mass. For Tianqin,$ F_{+} $ ,$ F_{\times} $ and phase parameters can be found in [50].Moreover, the one-sided power spectral density (PSD) of the detectors' equivalent strain noise provided by Tianqin is as follows [57, 46]:
$ S_n(f)=\frac{S_x}{L_0^2}+\frac{4 S_a}{(2 \pi f)^4 L_0^2}\left(1+\frac{10^{-4} \mathrm{\; Hz}}{f}\right), $
(8) where
$ L_0 $ is the arm length and$L_0=1.73\times10^5 ~{\rm km}$ ; the PSD of the position noise is$S_x=10^{-24}~ {\rm m^2/Hz}$ and the PSD of the residual acceleration noise is$S_a=10^{-30} {\rm m^2 s^{-4}/Hz}$ .Combining Eqs. (5), (6), (8), we can obtain the signal-to-noise ratio (SNR) of Tianqin:
$ \rho=\frac{M_{c}^{5 / 6}}{\sqrt{10} \pi^{2 / 3} D_{L}} \sqrt{\int_{f_{\text {in }}}^{f_{\text {fin }}} \frac{f^{-7 / 3}}{S_{n}(f)} \mathrm{d} f}, $
(9) where
$f_{\rm fin} = {\rm min}(f_{\rm ISCO}, f_{\rm end})$ with GW frequency at the innermost stable circular orbit$f_{ISCO} =1/(6^{3/2}M\pi)$ Hz; the upper cutoff frequency for Tianqin is$f_{\rm end} = 1~{\rm Hz}$ ;$f_{\rm in} = {\rm max}(f_{\rm low},~ f_{\rm obs})$ with lower cutoff frequency of$f_{\rm low} = 10^{-5}$ Hz; and the initial observation frequency is$f_{\rm obs}=4.15\times10^{-5}(M_c/10^{6}M_\odot)^{-5/8}(T_{\rm obs}/1 {\rm yr})^{-3/8}$ Hz. The observation time$T_{\rm obs}$ is 3 months.The inherent uncertainty of the measurement
$\sigma^{\rm inst}_{D_L}$ and increased uncertainty due to weak lenses$\sigma^{\rm lens}_{D_L}$ jointly determine the uncertainty of the luminosity distance. Therefore, we can calculate the total uncertainty of the measurement$ D_L $ as follows [58, 59]:$ \sigma_{D_{L}}^{GW}= \sqrt{\left(\sigma_{D_{L}}^{\rm inst}\right)^{2}+\left(\sigma_{D_{L}}^{\rm lens}\right)^{2}} $
(10) $\quad\quad =\sqrt{\left(\frac{2D_{L}}{\rho}\right)^{2}+\left(0.05zD_{L}\right)^{2}}. $
(11) In order to limit the model parameters, the
$ \chi^{2} $ minimum fitting method was adopted:$ \chi^{2}=\sum\limits_{i=1}^{1000}\frac{\left(D_{L}^{GW}(z)-D_{L}^{th}(z)\right)^{2}}{\left(\sigma_{D_{L}}^{GW}\right)^{2}}, $
(12) where
$ D_{L}^{GW} $ is the luminosity distance observed by simulation,$ \sigma_{D_{L}}^{GW} $ is the data error, and$D_{L}^{\rm th}$ can be expressed as follows:$ D_{L}^{\rm th}=\frac{1+z}{H_{0}}\int^{z}_{0}\frac{{\rm d} z'}{\sqrt{(1+z)^{3}[\Omega_{m}+(1-\Omega_{m})(1+z)^{-\xi}]^{-3\omega/\xi}}}. $
(13) -
In addition, 580 groups of Ia SNe data were also used in this study [60]. These data generally describe the brightness information of the supernova by distance modulus. The observed values in the data are expressed by the apparent magnitude m and absolute magnitude M as follows:
$ \mu_{\mathrm{obs}}=m-M. $
(14) The theoretical value can also be obtained by the following formula:
$ \mu_{\mathrm{th}}=5 \log \left(d_{L} / \mathrm{Mps}\right)+25. $
(15) The
$ \chi^{2} $ minimum fitting method related to the distance modulus can be expressed as follows:$ \chi_{\mathrm{SNe}}^{2}=\sum\limits_{i}^{580}\left(\mu_{\mathrm{obs}}-\mu_{\mathrm{th}}\right)^{2} / \sigma_{\mu, i}^{2}, $
(16) where
$ \sigma_{u, i} $ denotes the observation errors of supernovae.Finally, the 31 Hubble parameter (
$ H(z) $ ) samples from the differential age method were also used [61]. The$ \chi^2 $ minimum fitting method related to Hz parameter data set can be expressed as follows:$ \chi_{H (z)}^{2}=\sum\limits_{i=1}^{31}\left(\frac{H (z)_{\rm t h}-H (z)_{\rm o b s}}{\sigma_{H (z)}}\right)^{2}. $
(17) -
The time delay phenomenon of strong gravitational lensing in the late universe is an important cosmological probe that provides a method for measuring the Hubble constant (
$ H_{0} $ ) . The time delay data we used came from the H0LiCOW project ($ H_{0} $ Lenses in COSMOGRAIL's Wellspring) [62–65]. In a strong gravitational lensing system, the source of stars forms multiple observation images under the action of the lens, and these images takes different paths to reach our detector, thus creating a time delay between the images. These data are sensitive to the Hubble constant$ H_{0} $ and therefore can be used as suitable constraint data [64].The time delay between images located at
$ \theta_{i} $ and$ \theta_{j} $ can be expressed as$ \tau(\theta_{i})-\tau(\theta_{j})=\frac{c\Delta t_{ij}}{D_{\Delta t}}, $
(18) where τ denotes the dimensionless time of arrival,
$ \tau=\dfrac{1}{2}\lvert\theta\lvert^{2}-\theta\cdot\beta $ , and β is the location of the source.$ \Delta t_{ij} $ represents the measured value of time delay whereas$ D_{\Delta t} $ is the called time delay distance, which can be expressed as follows:$ D_{\Delta t}=(1+z_{d})\frac{D_{d}D_{s}}{D_{ds}}, $
(19) where
$ D_{d} $ and$ D_{s} $ are the angular diameter distances obtained when the redshift is$ z_{d} $ and$ z_{s} $ , respectively, and$ D_{ds} $ is the angular diameter distance between the lens and source.In order to constrain cosmological parameters, we used the least squares fitting method to fit the parameters:
$ \chi^{2}_{D_{\Delta t}}=\sum\limits_{i=1}^{18}\frac{[D^{\rm th}_{\Delta t}(i)-D^{\rm obs}_{\Delta t}(i)]^{2}}{\sigma(i)^{2}}, $
(20) where
$D_{\Delta t}^{\rm th}$ is the time-delay distance value that theoretically exists in the cosmological model and$D_{\Delta t}^{\rm obs}$ is the actual measured value whose uncertainty is$ \sigma(i) $ . -
In this study, we used different combinations of four cosmological data sources, namely Tianqin, H0LiCOW, SNe, and
$ H(z) $ , to constrain the interaction model. More specifically, they are Tianqin,$ H(z) $ +SNe, H0LiCOW, H0LiCOW+SNe+$ H(z) $ , and Tiqanqin+H0LiCOW+SNe+$ H(z) $ , respectively. The Markov Chain Monte Carlo (MCMC) algorithm and maximum likelihood method were used to limit the interacting dark energy model. For$ \chi^{2} $ values of multiple sets of data, the following formula was used for combination:$ \begin{array}{*{20}{l}} \chi_{\rm all}^{2}=\chi_{\rm Tianqin}^{2}+\chi_{\rm H0LiCOW}^{2}+\chi_{H(z)}^{2}+\chi_{\rm SNe}^{2}. \end{array} $
(21) In Table 1, we show the constraint results of constraint model parameters (
$ \Omega_{m} $ ,$ \omega_{x} $ , ξ,$ H_{0} $ ) under five different data combinations. Table 2 shows the parameter error estimates obtained under different data combinations calculated as$ \epsilon(p)=\sigma(p)/p $ , where p represents the parameter center value in the model and$\sigma(p)= $ $ \sqrt{(\sigma(p)^{2}_{\rm upper}+\sigma(p)^{2}_{\rm lower})/2}$ .Data $ \Omega_m $ $ \omega_x $ ξ $ H_0 $ Tianqin $ 0.40_{-0.17}^{+0.25}(1\sigma) $ $ -1.83_{-0.67}^{+0.67}(1\sigma) $ $ 3.8_{-1.9}^{+0.89}(1\sigma) $ $ 74.4_{-6.0}^{+4.3}(1\sigma) $ H(z)+SNe $ 0.38_{-0.20}^{+0.20}(1\sigma) $ $ -1.37_{-0.28}^{+0.68}(1\sigma) $ $ 3.39_{-1.6}^{+0.56}(1\sigma) $ $ 69.99_{-0.44}^{+0.44}(1\sigma) $ H0LiCOW $ 0.284_{-0.27}^{+0.067}(1\sigma) $ $ -1.73_{-0.75}^{+0.21}(1\sigma) $ $ 4.5_{-1.6}^{+5.4}(1\sigma) $ $ 79.6_{-6.7}^{+4.8}(1\sigma) $ H0LiCOW+SNe+H(z) $ 0.34_{-0.21}^{+0.21}(1\sigma) $ $ -1.26_{-0.22}^{+0.63}(1\sigma) $ $ 3.43_{-1.8}^{+0.54}(1\sigma) $ $ 69.97_{-0.42}^{+0.42}(1\sigma) $ Tianqin+H0LiCOW+SNe+H(z) $ 0.36_{-0.18}^{+0.18}(1\sigma) $ $ -1.29_{-0.23}^{+0.61}(1\sigma) $ $ 3.15_{-1.1}^{+0.36}(1\sigma) $ $ 70.04_{-0.42}^{+0.42}(1\sigma) $ Table 1. Parametric results obtained from different data constraint interaction models.
Data $ \epsilon(\Omega_{m}) $ $ \epsilon(\omega_{x}) $ $ \epsilon(\xi) $ $ \epsilon({H}_{0}) $ Tianqin $ 0.625(1\sigma) $ $ 0.367(1\sigma) $ $ 0.5(1\sigma) $ $ 0.081(1\sigma) $ H(z)+SNe $ 0.526(1\sigma) $ $ 0.496(1\sigma) $ $ 0.472(1\sigma) $ $ 0.006(1\sigma) $ H0LiCOW $ 0.950(1\sigma) $ $ 0.433(1\sigma) $ $ 1.200(1\sigma) $ $ 0.084(1\sigma) $ H0LiCOW+SNe+H(z) $ 0.617(1\sigma) $ $ 0.500(1\sigma) $ $ 0.524(1\sigma) $ $ 0.006(1\sigma) $ Tianqin+H0LiCOW+SNe+H(z) $ 0.5(1\sigma) $ $ 0.473(1\sigma) $ $ 0.349(1\sigma) $ $ 0.006(1\sigma) $ Table 2. Constraint precision of the parameters (
$\Omega_m,~ \omega_x,~ \xi,~ H_0$ ) obtained from different observational data.As can be seen from Table 1, the Hubble constant (
$ H_0 $ ) values given by the five data combinations with$ 1\sigma $ error are$ {H}_{0}=74.4_{-6.0}^{+4.3}~{\rm kms}^{-1}~{\rm Mpc}^{-1}$ ,$H_{0}=69.99_{-0.44}^{+0.44} {\rm kms}^{-1}~{\rm Mpc}^{-1}$ ,$H_{0}=79.6_{-6.7}^{+4.8}~{\rm kms}^{-1}~{\rm Mpc}^{-1}$ ,$H_{0}=69.97_{-0.42}^{+0.42} $ ${\rm kms}^{-1}~{\rm Mpc}^{-1}$ , and$H_{0}=70.04_{-0.42}^{+0.42}~{\rm kms}^{-1}~{\rm Mpc}^{-1}$ , respectively. We can see that the values of the Hubble constant$ H_0 $ given by ($ H(z) $ +SNe, H0LiCOW+SNe+$ H(z) $ , Tianqin+ H0LiCOW+SNe+$ H(z) $ ) with a confidence interval of$ 1\sigma $ are$H_{0}=69.99_{-0.44}^{+0.44}~{\rm kms}^{-1}~{\rm Mpc}^{-1}$ ,$H_{0}=69.97_{-0.42}^{+0.42} {\rm kms}^{-1}~{\rm Mpc}^{-1}$ , and$H_{0}=70.04_{-0.42}^{+0.42}~{\rm kms}^{-1}~{\rm Mpc}^{-1}$ , which are smaller than$H_{0}=74.03_{-1.42}^{+1.42}~{\rm kms}^{-1}~{\rm Mpc}^{-1}$ given by the Hubble Space Telescope (HST) and larger than$H_{0}=67.4_{-0.5}^{+0.5}~{\rm kms}^{-1}~{\rm Mpc}^{-1}$ given by Plank 2018. This indicates that the conflict problem of$ H_0 $ has been alleviated to some extent. However, the center value of$ H_0 $ given by Tianqin and H0LiCOW data is larger than$H_{0}=74.03_{-1.42}^{+1.42}~{\rm kms}^{-1}~{\rm Mpc}^{-1}$ given by the HST, which indicates that the Hubble tension problem has not been alleviated. In addition, we can see from Table 2 that the constraint precision of$ H_0 $ given by the combination of electromagnetic wave data (H0LiCOW+SNe+$ H(z) $ ) and gravitational wave data (Tianqin) is 0.006 and 0.081, respectively. This means that, in this model, the electromagnetic wave data has a better constraint effect on$ H_0 $ than gravitational wave data. Furthermore, the constraint precision given by Tianqin+H0LiCOW+SNe+$ H(z) $ is 0.006, which further indicates that the constraint effect of gravitational wave data on$ H_0 $ in this model is weak.In addition, other parameters besides Hubble's constant are listed in Table 1 to analyze the coincidence problem. In the previous content, we mentioned that when
$ \xi+3\omega_x=0 $ , there is no interaction; when$ \xi+3\omega_x> 0 $ , dark matter transitions into dark energy and the coincidence problem is not alleviated; and when$ \xi+3\omega_x<0 $ , dark energy transitions into dark matter and the coincidence problem can be alleviated. Note from Table 1 that$ \xi+3\omega_x=-1.69^{+2.9}_{-3.91} $ (Tianqin),$ \xi+3\omega_x= -0.35^{+2.43}_{-2.46} $ (H0Li-COW+SNe+$ H(z) $ ), and$ \xi+3\omega_x = -0.72^{+2.19}_{-1.79} $ (Tianqin+ H0LiCOW+SNe+$ H(z) $ ). We can clearly see that each of the three data sets (Tianqin, H0LiCOW+SNe+$ H(z) $ , Tianqin+H0LiCOW+SNe+$ H(z) $ ) presents a central value of$ \xi+3\omega_x $ less than 0, which means that the coincidence problem is alleviated, but$ \xi+3\omega_x=0 $ is still within the$ 1\sigma $ error range. In addition, the results for the parameter$ \Omega_{m} $ obtained by the five data constraint models are consistent with those obtained by the CMB data from Planck satellite ($ \Omega_{m}=0.31\pm0.017(1\sigma) $ ) [66] within an error range of$ 1\sigma $ .
Using simulated Tianqin gravitational wave data and electromagnetic wave data to study the coincidence problem and Hubble tension problem
- Received Date: 2022-10-05
- Available Online: 2023-03-15
Abstract: In this study, we used electromagnetic wave data (H0LiCOW,